97 The exponential function with a complex variable

1. The complex exponential function

AMBS 33.2. If $z=x+\mathrm{i} y \in \mathbf{C}$ with $x, y \in \mathbf{R}$, then we define

$$
\begin{equation*}
\exp (z)=\mathrm{e}^{z}=\mathrm{e}^{x}(\cos (y)+\mathrm{i} \sin (y)) \tag{97.1}
\end{equation*}
$$

In particular, with $x=0$, so that $z=\mathrm{i} y$ is an imaginary number, we have

$$
\begin{equation*}
\exp (\mathrm{i} y)=\mathrm{e}^{\mathrm{i} y}=\cos (y)+\mathrm{i} \sin (y) \tag{97.2}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\exp (-\mathrm{i} y)=\mathrm{e}^{-\mathrm{i} y}=\cos (y)+\mathrm{i} \sin (-y)=\cos (y)-\mathrm{i} \sin (y) \tag{97.3}
\end{equation*}
$$

This means that $\mathrm{e}^{-\mathrm{i} y}=\overline{\mathrm{e}^{\mathrm{i} y}}$, the complex conjugate of $\mathrm{e}^{\mathrm{i} y}$. By subtracting (and adding) (97.2) and (97.3) we get

$$
\begin{equation*}
\sin (y)=\frac{\mathrm{e}^{\mathrm{i} y}-\mathrm{e}^{-\mathrm{i} y}}{2 \mathrm{i}}, \quad \cos (y)=\frac{\mathrm{e}^{\mathrm{i} y}+\mathrm{e}^{-\mathrm{i} y}}{2}, \quad y \in \mathbf{R} . \tag{97.4}
\end{equation*}
$$

Also

$$
\begin{equation*}
\left|\mathrm{e}^{\mathrm{i} y}\right|=\sqrt{\cos ^{2}(y)+\sin ^{2}(y)}=1 \tag{97.5}
\end{equation*}
$$

which means hat $\mathrm{e}^{\mathrm{i} y}$ lies on the unit circle in the complex plane.
It is easy to show that the complex exponential function satisfies the familiar identity:

$$
\begin{equation*}
\mathrm{e}^{z} \mathrm{e}^{w}=\mathrm{e}^{z+w}, \quad z, w \in \mathbf{C} . \tag{97.6}
\end{equation*}
$$

For example, by the trigonometric identities of AMBS 32.2:

$$
\begin{aligned}
\mathrm{e}^{\mathrm{i} y} \mathrm{e}^{\mathrm{i} x} & =(\cos (y)+\mathrm{i} \sin (y))(\cos (x)+\mathrm{i} \sin (x)) \\
& =\cos (y) \cos (x)-\sin (y) \sin (x)+\mathrm{i}(\sin (y) \cos (x)+\cos (y) \sin (x)) \\
& =\cos (y+x)+\mathrm{i} \sin (y+x)=\mathrm{e}^{\mathrm{i}(y+x)}
\end{aligned}
$$

2. The derivative of the complex exponential function

Let

$$
\begin{equation*}
u(t)=\exp (t z)=\mathrm{e}^{t z}=\mathrm{e}^{t(x+\mathrm{i} y)}, \quad t, x, y \in \mathbf{R} \tag{97.7}
\end{equation*}
$$

Then

$$
\begin{aligned}
u^{\prime}(t) & =\frac{d}{d t}\left(\mathrm{e}^{t x}(\cos (t y)+\mathrm{i} \sin (t y))\right) \\
& =x \mathrm{e}^{t x}(\cos (t y)+\mathrm{i} \sin (t y))+\mathrm{e}^{t x}(-y \sin (t y)+\mathrm{i} y \cos (t y)) \\
& =x \mathrm{e}^{t x}(\cos (t y)+\mathrm{i} \sin (t y))+\mathrm{e}^{t x} \mathrm{i} y(\mathrm{i} \sin (t y)+\cos (t y)) \\
& =(x+\mathrm{i} y) \mathrm{e}^{t x}(\cos (t y)+\mathrm{i} \sin (t y)) \\
& =z \exp (t z)=z u(t)
\end{aligned}
$$

We conclude that

$$
\begin{equation*}
\frac{d}{d t} \exp (t z)=z \exp (t z) \tag{97.8}
\end{equation*}
$$

just as for the real-valued exponential function.

