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Motivation: Dynamics of a Scots pines stand

Figure: Swedish Scots pines with scaled radii (factor 10) recorded in 1985
(upper left), 1990 (right) and 1996 (lower left).
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Our spatio-temporal marked point process

Employ a random process, {X(t)}t≥0, to model this phenomenon.
Necessary ingredients of {X(t)}t≥0:

A stochastic process, N(t), which controls the number of
trees present at time t.

A random structure, {[Xi ,Mi (t)]}, which describes the
locations and the sizes of the trees at time t.

Use the Renshaw-Särkkä growth-interaction model (RS-model):
A spatio-temporal marked point process,
X(t) = {[Xi ,Mi (t)] : i ∈ Ωt}.
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The RS-model, X(t) = {[Xi , Mi (t)] : i ∈ Ωt}, t ∈ [0, T ]
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The immigration-death process, {N(t)}t≥0

We use the immigration-death process for {N(t)}t≥0.

It is a Markov chain in continuous time.

State space E = {0, 1, . . .}.
Parameters θ = (α, µ) ∈ Θ ⊆ R2

+.

A particular type of birth-death process.
N(t) = B(t;α)− D(t;µ) =
#{individuals alive at time t in a population}
where:

1) New individuals arrive according to a Poisson process, B(t),
with intensity α.

2) Individuals get iid Exp(µ)-distributed life-times (D(t) counts
deaths).

It can also be viewed as an M/M/∞-queue.
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The RS-model, X(t) = {[Xi , Mi (t)] : i ∈ Ωt}, t ∈ [0, T ]

Wrap W ⊆ R2 onto a torus.

N(t) = B(t;α)− D(t;µ) controls
Ωt = {individuals present in W at time t}.
Arrival of individual i at time t0

i :

Location: Xi ∼ Uni(W )
Initial mark: Mi (t0

i ) = M0
i > 0 (radius of the

closed disk BXi [Mi (t)])

X(t): (thinned) spatial marked Poisson process.

The N = B(T ;α) ∼ Poi(αT ) marks change size:

dM1(t) =
[
f (M1(t);ψ) +

∑
j∈Ωt

h(M1(t),Mj(t),X1,Xj ;ψ)
]
dt + σdW1(t)

...

dMN(t) =
[
f (MN(t);ψ) +

∑
j∈Ωt

h(MN(t),Mj(t),XN ,Xj ;ψ)
]
dt + σdWN(t)

W1(t), . . . ,WN(t) Brownian motions.
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Influence zones and deaths

Definition

The influence zone of individual i at time t is the closed disk,
BXi

[rMi (t)], centred at Xi with radius rMi (t), r > 0.

Two individuals interact at time t if their influence zones overlap.

Possible death scenarios for individual i :

Natural death: Its Exp(µ)-distributed lifetime expires.

Competitive death: Mi (t) ≤ 0.
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The RS-model: Individual growth- and interaction-function

Here ψ = (λ,K , c , r).

The linear (individual) growth function:

f (Mi (t);ψ) = λ

(
1− Mi (t)

K

)
Growth rate: λ > 0
Carrying capacity (upper bound): K > 0

Area interaction:

h(Mi (t),Mj(t),Xi ,Xj ;ψ) = c
ν
(
BXi

[rMi (t)] ∩ BXj
[rMj(t)]

)
ν (BXi

[rMi (t)])

The range of interaction: r > 0
The force of interaction: c > 0
Note: Large individuals affect small individuals more than the
other way around.
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The RS-model: A realisation (scaled marks)

Figure: Simulated on W = [0, 30]× [0, 30] (radii scaled by a factor of
10), sampled at T1 = 22 (top left), T2 = 27 (right), T3 = 33 (bottom
left) in the circular region.
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What is X(t) = {[Xi ,Mi (t)] : i ∈ Ωt}, t ∈ [0,T ]?

A marked spatial Poisson process Φ with intensity Tαν(W ),
living on the torus W .
Φ has points X1, . . . ,XN and associated (dependent) marks
M1(t), . . . ,MN(t) which are diffusions.
(The arrival and death times control the supports of the
sample paths M1(t;ω), . . . ,MN(t;ω)).

A multivariate diffusion, M(t,Φ) = (M1(t,Φ), . . . ,MN(t,Φ)),
parametrised by a spatial Poisson process Φ = [X1, . . . ,XN ]
with intensity Tαν(W ), living on the torus W .
(The arrival and death times control the supports of the
sample paths M1(t,Φ;ω), . . . ,MN(t,Φ;ω)).

Note that since ν(W ) <∞ and T <∞ we have that
N = B(T ;αν(W )) <∞ a.s.
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ML-estimation

X(t) is observed at 0 < T1 < . . . < Tn as {Xj}nj=1.

Estimate the parameters Λ = (α, µ, λ,K , c , r , σ):

Immigration-death parameters: α, µ
Spatial growth and interaction parameters: ψ = (λ,K , c , r)
Diffusion parameter: σ > 0

Aim: Simultaneous ML-estimation of Λ

X(t) is a Markov process:

(M1(t), . . . ,MN(t)) is a Markov process (diffusion)
N(t) is a continuous time Markov chain

Find the transition densities, PX(Tj )|X(Tj−1)(Xj |Xj−1; Λ):

L(Λ) =
n∏

i=1

PX(Tj )|X(Tj−1)(Xj |Xj−1; Λ)
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Estimation of the mark parameters

Estimation of (λ,K , c , r , σ) from {(M1(Tj), . . . ,MN(Tj))}nj=1.

