TMV035 ALA-B

90. Linearization. Jacobi matrix. Newton's method.

The fixed point iteration (and hence also Newton's method) works equally well for systems of equations. For example,

$$
\begin{array}{r}
x_{2}\left(1-x_{1}^{2}\right)=0 \\
2-x_{1} x_{2}=0
\end{array}
$$

is a system of two equations in two unknowns. See Problem 90.5 below. If we define two functions

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=x_{2}\left(1-x_{1}^{2}\right), \\
& f_{2}\left(x_{1}, x_{2}\right)=2-x_{1} x_{2},
\end{aligned}
$$

the equations may be written

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=0 \\
& f_{2}\left(x_{1}, x_{2}\right)=0
\end{aligned}
$$

With $f=\left(f_{1}, f_{2}\right), x=\left(x_{1}, x_{2}\right)$, and $0=(0,0)$, we note that $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ and we can write the equations in the compact form

$$
f(x)=0
$$

In this lecture we will see how Newton's method can be applied to such systems of equations.
Note that the bisection algorithm can only be used for a single equation, but not for a system of several equations. This is because it relies on the fact the the graph of a Lipschitz continuous function $f: \mathbf{R} \rightarrow \mathbf{R}$ must pass the value zero if it is positive in one point and negative in another point. This has no counterpart for functions $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$.

0.1 Function of one variable, $f: \mathbf{R} \rightarrow \mathbf{R}$

(AMBS 23) A function $f: \mathbf{R} \rightarrow \mathbf{R}$ of one variable is differentiable at \bar{x} if there are constants $m(\bar{x})$, $K_{f}(\bar{x})$ such that

$$
\begin{equation*}
f(x)=f(\bar{x})+m(\bar{x})(x-\bar{x})+E_{f}(x, \bar{x}) \tag{1}
\end{equation*}
$$

where the remainder E_{f} satisfies $\left|E_{f}(x, \bar{x})\right| \leq K_{f}(\bar{x})(x-\bar{x})^{2}$ when x is close to \bar{x}. The constant $m(\bar{x})$ is called the derivative of f at \bar{x} and we write

$$
m(\bar{x})=f^{\prime}(\bar{x})=D f(\bar{x})=\frac{d f}{d x}(\bar{x})
$$

It is convenient to use the abbreviation $h=x-\bar{x}$, so that $x=\bar{x}+h$ and (1) becomes

$$
\begin{equation*}
f(x)=f(\bar{x}+h)=f(\bar{x})+f^{\prime}(\bar{x}) h+E_{f}(x, \bar{x}) \tag{2}
\end{equation*}
$$

where $\left|E_{f}(x, \bar{x})\right| \leq K_{f}(\bar{x}) h^{2}$ when x is close to \bar{x}. Note that the first term on the right side, $f(\bar{x})$, is constant with respect to x. The second term,

$$
\begin{equation*}
f^{\prime}(\bar{x}) h=f^{\prime}(\bar{x})(x-\bar{x}) \tag{3}
\end{equation*}
$$

is a linear function of the increment $h=x-\bar{x}$. These terms are called the linearization of f at \bar{x},

$$
\begin{equation*}
\tilde{f}_{\bar{x}}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x}) \tag{4}
\end{equation*}
$$

The straight line $y=\tilde{f}_{\bar{x}}(x)$ is the tangent to the curve $y=f(x)$ at \bar{x}.

Example 1. Let $f(x)=x^{2}$. Then $f^{\prime}(x)=2 x$ and the linearization at $\bar{x}=3$ is

$$
\tilde{f}_{3}(x)=9+6(x-3)
$$

Numerical computation of the derivative. (AMBS 23.13) If we divide (2) by h, then we get

$$
\begin{equation*}
\frac{f(\bar{x}+h)-f(\bar{x})}{h}=f^{\prime}(\bar{x})+E_{f}(x, \bar{x}) / h . \tag{5}
\end{equation*}
$$

Here the remainder satisfies $\left|E_{f}(x, \bar{x}) / h\right| \leq K_{f}(\bar{x})|h|$ when h is small. This suggests that we can approximate the derivative by the difference quotient

$$
\begin{equation*}
f^{\prime}(\bar{x}) \approx \frac{f(\bar{x}+h)-f(\bar{x})}{h} \tag{6}
\end{equation*}
$$