3. Polar representation of complex numbers

When a complex number is written as

$$
\begin{equation*}
z=x+\mathrm{i} y, \quad x, y \in \mathbf{R} \tag{97.9}
\end{equation*}
$$

we say that it is written in Cartesian form. Let

$$
\begin{equation*}
r=|z|=\sqrt{x^{2}+y^{2}} \tag{97.10}
\end{equation*}
$$

be the absolute value of z. Then

$$
\begin{align*}
& x=r \cos (\theta) \\
& y=r \sin (\theta) \tag{97.11}
\end{align*}
$$

where θ is a real number (angle), and (97.9) becomes

$$
\begin{equation*}
z=r(\cos (\theta)+\mathrm{i} \sin (\theta))=r \mathrm{e}^{\mathrm{i} \theta} \tag{97.12}
\end{equation*}
$$

The complex number is then said to be written in polar form:

$$
\begin{equation*}
z=r \mathrm{e}^{\mathrm{i} \theta} \tag{97.13}
\end{equation*}
$$

Here

$$
\begin{equation*}
r=|z|, \quad \theta=\arg (z) \tag{97.14}
\end{equation*}
$$

are the absolute value and the argument of z. The argument is not unique: if $\theta=\arg (z)$, then

$$
\theta+n 2 \pi, \quad n=0, \pm 1, \pm 2, \ldots
$$

is also an argument for z, because $\mathrm{e}^{\mathrm{i} \theta}=\mathrm{e}^{\mathrm{i}(\theta+n 2 \pi)}$.
Some calculations become easier if we use the polar form. For example, if $z=r \mathrm{e}^{\mathrm{i} \theta}, w=\rho \mathrm{e}^{\mathrm{i} \omega}$, then

$$
\begin{equation*}
\frac{z}{w}=\frac{r \mathrm{e}^{\mathrm{i} \theta}}{\rho \mathrm{e}^{\mathrm{i} \omega}}=r \mathrm{e}^{\mathrm{i} \theta}\left(\rho \mathrm{e}^{\mathrm{i} \omega}\right)^{-1}=\frac{r}{\rho} \mathrm{e}^{\mathrm{i}(\theta-\omega)}, \quad z^{m}=\left(r \mathrm{e}^{\mathrm{i} \theta}\right)^{m}=r^{m} \mathrm{e}^{\mathrm{I} m \theta} \tag{97.15}
\end{equation*}
$$

It becomes easy to solve equations of the form (binomial equation):

$$
\begin{equation*}
z^{n}=w \tag{97.16}
\end{equation*}
$$

if we write both z and b in polar form.
Example: Solve the binomial equation

$$
\begin{equation*}
z^{4}=-4 \tag{97.17}
\end{equation*}
$$

In polar form, with $z=r \mathrm{e}^{\mathrm{i} \theta},-4=4 \mathrm{e}^{\mathrm{i} \pi}$, this becomes

$$
\begin{equation*}
r^{4} \mathrm{e}^{\mathrm{i} 4 \theta}=4 \mathrm{e}^{\mathrm{i} \pi} \tag{97.18}
\end{equation*}
$$

We identify the absolute values and the arguments,

$$
r^{4}=4, \quad 4 \theta=\pi+n 2 \pi, \quad n=0, \pm 1, \pm 2, \ldots
$$

so that

$$
r=\sqrt{2}, \quad \theta=\frac{\pi}{4}+n \frac{\pi}{2}, \quad z=\sqrt{2} \mathrm{e}^{\mathrm{i}\left(\frac{\pi}{4}+n \frac{\pi}{2}\right)}
$$