When σ = 0 (Särkkä, 2006): Deterministic mark growth;

dMi (t) =
[
f (Mi (t);ψ) +

∑
j∈Ωt

h(Mi (t),Mj(t),Xi ,Xj ;ψ)
]
dt.

⇒ Least squares estimation of ψ, ML-estimation of α, µ.

When c = 0: No spatial interaction, i.e. independent SDEs;

dMi (t) = f (Mi (t);ψ)dt + σdWi (t)

Transition densities (linear growth): (Mi (t)|Mi (s) = ms) ∼
N
(

K + (ms + K )e−λt/K , σ
2(1−e−2λt/K )

2λ/K

)
When c , σ 6= 0: (M1(t), . . . ,MN(t)) multivariate SDE
(components interact):

dMi (t) =
[
f (Mi (t);ψ)+

∑
j∈Ωt

h(Mi (t),Mj(t),Xi ,Xj ;ψ)
]
dt+σdWi (t)

Find transition densities of (M1(t), . . . ,MN(t)).
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ML-estimation: Discretely sampled immigration-death

Sample {N(t)}t≥0 as
(N(0),N(T1), . . . ,N(Tn)) = (0,N1, . . . ,Nn).

The log-likelihood function of θ = (α, µ) ∈ Θ ⊆ R2
+:

ln(θ) =
n∑

k=1

log p
Nk−1Nk

(Tk − Tk−1; θ).

Proposition (Transition probabilities)

The transition probabilities pij(t; θ) := P (N(h + t) = j |N(h) = i):

pij(t; θ) =
(
f
Poi(α(1−e−µt )/µ)

∗ f
Bin(i,e−µt )

)(
j
)

=

j∑
k=0

f
Poi(α(1−e−µt )/µ)

(k)f
Bin(i,e−µt )

(j − k)

where i , j ∈ E = N, θ = (α, µ) ∈ Θ ⊆ R2
+.
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The ML-estimation

The ML-estimator of θ = (α, µ) ∈ Θ:

(α̂n, µ̂n) = θ̂n(N(T1), . . . ,N(Tn)) = arg max
θ∈Θ

ln(θ).

No closed form expression for (α̂n, µ̂n).
Dimension reduction: α̂n = α̂n(µ) is a function of µ and the
sample {N(T1), . . . ,N(Tn)}. Maximise ln(α̂n(µ), µ) w.r.t. µ.

Assume now that Tk − Tk−1 = t, k = 1, . . . , n, so that

ln(θ) =
∑
i ,j∈E

Nn(i , j) log pij(t; θ),

where Nn(i , j) =
∑n

k=1 1 {(Nk−1,Nk) = (i , j)}.
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Asymptotics

Denote by θ0 = (α0, µ0) ∈ Θ the true parameter pair.

Proposition (Strong consistency)

Let Θ be any compact subset of R2
+. Then, as n→∞, the

maximum likelihood estimator for the immigration-death process
satisfies

(α̂n, µ̂n)
a.s.−→ (α0, µ0).

Proposition (Asymptotic normality)

Let Θ be any compact subset of R2
+. Furthermore, assume that

(log(α0 + µ0)− log(α0))/µ0 ≥ 2t. Then, as n→∞,

√
n ((α̂n, µ̂n)− (α0, µ0))

d→ N
(
0, I (θ0)−1

)
,

where I (θ0)−1 is the inverse of the Fisher information matrix.
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Numerical evaluation

Figure: Normal probability plots of the estimates of (α0, µ0) = (0.4, 0.01)

based on 50 sample paths sampled at times Tk = kt, t = 1, k = 1, . . . ,T .

Upper row: The estimates of α0 at final times T = 50 (left), T = 100 (middle)

and T = 150 (right). Lower row: The estimates of µ0 at final times T = 50

(left), T = 100 (middle) and T = 150 (right).

Figure: Normal probability plots of the estimates of (α0, µ0) = (2, 0.05) based

on 50 sample paths sampled at times Tk = kt, t = 1, k = 1, . . . ,T . Upper

row: The estimates of α0 at final times T = 50 (left), T = 100 (middle) and

T = 150 (right). Lower row: The estimates of µ0 at final times T = 50 (left),

T = 100 (middle) and T = 150 (right).
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Thank you for listening!
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Idea used in the spatio-temporal edge correction

Data, X = {X(Tj)}nj=1, is sampled in region A.

No information about individuals in B = W \ A
who interact with X - Edge effects! ⇒ Biased
estimates!

Existing edge corrections are not easily altered to
the spatio-temporal case or remove data.

Idea behind the new approach:
1 From {X(Tj)}nj=1: non-edge corrected estimates

ψ̂∗.
2 In region B: The ”expected process”,

Eψ̂∗
[
X[0,Tn]|B

]
, under the regime of ψ̂∗.

3 Re-estimate ψ while letting Eψ̂∗
[
X[0,Tn]|B

]
interact with {X(Tj)}nj=1.

4 New estimates ψ̂ have been influenced by the
”expected interaction” between X and
Eψ̂∗

[
X[0,Tn]|B

]
.
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