Matematik Chalmers

Tentamen i TMV035 Analys och linjär algebra K Kf Bt, del B, 2006–04–22

Telefon: Jonathan Vasilis: 0762–721860 (M. Asadzadeh 772 35 17)
Inga hjälpmedel. Kalkylator ej tillåten.

Uppgifterna 1–10 (totalt 20 poäng) är korta frågor på det grundläggande materialet och du behöver endast ge kortfattadelösningar och svar.

På uppgifterna 11–13 (totalt 30 poäng) skall du ge fullständiga lösningar. Skriv väl, motivera och förklara vad du gör; endast välformulerade lösningar ger full poäng!

Lösningar anslås på kursens hemsida efter tentamens slut. Rätttningsprotokollet anslås på kursens hemsida och i Matematiska Vetenskaper utanför sal FL 22.

1. Beräkna integralen \(\int_0^1 xe^{-x} \, dx \).

2. Vilka steg ingår i beviset av fundamentalsetssen?

3. Beräkna integralen \(\int_0^y (\sin(x) - \cos^2(x)) \, dx \).

4. a) Evaluerar integralen i uppgift 3 för \(y = \pi / 2 \) och \(y = \pi \).
b) Använd resultaten i a) för att beräkna integralen \(\int_{\pi / 2}^\pi (\sin(x) - \cos^2(x)) \, dx \).

5. Ange Taylors polynom av grad 8 för funktionen \(\ln(1 + x^2) \) i punkten \(x = 0 \).

6. Programmet my ode.m är skrivet enligt följande specifikation:
 function [t,U]=my_ode(f,int,ua,h)
a=int(1); b=int(2);
i=1;
t(1)=a;
U(:,1)=ua;

 while t(i)<b
 i=i+1;
 t(i)=t(i-1)+h;
 U(:,i)=U(:,i-1)+h*feval(f, t(i-1), U(:,i-1));
 end

 U=U';
t=t';

Filren funk.m innehåller:
 function y=funk(t,x)
y=x;

Skriv ned alla beräkningar som programmet gör efter följande:

>> I=[0 0.1]; h=1e-1; u0=[1;0];
>> [t,U]=my_ode('funk', I, u0, h);

7. Lös analytiskt begynnelsevärdesproblem \(\begin{cases} u'(t) - 2u(t) = e^t, \\ u(0) = 0. \end{cases} \)

Vänd!
8. Antag att α, a, b är positiva tal. Läs begynnelsevärdesproblemet
\[u''(t) + \alpha^2 u(t) = 0 ; \quad u(0) = a, \quad u'(0) = b. \]
9. Läs begynnelsevärdesproblemet
\[u'(t) = (u(t) - 1)^2, \quad u(0) = 0. \]
10. Skriv ned det begynnelsevärdesproblemet som definierar funktionen $\log(x)$.

11. (a) Vad menas med att fyra vektorer v_1, v_2, v_3, v_4 är linjärt oberoende?
(b) Är kolonnerna i följande matris linjärt oberoende? Motivera svaret.
\[
A = \begin{bmatrix} 1 & 1 & 3 & 0 \\ 1 & 0 & 1 & 1 \\ 5 & 2 & 9 & 3 \end{bmatrix}
\]
(c) Värderummet $R(A)$ är ett underrum i \mathbb{R}^m och nollrummet $N(A)$ är ett underrum i \mathbb{R}^n. Bestäm m och n.
(d) Bestäm en bas för värderummet $R(A)$.
(e) Bestäm en bas för nollrummet $N(A)$.

12. (a) Visa hur man skriver om differentialekvationen $u'' + 2u' + u^2, u(0) = u_0, u'(0) = u_1$ som ett system av två ekvationer av första ordningen:
\[
\begin{align*}
u' &= f(u), \\
u(0) &= w_0,
\end{align*}
\text{med} \quad f(u) = \begin{bmatrix} w_2 \\
w_2 - 2w_1 + w_1^2 \end{bmatrix}.
\]
(b) Bestäm alla stationära lösningar \tilde{w}.
(c) Beräkna Jacobimatrisen $f'(u)$. Beräkna linjärisering av f i punkten $\tilde{w} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.
(d) Genomför första steget i Newtons metod för ekvationen $f(u) = 0$ med startvektor $w(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$.

13. (a) Beskriv hur vi definierar (konstruerar) funktionen $\cos(x)$.
(b) Använd definitionen för att bevisa att “trigonometriska ettan” $\cos^2(x) + \sin^2(x) = 1$.
(c) Diskutera den inversa funktionen till $\cos(x)$. Definitionsområde, värdefält, graf, derivata.
(d) Hur definieras funktionen $\cosh(x)$? Bestäm dess derivata.

