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97 The exponential function with a complex variable

1. The complex exponential function

AMBS 33.2. If z = x + iy ∈ C with x, y ∈ R, then we define

(97.1) exp(z) = ez = ex
(
cos(y) + i sin(y)

)
.

In particular, with x = 0, so that z = iy is an imaginary number, we have

(97.2) exp(iy) = eiy = cos(y) + i sin(y).

Note that

(97.3) exp(−iy) = e−iy = cos(y) + i sin(−y) = cos(y)− i sin(y).

This means that e−iy = eiy, the complex conjugate of eiy. By subtracting (and adding) (97.2) and
(97.3) we get

(97.4) sin(y) =
eiy − e−iy

2i
, cos(y) =

eiy + e−iy

2
, y ∈ R.

Also

(97.5) |eiy| =
√

cos2(y) + sin2(y) = 1,

which means hat eiy lies on the unit circle in the complex plane.
It is easy to show that the complex exponential function satisfies the familiar identity:

(97.6) ezew = ez+w, z, w ∈ C.

For example, by the trigonometric identities of AMBS 32.2:

eiyeix =
(
cos(y) + i sin(y)

)(
cos(x) + i sin(x)

)
= cos(y) cos(x)− sin(y) sin(x) + i

(
sin(y) cos(x) + cos(y) sin(x)

)
= cos(y + x) + i sin(y + x) = ei(y+x).

2. The derivative of the complex exponential function

Let

(97.7) u(t) = exp(tz) = etz = et(x+iy), t, x, y ∈ R.

Then

u′(t) =
d

dt

(
etx

(
cos(ty) + i sin(ty)

))
= xetx

(
cos(ty) + i sin(ty)

)
+ etx

(
− y sin(ty) + iy cos(ty)

)
= xetx

(
cos(ty) + i sin(ty)

)
+ etxiy

(
i sin(ty) + cos(ty)

)
= (x + iy)etx

(
cos(ty) + i sin(ty)

)
= z exp(tz) = zu(t).

We conclude that

(97.8)
d

dt
exp(tz) = z exp(tz)

just as for the real-valued exponential function.
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3. Polar representation of complex numbers

When a complex number is written as

(97.9) z = x + iy, x, y ∈ R,

we say that it is written in Cartesian form. Let

(97.10) r = |z| =
√

x2 + y2

be the absolute value of z. Then

(97.11)
x = r cos(θ),
y = r sin(θ),

where θ is a real number (angle), and (97.9) becomes

(97.12) z = r
(
cos(θ) + i sin(θ)

)
= reiθ.

The complex number is then said to be written in polar form:

(97.13) z = reiθ.

Here

(97.14) r = |z|, θ = arg(z),

are the absolute value and the argument of z. The argument is not unique: if θ = arg(z), then

θ + n2π, n = 0,±1,±2, . . . ,

is also an argument for z, because eiθ = ei(θ+n2π).
Some calculations become easier if we use the polar form. For example, if z = reiθ, w = ρeiω,

then

(97.15)
z

w
=

reiθ

ρeiω
= reiθ(ρeiω)−1 =

r

ρ
ei(θ−ω), zm = (reiθ)m = rmeımθ.

It becomes easy to solve equations of the form (binomial equation):

(97.16) zn = w,

if we write both z and b in polar form.
Example: Solve the binomial equation

(97.17) z4 = −4.

In polar form, with z = reiθ, −4 = 4eiπ, this becomes

(97.18) r4ei4θ = 4eiπ.

We identify the absolute values and the arguments,

r4 = 4, 4θ = π + n2π, n = 0,±1,±2, . . . ,

so that
r =

√
2, θ =

π

4
+ n

π

2
, z =

√
2ei( π

4 +n π
2 ).

For n = 0, 1, 2, 3 we get four roots:

z1 =
√

2ei π
4 =

√
2(cos(π

4 ) + i sin(π
4 )) =

√
2( 1√

2
+ i 1√

2
) = 1 + i,

z2 =
√

2ei 3π
4 =

√
2(cos( 3π

4 ) + i sin( 3π
4 )) =

√
2(− 1√

2
+ i 1√

2
) = −1 + i,

z3 =
√

2ei 5π
4 =

√
2(cos( 5π

4 ) + i sin( 5π
4 )) =

√
2(− 1√

2
− i 1√

2
) = −1− i,

z4 =
√

2ei 7π
4 =

√
2(cos( 7π

4 ) + i sin( 7π
4 )) =

√
2( 1√

2
− i 1√

2
) = 1− i.

For other values of n these roots are repeated.
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4. Problems

97.1. Show that ez 6= 0.

97.2. Compute |z| and arg(z) and write the following in polar form.

(a) z = 2− 2i (b) z = 3i (c) z = 1 + i
√

3

97.3. Write the following in Cartesian form.

(a) z = 5eiπ (b) z = e−iπ (c) z = 2ei3π/4

97.4. Solve the binomial equations.

(a) z3 = 1 (b) z2 = i

97.5. Compute
3i

1 + i
√

3

5. Answers and solutions

97.1. |ez| = ex > 0.
97.2.

(a) |z| = 2
√

2, arg(z) = 7π
4 + n2π, z = 2

√
2ei7π/4 = 2

√
2e−iπ/4.

(b) |z| = 3, arg(z) = π
2 + n2π, z = 3eiπ/2.

(c) |z| = 2, arg(z) = π
3 + n2π, z = 2eiπ/3.

97.3.

(a) z = −5

(b) z = −1

(c) z = −
√

2 + i
√

2

97.4.

(a) z = ein2π/3, z1 = 1, z2 = − 1
2 + i

√
3

2 , z3 = − 1
2 − i

√
3

2 .

(b) z = ei( π
4 +nπ), z1 = 1√

2
+ i 1√

2
, z2 = − 1√

2
− i 1√

2
.

97.5.
3eiπ/2

2eiπ/3
=

3
2
eiπ/6 =

3
2

(√3
2

+ i
1
2

)
2004-11-28 /stig