A better approximation is obtained if we use Taylor's formula (AMBS 24.8, 28.15):

$$
\begin{aligned}
f(\bar{x}+h)-f(\bar{x}-h)= & f(\bar{x})+f^{\prime}(\bar{x}) h+f^{\prime \prime}(\bar{x}) h^{2} / 2+R_{2}(\bar{x}+h, \bar{x}) \\
& -\left(f(\bar{x})-f^{\prime}(\bar{x}) h+f^{\prime \prime}(\bar{x}) h^{2} / 2+R_{2}(\bar{x}-h, \bar{x})\right) \\
= & 2 f^{\prime}(\bar{x}) h+R_{2}(\bar{x}+h, \bar{x})-R_{2}(\bar{x}-h, \bar{x}) .
\end{aligned}
$$

The remainders satisfy $\left|R_{2}(\bar{x} \pm h, \bar{x})\right| \leq K(\bar{x})|h|^{3}$ when h is small. This suggests the symmetric difference quotient:

$$
\begin{equation*}
f^{\prime}(\bar{x}) \approx \frac{f(\bar{x}+h)-f(\bar{x}-h)}{2 h} \tag{7}
\end{equation*}
$$

The difference quotients in (6) and (7) are of the form "small number divided by small number". If this is computed with round-off error on a computer, then the total error will be large if the step h is very small. Therefore we must choose the step "moderately small" here, see (AMBS 23.13). It can be shown that in Matlab a good choice for (6) is $h=10^{-8}$ and for (7) $h=10^{-5}$.

0.2 Function of two variables, $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$

(AMBS 24.11) Let $f\left(x_{1}, x_{2}\right)$ be a function of two variables, i.e., $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$. We write $x=\left(x_{1}, x_{2}\right)$ and $f(x)=f\left(x_{1}, x_{2}\right)$. The function f is differentiable at $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}\right)$, if there are constants $m_{1}(\bar{x})$, $m_{2}(\bar{x}), K_{f}(\bar{x})$ such that

$$
\begin{equation*}
f(x)=f(\bar{x}+h)=f(\bar{x})+m_{1}(\bar{x}) h_{1}+m_{2}(\bar{x}) h_{2}+E_{f}(x, \bar{x}), \quad h=x-\bar{x} \tag{8}
\end{equation*}
$$

where the remainder E_{f} satisfies $\left|E_{f}(x, \bar{x})\right| \leq K_{f}(\bar{x})|h|^{2}$ when x is close to \bar{x}. Here $|h|=\sqrt{h_{1}^{2}+h_{2}^{2}}$ denotes the norm of the increment $h=\left(h_{1}, h_{2}\right)=\left(x_{1}-\bar{x}_{1}, x_{2}-\bar{x}_{2}\right)$.

If we take $h=\left(h_{1}, 0\right)$, then we get

$$
f\left(x_{1}, \bar{x}_{2}\right)=f\left(\bar{x}_{1}+h_{1}, \bar{x}_{2}\right)=f(\bar{x})+m_{1}(\bar{x}) h_{1}+E_{f}(x, \bar{x})
$$

with $\left|E_{f}(x, \bar{x})\right| \leq K_{f}(\bar{x}) h_{1}^{2}$. This means that $m_{1}(\bar{x})$ is the derivative of the one-variable function $\hat{f}\left(x_{1}\right)=f\left(x_{1}, \bar{x}_{2}\right)$, obtained from f by keeping $x_{2}=\bar{x}_{2}$ fixed. By taking $h=\left(0, h_{2}\right)$ we see in a similar way that $m_{2}(\bar{x})$ is the derivative of the one-variable function, which is obtained from f by keeping $x_{1}=\bar{x}_{1}$ fixed. The constants $m_{1}(\bar{x}), m_{2}(\bar{x})$ are called the partial derivatives of f at \bar{x} and we denote them by

$$
\begin{equation*}
m_{1}(\bar{x})=f_{x_{1}}^{\prime}(\bar{x})=\frac{\partial f}{\partial x_{1}}(\bar{x}), \quad m_{2}(\bar{x})=f_{x_{2}}^{\prime}(\bar{x})=\frac{\partial f}{\partial x_{2}}(\bar{x}) \tag{9}
\end{equation*}
$$