For $n=0,1,2,3$ we get four roots:

$$
\begin{aligned}
& z_{1}=\sqrt{2} \mathrm{e}^{\mathrm{i} \frac{\pi}{4}}=\sqrt{2}\left(\cos \left(\frac{\pi}{4}\right)+\mathrm{i} \sin \left(\frac{\pi}{4}\right)\right)=\sqrt{2}\left(\frac{1}{\sqrt{2}}+\mathrm{i} \frac{1}{\sqrt{2}}\right)=1+\mathrm{i} \\
& z_{2}=\sqrt{2} \mathrm{e}^{\mathrm{i} \frac{3 \pi}{4}}=\sqrt{2}\left(\cos \left(\frac{3 \pi}{4}\right)+\mathrm{i} \sin \left(\frac{3 \pi}{4}\right)\right)=\sqrt{2}\left(-\frac{1}{\sqrt{2}}+\mathrm{i} \frac{1}{\sqrt{2}}\right)=-1+\mathrm{i}, \\
& z_{3}=\sqrt{2} \mathrm{e}^{\mathrm{i} \frac{5 \pi}{4}}=\sqrt{2}\left(\cos \left(\frac{5 \pi}{4}\right)+\mathrm{i} \sin \left(\frac{5 \pi}{4}\right)\right)=\sqrt{2}\left(-\frac{1}{\sqrt{2}}-\mathrm{i} \frac{1}{\sqrt{2}}\right)=-1-\mathrm{i} \\
& z_{4}=\sqrt{2} \mathrm{e}^{\mathrm{i} \frac{7 \pi}{4}}=\sqrt{2}\left(\cos \left(\frac{7 \pi}{4}\right)+\mathrm{i} \sin \left(\frac{7 \pi}{4}\right)\right)=\sqrt{2}\left(\frac{1}{\sqrt{2}}-\mathrm{i} \frac{1}{\sqrt{2}}\right)=1-\mathrm{i} .
\end{aligned}
$$

For other values of n these roots are repeated.

4. Problems

97.1. Show that $e^{z} \neq 0$.
97.2. Compute $|z|$ and $\arg (z)$ and write the following in polar form.
(a) $z=2-2 \mathrm{i}$
(b) $z=3 i$
(c) $z=1+\mathrm{i} \sqrt{3}$
97.3. Write the following in Cartesian form.
(a) $z=5 \mathrm{e}^{\mathrm{i} \pi}$
(b) $z=\mathrm{e}^{-\mathrm{i} \pi}$
(c) $z=2 \mathrm{e}^{\mathrm{i} 3 \pi / 4}$
97.4. Solve the binomial equations.
(a) $z^{3}=1$
(b) $z^{2}=\mathrm{i}$
97.5. Compute

$$
\frac{3 i}{1+\mathrm{i} \sqrt{3}}
$$

5. Answers and solutions

97.1. $\left|\mathrm{e}^{z}\right|=\mathrm{e}^{x}>0$.
97.2.
(a) $|z|=2 \sqrt{2}, \arg (z)=\frac{7 \pi}{4}+n 2 \pi, z=2 \sqrt{2} \mathrm{e}^{\mathrm{i} 7 \pi / 4}=2 \sqrt{2} \mathrm{e}^{-\mathrm{i} \pi / 4}$.
(b) $|z|=3, \arg (z)=\frac{\pi}{2}+n 2 \pi, z=3 \mathrm{e}^{\mathrm{i} \pi / 2}$.
(c) $|z|=2, \arg (z)=\frac{\pi}{3}+n 2 \pi, z=2 \mathrm{e}^{\mathrm{i} \pi / 3}$.
97.3.
(a) $z=-5$
(b) $z=-1$
(c) $z=-\sqrt{2}+\mathrm{i} \sqrt{2}$
97.4.
(a) $z=\mathrm{e}^{\mathrm{i} n 2 \pi / 3}, z_{1}=1, z_{2}=-\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}, z_{3}=-\frac{1}{2}-\mathrm{i} \frac{\sqrt{3}}{2}$.
(b) $z=\mathrm{e}^{\mathrm{i}\left(\frac{\pi}{4}+n \pi\right)}, z_{1}=\frac{1}{\sqrt{2}}+\mathrm{i} \frac{1}{\sqrt{2}}, z_{2}=-\frac{1}{\sqrt{2}}-\mathrm{i} \frac{1}{\sqrt{2}}$.
97.5.

$$
\frac{3 \mathrm{e}^{\mathrm{i} \pi / 2}}{2 \mathrm{e}^{\mathrm{i} \pi / 3}}=\frac{3}{2} \mathrm{e}^{\mathrm{i} \pi / 6}=\frac{3}{2}\left(\frac{\sqrt{3}}{2}+\mathrm{i} \frac{1}{2}\right)
$$