MA
1.
\[
\int_0^1 xe^{-x} \, dx = -xe^{-x}|_0^1 + \int_0^1 e^{-x} \, dx = e^{-1} - e^{-1} + 1 = 1 - \frac{2}{e}.
\]
2. Se Boken!
3.
\[
f'(y) = \left(\frac{y}{\sin(y)} \right)' = \frac{1 - \sin^2(y)}{\sin^2(y)} = \frac{1}{\sin^2(y)} - 1.
\]
4. a) \(f(\pi/2) = 1/3, f(\pi) = 2, \)
b) Låt \(g(x) = \sin(x) - \cos^2(x). \) Då är
\[
\int_{\pi/2}^{\pi} (\sin(x) - \cos^2(x)) \, dx = \int_{\pi/2}^{\pi} g(x) \, dx = \int_0^\pi g(x) \, dx - \int_0^{\pi/2} g(x) \, dx = f(\pi) - f(\pi/2) = 2 - 1/3 = 5/3.
\]
5. Eftersom Taylor polynom av gård 4 för funktionen \(\ln(1 + t) \) i punkten \(t = 0 \) är
\[
t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4},
\]
så har vi med \(t = x^2 \) Taylor polynom av gård 8 för \(\ln(1 + x^2) \) som
\[
x^2 - \frac{x^4}{2} + \frac{x^6}{3} - \frac{x^8}{4}.
\]
6. a) \(a = 0, \; b = 0.1, \; i = 1, \; t(1) = 0, \; U(:,1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \)
test: \(t(1) = 0 < b = 0.1 \) sant
\(i = 2, \; t(2) = 0.1, \; U(:,2) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0.1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1.1 \\ 0 \end{bmatrix} \)
test: \(t(2) = 0.1 < b = 0.1 \) falskt
Nu stoppar loopen och vi har nu \(t = \begin{bmatrix} 0 & 0.1 \end{bmatrix} \), \(U = \begin{bmatrix} 1 & 1.1 \\ 0 & 0 \end{bmatrix} \).
Till sist transponerar matriserna: \(t = \begin{bmatrix} 0 \\ 0.1 \end{bmatrix} \), \(U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \).
Svaret blir
\[
t = \begin{bmatrix} 0 \\ 0.1 \end{bmatrix}, \; U = \begin{bmatrix} 1 & 0 \\ 1.1 & 0 \end{bmatrix}.
\]
7. Integrierande faktorn är e^{-2t}. Vi multiplicerar båda leden med e^{-2t}. Differentialekvationen går nu att skriva
\[
\frac{d}{dt}(e^{-2t}u(t)) = e^{-2t} \cdot e^t \quad \text{dvs} \quad e^{-2t}u(t) = \int e^{-t} \, dt. \quad \text{eller} \quad e^{-2t}u(t) = -e^{-t} + C.
\]
Nu $u(0) = 0$ ger $C = 1$. Alltså $e^{-2t}u(t) = -e^{-t} + 1$ vilket efter multiplikation med e^{2t} ger lösningen
\[
u(t) = e^{t}(e^{t} - 1).
\]

8. Allmänna lösningen är av formen $A \cos(at) + B \sin(at)$. Begynneledata ger $A = a$, $B = \frac{b}{a}$. Alltså lösningen är:
\[
u(t) = a \cos(at) + \frac{b}{a} \sin(at).
\]

9. Vi får, genom integration, att $\frac{u'}{u-1} = 1 \implies -\frac{1}{u-1} = t + C$. Nu $u(0) = 0$ ger $C = 1$, dvs $u - 1 = -\frac{1}{t+1}$ och
\[
u(t) = \frac{t}{t+1}.
\]

10. $u'(x) = \frac{1}{x}$, $x \geq 1$, $u(1) = 0$.