Now (8) may be written

$$
\begin{equation*}
f(x)=f(\bar{x}+h)=f(\bar{x})+f_{x_{1}}^{\prime}(\bar{x}) h_{1}+f_{x_{2}}^{\prime}(\bar{x}) h_{2}+E_{f}(x, \bar{x}), \quad h=x-\bar{x} \tag{10}
\end{equation*}
$$

It is convenient to write this formula by means of matrix notation. Let

$$
a=\left[a_{1}, a_{2}\right], \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] .
$$

We say that a is a row matrix of type 1×2 (one by two) and that b is a column matrix of type 2×1 (two by one). Their product is defined by

$$
a b=\left[a_{1}, a_{2}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=a_{1} b_{1}+a_{2} b_{2}
$$

The result is a matrix of type 1×1 (a real number), according to the rule: 1×2 times 2×1 makes 1×1.

Going back to (10) we define

$$
f^{\prime}(\bar{x})=D f(\bar{x})=\left[\begin{array}{ll}
f_{x_{1}}^{\prime}(\bar{x}) & f_{x_{2}}^{\prime}(\bar{x})
\end{array}\right], \quad h=\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right] .
$$

The matrix $f^{\prime}(\bar{x})=D f(\bar{x})$ is called the derivative (or Jacobi matrix) of f at \bar{x}. Then (10) may be written

$$
\begin{align*}
f(x)=f(\bar{x}+h) & =f(\bar{x})+\left[\begin{array}{ll}
f_{x_{1}}^{\prime}(\bar{x}) & f_{x_{2}}^{\prime}(\bar{x})
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]+E_{f}(x, \bar{x}) \tag{11}\\
& =f(\bar{x})+f^{\prime}(\bar{x}) h+E_{f}(x, \bar{x}), \quad h=x-\bar{x}
\end{align*}
$$

Note that the first term on the right side, $f(\bar{x})$, is constant with respect to x. The second term,

$$
\begin{equation*}
f^{\prime}(\bar{x}) h=f^{\prime}(\bar{x})(x-\bar{x}) \tag{12}
\end{equation*}
$$

is a linear function of the increment $h=x-\bar{x}$. These terms are called the linearization of f at \bar{x},

$$
\begin{equation*}
\tilde{f}_{\bar{x}}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x}) \tag{13}
\end{equation*}
$$

The plane $x_{3}=\tilde{f}_{\bar{x}}\left(x_{1}, x_{2}\right)$ is the tangent to the surface $x_{3}=f\left(x_{1}, x_{2}\right)$ at \bar{x}.
Example 2. Let $f(x)=x_{1}^{2} x_{2}^{5}$. Then

$$
\frac{\partial f}{\partial x_{1}}(x)=\frac{\partial f}{\partial x_{1}}\left(x_{1}^{2} x_{2}^{5}\right)=2 x_{1} x_{2}^{5}, \quad \frac{\partial f}{\partial x_{2}}(x)=\frac{\partial f}{\partial x_{2}}\left(x_{1}^{2} x_{2}^{5}\right)=5 x_{1}^{2} x_{2}^{4}
$$

so that $f^{\prime}(x)=\left[\begin{array}{ll}2 x_{1} x_{2}^{5} & 5 x_{1}^{2} x_{2}^{4}\end{array}\right]$ and the linearization at $\bar{x}=(3,1)$ is

$$
\tilde{f}_{\bar{x}}(x)=9+\left[\begin{array}{ll}
6 & 45
\end{array}\right]\left[\begin{array}{l}
x_{1}-3 \\
x_{2}-1
\end{array}\right]
$$

0.3 Two functions of two variables, $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$

Let $f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)$ be two functions of two variables. We write $x=\left(x_{1}, x_{2}\right)$ and $f(x)=$ $\left(f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)\right)$, i.e., $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$. The function f is differentiable at $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}\right)$, if there are constants $m_{11}(\bar{x}), m_{12}(\bar{x}), m_{21}(\bar{x}), m_{22}(\bar{x})$, and $K_{f}(\bar{x})$ such that

$$
\begin{align*}
& f_{1}(x)=f_{1}(\bar{x}+h)=f_{1}(\bar{x})+m_{11}(\bar{x}) h_{1}+m_{12}(\bar{x}) h_{2}+E_{f_{1}}(x, \bar{x}) \tag{14}\\
& f_{2}(x)=f_{2}(\bar{x}+h)=f_{2}(\bar{x})+m_{21}(\bar{x}) h_{1}+m_{22}(\bar{x}) h_{2}+E_{f_{2}}(x, \bar{x})
\end{align*}
$$

