TMV035 Analysis and Linear Algebra B, 2005

EQUILIBRIUM EQUATIONS

We give some hints on how to set up mathematical equations for chemical equilibrium problems.

0.1. Chemical equilibrium. Consider an elementary reaction of the form

(1)
$$A \xleftarrow{k_{11}}{k_{12}} B + C$$

Chemical equilibrium means that the rates of formation of the substances are zero:

$$0 = \frac{d}{dt}[A] = -\frac{d}{dt}[B] = -\frac{d}{dt}[C] = -k_{11}[A] + k_{12}[B][C],$$

so that

(2)
$$\frac{[\mathbf{B}][\mathbf{C}]}{[\mathbf{A}]} = K,$$

where the equilibrium constant is $K = \frac{k_{11}}{k_{12}}$, measured in the unit M = molar = mol/L. In order to use Newton's method we write the equation in the form

$$Kx_1 - x_2x_3 = 0,$$

or

$$x_1 - x_2 x_3 / K = 0,$$

where $x_1 = [A], x_2 = [B], x_3 = [C].$

0.2. Solubility product.

(3)
$$A(s) \xleftarrow{k_{11}} B(aq) + C(aq)$$

Here we cannot speak of the concentration of the solid A and instead of (2) we have

$$[\mathbf{B}][\mathbf{C}] = K_{\mathrm{sp}},$$

where $K_{\rm sp}$ is the solubility product with unit M². This leads to the equation

$$K_{\rm sp} - x_2 x_3 = 0,$$

or

$$1 - x_2 x_3 / K_{\rm sp} = 0.$$

0.3. Mass balance. We need more equations. One possibility is to note that in (1) or (3) we must have

$$[\mathbf{B}] = [\mathbf{C}],$$

which leads to the equation

$$x_2 - x_3 = 0.$$

/stig

Date: December 5, 2005, Stig Larsson, Mathematical Sciences, Chalmers University of Technology.