11. (a) v_1, v_2, v_3, v_4 är linjärt oberoende om för varje linjär kombination $(\alpha_i, i = 1, 2, 3, 4$ reella) vi har att
\[
\alpha_1v_1 + \alpha_2v_2 + \alpha_3v_3 + \alpha_4v_4 = 0 \implies \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0.
\]
(b) Nej! Kolonnrummet är av dimension 3, då varje samling av mer är 3 vektorer är linjärt beroende.
(c) $R(A)$ är ett underrum av kolonnrum \mathbb{R}^3 och $N(A)$ är ett underrum av radrummet \mathbb{R}^4. Alltså $m = 3$, $n = 4$.
(d) $Ax = 0$ ger att
\[
\begin{cases}
x_1 + x_2 + 3x_3 = 0 \\
x_1 + x_3 + x_4 = 0 \\
5x_1 + 2x_2 + 9x_3 + 3x_4 = 0
\end{cases} \iff \begin{cases}
x_1 + x_3 + x_4 = 0 \\
x_2 + 2x_3 - x_4 = 0,
\end{cases}
\]
dvs pivot kolonnerna: första och andra kolonner i matrisen A bildar en bas för $R(A)$
(e) Vidare får vi genom att välja $x_3 = t$, $x_4 = s$ att
\[
\begin{cases}
x_1 = -t - s \\
x_2 = -2t + s \\
x_3 = t \\
x_4 = s
\end{cases} \iff \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} = t \begin{bmatrix}
-1 \\
-2 \\
1 \\
0
\end{bmatrix} + s \begin{bmatrix}
-1 \\
1 \\
0 \\
1
\end{bmatrix}.
\]
Därför bildar vektorerna
\[
\begin{bmatrix}
-1 \\
-2 \\
1 \\
0
\end{bmatrix}
\]
och
\[
\begin{bmatrix}
-1 \\
1 \\
0 \\
1
\end{bmatrix}
\]
en bas för nullrummet $N(A)$.
12. (a) Sätt $w_1 = u$, $w_2 = u'$, så fås

$$
\begin{align*}
 w_1' &= u' = w_2, \\
 w_2' &= u'' = -2u + u' + u^2 = w_2 - 2w_1 + w_1^2
\end{align*}
$$

vilket är det önskade systemet

$$
\begin{align*}
 w' &= f(w), \\
 w(0) &= w_0, \\
 \text{med } f(w) &= \begin{bmatrix} w_2 \\
 w_2 - 2w_1 + w_1^2 \end{bmatrix}, \quad w_0 = \begin{bmatrix} u_0 \\
 u_1 \end{bmatrix}.
\end{align*}
$$

(b) De stationära lösningarna ges av $f(w) = 0$, dvs

$$
\begin{align*}
 w_2 &= 0 \\
 w_2 - 2w_1 + w_1^2 &= 0
\end{align*}
$$

med lösningarna $w_2 = 0$, $w_1 = 0, 2$. Vi får två stationära lösningar: $\tilde{w} = \begin{bmatrix} 0 \\
 0 \end{bmatrix}$ och $\tilde{v} = \begin{bmatrix} 2 \\
 0 \end{bmatrix}$.

(c) Jacobi-matrisen är

$$
\begin{align*}
 f'(w) &= \begin{bmatrix} 0 & 1 \\
 -2 + 2w_1 & 1 \end{bmatrix}, \\
 f'(2,0) &= \begin{bmatrix} 0 & 1 \\
 2 & 1 \end{bmatrix}.
\end{align*}
$$

Linjäriseringen av f i punkten $\tilde{w} = \begin{bmatrix} 2 \\
 0 \end{bmatrix}$ blir

$$
\tilde{f}(w) = f(\tilde{w}) + f'(\tilde{w})(w - \tilde{w}) = \begin{bmatrix} 0 & 1 \\
 2 & 1 \end{bmatrix} \begin{bmatrix} w_1 - 2 \\
 w_2 - 0 \end{bmatrix}, \quad \text{ty } f(\tilde{w}) = 0.
$$

(d) Första steget i Newtons metod:

Evaluera: $A = f'(x^{(0)}) = f'(-1, 0) = \begin{bmatrix} 0 & 1 \\
 -4 & 1 \end{bmatrix}$, $b = -f(x^{(0)}) = -f(-1, 0) = \begin{bmatrix} 0 \\
 -3 \end{bmatrix}$,

Lös ekvationen $Ah = b$:

$$
\begin{align*}
 \begin{bmatrix} 0 & 1 \\
 -4 & 1 \end{bmatrix} \begin{bmatrix} h_1 \\
 h_2 \end{bmatrix} &= \begin{bmatrix} 0 \\
 -3 \end{bmatrix} \Rightarrow h^{(0)} = \begin{bmatrix} 3/4 \\
 0 \end{bmatrix},
\end{align*}
$$

uppdatera: $x^{(1)} = x^{(0)} + h^{(0)} = \begin{bmatrix} -1 \\
 0 \end{bmatrix} + \begin{bmatrix} 3/4 \\
 0 \end{bmatrix} = \begin{bmatrix} -1/4 \\
 0 \end{bmatrix}$.

13. Se boken.

MA