where $h=x-\bar{x}$ and the remainders $E_{f_{j}}$ satisfy $\left|E_{f_{j}}(x, \bar{x})\right| \leq K_{f}(\bar{x})|h|^{2}$ when x is close to \bar{x}. Here $|h|=\sqrt{h_{1}^{2}+h_{2}^{2}}$ denotes the norm of the increment $h=\left(h_{1}, h_{2}\right)=\left(x_{1}-\bar{x}_{1}, x_{2}-\bar{x}_{2}\right)$. From
the previous subsection we recognize that the constants $m_{i j}(\bar{x})$ are the partial derivatives of the functions f_{i} at \bar{x} and we denote them by

$$
\begin{array}{ll}
m_{11}(\bar{x})=f_{1, x_{1}}^{\prime}(\bar{x})=\frac{\partial f_{1}}{\partial x_{1}}(\bar{x}), & m_{12}(\bar{x})=f_{1, x_{2}}^{\prime}(\bar{x})=\frac{\partial f_{1}}{\partial x_{2}}(\bar{x}), \\
m_{21}(\bar{x})=f_{2, x_{1}}^{\prime}(\bar{x})=\frac{\partial f_{2}}{\partial x_{1}}(\bar{x}), & m_{22}(\bar{x})=f_{2, x_{2}}^{\prime}(\bar{x})=\frac{\partial f_{2}}{\partial x_{2}}(\bar{x}) .
\end{array}
$$

It is convenient to use matrix notation. Let

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] .
$$

We say that A is a matrix of type 2×2 (two by two) and that b is a column matrix of type 2×1 (two by one). Their product is defined by

$$
A b=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{11} b_{1}+a_{12} b_{2} \\
a_{21} b_{1}+a_{22} b_{2}
\end{array}\right]
$$

The result is a matrix of type 2×1 (column matrix), according to the rule: 2×2 times 2×1 makes 2×1.

Going back to (14) we define

$$
f(x)=\left[\begin{array}{l}
f_{1}(x) \tag{15}\\
f_{2}(x)
\end{array}\right], \quad f^{\prime}(\bar{x})=D f(\bar{x})=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}(\bar{x}) & \frac{\partial f_{1}}{\partial x_{2}}(\bar{x}) \\
\frac{\partial f_{2}}{\partial x_{1}}(\bar{x}) & \frac{\partial f_{2}}{\partial x_{2}}(\bar{x})
\end{array}\right], \quad h=\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right] .
$$

The matrix $f^{\prime}(\bar{x})=D f(\bar{x})$ is called the derivative (or Jacobi matrix) of f at \bar{x}. Then (14) may be written

$$
\left[\begin{array}{l}
f_{1}(x) \tag{16}\\
f_{2}(x)
\end{array}\right]=\left[\begin{array}{l}
f_{1}(\bar{x}+h) \\
f_{2}(\bar{x}+h)
\end{array}\right]=\left[\begin{array}{l}
f_{1}(\bar{x}) \\
f_{2}(\bar{x})
\end{array}\right]+\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}(\bar{x}) & \frac{\partial f_{1}}{\partial x_{2}}(\bar{x}) \\
\frac{\partial f_{2}}{\partial x_{1}}(\bar{x}) & \frac{\partial f_{2}}{\partial x_{2}}(\bar{x})
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]+\left[\begin{array}{l}
E_{f_{1}}(x, \bar{x}) \\
E_{f_{2}}(x, \bar{x})
\end{array}\right]
$$

or in more compact form

$$
\begin{equation*}
f(x)=f(\bar{x}+h)=f(\bar{x})+f^{\prime}(\bar{x}) h+E_{f}(x, \bar{x}), \quad h=x-\bar{x} \tag{17}
\end{equation*}
$$

Note that the first term on the right side, $f(\bar{x})$, is constant with respect to x. The second term,

$$
\begin{equation*}
f^{\prime}(\bar{x}) h=f^{\prime}(\bar{x})(x-\bar{x}) \tag{18}
\end{equation*}
$$

is a linear function of the increment $h=x-\bar{x}$. These terms are called the linearization of f at \bar{x},

$$
\begin{equation*}
\tilde{f}_{\bar{x}}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x}) . \tag{19}
\end{equation*}
$$

Example 3. Let $f(x)=\left[\begin{array}{c}x_{1}^{2} x_{2}^{5} \\ x_{2}^{3}\end{array}\right]$. Then

$$
f^{\prime}(x)=D f(x)=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}(x) & \frac{\partial f_{1}}{\partial x_{2}}(x) \\
\frac{\partial f_{2}}{\partial x_{1}}(x) & \frac{\partial f_{2}}{\partial x_{2}}(x)
\end{array}\right]=\left[\begin{array}{cc}
2 x_{1} x_{2}^{5} & 5 x_{1}^{2} x_{2}^{4} \\
0 & 3 x_{2}^{2}
\end{array}\right]
$$

and the linearization at $\bar{x}=(3,1)$ is

$$
\tilde{f}_{\bar{x}}(x)=\left[\begin{array}{l}
9 \\
1
\end{array}\right]+\left[\begin{array}{cc}
6 & 45 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}-3 \\
x_{2}-1
\end{array}\right]
$$

0.4 Several functions of several variables, $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$

(AMBS 53) It is now easy to generalize to any number of functions in any number of variables. Let f_{i} be m functions of n variables x_{j}, i.e., $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. As in (15) we define

$$
\begin{gathered}
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], \quad h=\left[\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-\bar{x}_{1} \\
\vdots \\
x_{n}-\bar{x}_{n}
\end{array}\right], \\
f(x)=\left[\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right], \quad f^{\prime}(\bar{x})=D f(\bar{x})=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\bar{x}) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}(\bar{x}) \\
\vdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\bar{x}) & \ldots & \frac{\partial f_{m}}{\partial x_{n}}(\bar{x})
\end{array}\right] .
\end{gathered}
$$

The $m \times n$ matrix $f^{\prime}(\bar{x})=D f(\bar{x})$ is called the derivative (or Jacobi matrix) of f at \bar{x}. In a similar way to (17) we get

$$
\begin{equation*}
f(x)=f(\bar{x}+h)=f(\bar{x})+f^{\prime}(\bar{x}) h+E_{f}(x, \bar{x}), \quad h=x-\bar{x} \tag{20}
\end{equation*}
$$

The linearization of f at \bar{x} is

$$
\begin{equation*}
\tilde{f}_{\bar{x}}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x}) . \tag{21}
\end{equation*}
$$

Numerical computation of the derivative. In order to compute the j-th column $\frac{\partial f}{\partial x_{j}}(\bar{x})$ of the Jacobi matrix, we choose the increment h such that $h_{j}=\delta$ and $h_{i}=0$ for $i \neq j$, i.e.,

$$
h=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
\delta \\
0 \\
\vdots \\
0
\end{array}\right]=\delta\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right]=\delta e_{j}, \quad e_{j}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \text { - row number } j
$$

Here the steplength δ is a small positive number and e_{j} is the j-th standard basis vector. If we use this increment in a symmetric difference quotient, see (7), we get

$$
\begin{equation*}
\frac{\partial f}{\partial x_{j}}(\bar{x}) \approx \frac{f\left(\bar{x}+\delta e_{j}\right)-f\left(\bar{x}-\delta e_{j}\right)}{2 \delta} \tag{22}
\end{equation*}
$$

Remember that the steplength δ should be small, but not too small.

0.5 Newton's method for $f(x)=0$

Consider a system of n equations with n unknowns:

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{n}\right)=0
\end{gathered}
$$

If we define

$$
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], \quad f=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right], \quad 0=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

then $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$, and we can write our system of equations in the compact form

$$
\begin{equation*}
f(x)=0 \tag{23}
\end{equation*}
$$

Suppose that we have found an approximate solution \bar{x}. We want to find a better approximation $x=\bar{x}+h$. Instead of solving (23) directly, which is usually impossible, we solve the linearized equation at \bar{x} :

$$
\begin{equation*}
\tilde{f}_{\bar{x}}(\bar{x}+h)=f(\bar{x})+f^{\prime}(\bar{x}) h=0 \tag{24}
\end{equation*}
$$

We must solve for the increment h. Rearranging the terms we get

$$
\begin{equation*}
f^{\prime}(\bar{x}) h=-f(\bar{x}) \tag{25}
\end{equation*}
$$

Remember that the Jacobi matrix is of type $n \times n$ and the increment is of type $n \times 1$. Therefore we have to solve a linear system of n equations with n unknowns to get the increment h. It is of the form $A h=b$ with $A=f^{\prime}(\bar{x})$ and $b=-f(\bar{x})$. Then we set $x=\bar{x}+h$.

In algorithmic form Newton's method can be formulated:

```
while |h|>tol
    evaluate the residual b=-f(x)
    evaluate the Jacobian A=f'(x)
    solve the linear system Ah=b
    update }\quad\textrm{x}=\textrm{x}+\textrm{h
end
```

You will implement this algorithm in the studio exercises. You will use the Matlab command $h=A \backslash b$
to solve the system. But later in this course we will study linear systems of equations of the form $A h=b$ and we will answer important questions such as:

- Is there a unique solution h for each b ?
- How do you compute the solution?

These questions can be answered for linear systems $A h=b$, but not for the more general nonlinear systems $f(x)=0$. Thus, Newton's method transforms the task of solving a difficult equation to the task of solving an easier equation many times. The study of systems of linear equations is an important part of the subject "linear algebra" which we will study in ALA-B.

90 Problems

Problem 90.1. Let

$$
a=\left[\begin{array}{ll}
1 & 2
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] .
$$

Compute the products $a b, \quad b a, \quad A b, A a, a A, b A$.
Problem 90.2. Compute the Jacobi matrix $f^{\prime}(x)$ (also denoted $D f(x)$). Compute the linearization of f at \bar{x}.

$$
\text { (a) } \quad f(x)=\left[\begin{array}{l}
\sin \left(x_{1}\right)+\cos \left(x_{2}\right) \\
\cos \left(x_{1}\right)+\sin \left(x_{2}\right)
\end{array}\right], \quad \bar{x}=0 ; \quad \text { (b) } \quad f(x)=\left[\begin{array}{c}
1 \\
1+x_{1} \\
1+x_{1} e^{x_{2}}
\end{array}\right], \quad \bar{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Problem 90.3. Compute the gradient vector $\nabla f(x)$ (also denoted $f^{\prime}(x)=D f(x)$). Compute the linearization of f at \bar{x}.
(a) $\quad f(x)=e^{-x_{1}} \sin \left(x_{2}\right), \quad \bar{x}=0 ;$
(b) $\quad f(x)=|x|^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, \quad x \in \mathbf{R}^{3}, \quad \bar{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

Problem 90.4. Here $f: \mathbf{R} \rightarrow \mathbf{R}^{2}$. Compute $f^{\prime}(t)$. Compute the linearization of f at \bar{t}.
(a) $\quad f(t)=\left[\begin{array}{c}\cos (t) \\ \sin (t)\end{array}\right], \quad \bar{t}=\pi / 2 ;$
(b) $\quad f(t)=\left[\begin{array}{c}t \\ 1+t^{2}\end{array}\right], \quad \bar{t}=0$.

Problem 90.5. (a) Write the system

$$
\begin{array}{r}
u_{2}\left(1-u_{1}^{2}\right)=0 \\
2-u_{1} u_{2}=0
\end{array}
$$

in the form $f(u)=0$. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix $D f(u)$.
(c) Perform the first step of Newton's method for the equation $f(u)=0$ with initial vector $u^{(0)}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(d) Solve the equation $f(u)$ with your Matlab program newton.m.

Problem 90.6. (a) Write the system

$$
\begin{aligned}
& u_{1}\left(1-u_{2}\right)=0 \\
& u_{2}\left(1-u_{1}\right)=0
\end{aligned}
$$

in the form $f(u)=0$. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix $D f(u)$.
(c) Perform the first step of Newton's method for the equation $f(u)=0$ with initial vector $u^{(0)}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$.
(d) Solve the equation $f(u)$ with your Matlab program newton.m.

Answers and solutions

90.1. Use Matlab to check your answers.
90.2 .
(a)

$$
f^{\prime}(x)=\left[\begin{array}{cc}
\cos \left(x_{1}\right) & -\sin \left(x_{2}\right) \\
-\sin \left(x_{1}\right) & \cos \left(x_{2}\right)
\end{array}\right], \quad \tilde{f}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

(b)

$$
f^{\prime}(x)=\left[\begin{array}{cc}
0 & 0 \\
1 & 0 \\
e^{x_{2}} & x_{1} e^{x_{2}}
\end{array}\right], \quad \tilde{f}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})=\left[\begin{array}{c}
1 \\
2 \\
1+e
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
e & e
\end{array}\right]\left[\begin{array}{l}
x_{1}-1 \\
x_{2}-1
\end{array}\right]
$$

90.3.
(a)

$$
\begin{aligned}
& \nabla f(x)=\left[-e^{-x_{1}} \sin \left(x_{2}\right), \quad e^{-x_{1}} \cos \left(x_{2}\right)\right] \\
& \tilde{f}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})=0+\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \nabla f(x)=\left[\begin{array}{lll}
2 x_{1} & 2 x_{3} & 2 x_{3}
\end{array}\right] \\
& \tilde{f}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})=3+\left[\begin{array}{lll}
2 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}-1 \\
x_{2}-1 \\
x_{3}-1
\end{array}\right]=-3+2 x_{1}+2 x_{2}+2 x_{3}
\end{aligned}
$$

90.4.
(a)

$$
\begin{aligned}
& f^{\prime}(t)=\left[\begin{array}{c}
-\sin (t) \\
\cos (t)
\end{array}\right] \\
& \tilde{f}(t)=f(\bar{t})+f^{\prime}(\bar{t})(t-\bar{t})=\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right](t-\pi / 2)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& f^{\prime}(t)=\left[\begin{array}{c}
1 \\
2 t
\end{array}\right] \\
& \tilde{f}(t)=f(\bar{t})+f^{\prime}(\bar{t})(t-\bar{t})=\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] t=\left[\begin{array}{l}
t \\
1
\end{array}\right]
\end{aligned}
$$

90.5. (a) The solutions are given by

$$
f(u)=\left[\begin{array}{c}
u_{2}\left(1-u_{1}^{2}\right) \\
2-u_{1} u_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

We find two solutions $\bar{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\bar{u}=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$.
(b) The Jacobian is

$$
D f(u)=\left[\begin{array}{cc}
-2 u_{1} u_{2} & 1-u_{1}^{2} \\
-u_{2} & -u_{1}
\end{array}\right]
$$

(c) The first step of Newton's method:
evaluate
solve
update

$$
\begin{aligned}
& A=D f(1,1)=\left[\begin{array}{cc}
-2 & 0 \\
-1 & -1
\end{array}\right] \quad \text { and } \quad b=-f(1,1)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \\
& A h=b, \quad\left[\begin{array}{cc}
-2 & 0 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \\
& \left\{\begin{array}{l}
-2 h_{1}=0, \\
-h_{1}-h_{2}=-1, \quad h=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
u^{(1)}=u^{(0)}+h=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\bar{u}
\end{array}\right.
\end{aligned}
$$

Bingo! We found one of the solutions.
90.6. (a) The solutions are given by

$$
f(u)=\left[\begin{array}{l}
u_{1}\left(1-u_{2}\right) \\
u_{2}\left(1-u_{1}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

We find two solutions $\bar{u}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $\bar{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(b) The Jacobian is

$$
D f(u)=\left[\begin{array}{cc}
1-u_{2} & -u_{1} \\
-u_{2} & 1-u_{1}
\end{array}\right]
$$

(c) The first step of Newton's method:
evaluate
solve
update

$$
\begin{aligned}
& A=D f(2,2)=\left[\begin{array}{ll}
-1 & -2 \\
-2 & -1
\end{array}\right] \quad \text { and } \quad b=-f(2,2)=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \\
& A h=b, \quad\left[\begin{array}{ll}
-1 & -2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right], \\
& \left\{\begin{array}{l}
-h_{1}-2 h_{2}=2, \quad h=\left[\begin{array}{l}
-2 / 3 \\
-2 / 3
\end{array}\right] \\
-2 h_{1}-h_{2}=2,
\end{array}\right. \\
& u^{(1)}=u^{(0)}+h=\left[\begin{array}{l}
2 \\
2
\end{array}\right]+\left[\begin{array}{l}
-2 / 3 \\
-2 / 3
\end{array}\right]=\left[\begin{array}{l}
4 / 3 \\
4 / 3
\end{array}\right]
\end{aligned}
$$

Getting closer to one of the solutions \bar{u} !

2005-10-10 /stig

