Maximum likelihood estimation in a spatio-temporal marked point process

Ottmar Cronie¹

¹Mathematical Sciences Chalmers University of Technology & University of Gothenburg Sweden

August 19, 2010

Motivation: Dynamics of a Scots pines stand

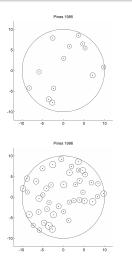


Figure: Swedish Scots pines with scaled radii (factor 10) recorded in 1985 (upper left), 1990 (right) and 1996 (lower left).

Pines 1990

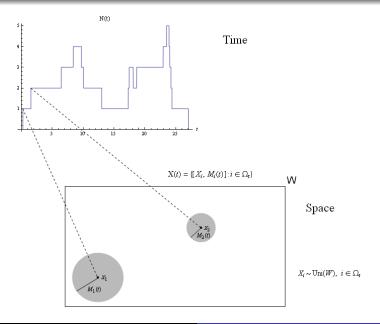
- A stochastic process, *N*(*t*), which controls the number of trees present at time *t*.
- A random structure, {[X_i, M_i(t)]}, which describes the locations and the sizes of the trees at time t.

- A stochastic process, *N*(*t*), which controls the number of trees present at time *t*.
- A random structure, {[X_i, M_i(t)]}, which describes the locations and the sizes of the trees at time t.

- A stochastic process, N(t), which controls the number of trees present at time t.
- A random structure, {[X_i, M_i(t)]}, which describes the locations and the sizes of the trees at time t.

- A stochastic process, N(t), which controls the number of trees present at time t.
- A random structure, {[X_i, M_i(t)]}, which describes the locations and the sizes of the trees at time t.

- A stochastic process, N(t), which controls the number of trees present at time t.
- A random structure, {[X_i, M_i(t)]}, which describes the locations and the sizes of the trees at time t.



ヨー つへの

The immigration-death process, $\left\{ N(t) ight\}_{t \geq 0}$

- We use the immigration-death process for $\{N(t)\}_{t>0}$.
- It is a Markov chain in continuous time.
- State space $E = \{0, 1, ...\}$. Parameters $\theta = (\alpha, \mu) \in \Theta \subseteq \mathbb{R}^2_+$.
- A particular type of birth-death process.

 $N(t) = B(t; \alpha) - D(t; \mu) =$

- 1) New individuals arrive according to a Poisson process, B(t), with intensity α .
- 2) Individuals get iid $Exp(\mu)$ -distributed life-times (D(t) counts deaths).
- It can also be viewed as an $M/M/\infty$ -queue.

• We use the immigration-death process for $\{N(t)\}_{t>0}$.

- It is a Markov chain in continuous time.
- State space $E = \{0, 1, ...\}$. Parameters $\theta = (\alpha, \mu) \in \Theta \subseteq \mathbb{R}^2_+$.
- A particular type of birth-death process.

 $N(t) = B(t; \alpha) - D(t; \mu) =$

- 1) New individuals arrive according to a Poisson process, B(t), with intensity α .
- 2) Individuals get iid $Exp(\mu)$ -distributed life-times (D(t) counts deaths).
- It can also be viewed as an $M/M/\infty$ -queue.

- We use the immigration-death process for $\{N(t)\}_{t>0}$.
- It is a Markov chain in continuous time.
- State space $E = \{0, 1, ...\}$. Parameters $\theta = (\alpha, \mu) \in \Theta \subseteq \mathbb{R}^2_+$.
- A particular type of birth-death process.
 N(t) = B(t; α) D(t; μ) =
 #{individuals alive at time t in a populat

where:

- 1) New individuals arrive according to a Poisson process, B(t), with intensity α .
- 2) Individuals get iid $Exp(\mu)$ -distributed life-times (D(t) counts deaths).
- It can also be viewed as an $M/M/\infty$ -queue.

- We use the immigration-death process for $\{N(t)\}_{t>0}$.
- It is a Markov chain in continuous time.
- State space $E = \{0, 1, ...\}$. Parameters $\theta = (\alpha, \mu) \in \Theta \subseteq \mathbb{R}^2_+$.
- A particular type of birth-death process. $N(t) = B(t; \alpha) - D(t; \mu) =$ #{individuals alive at time t in a population

where:

- 1) New individuals arrive according to a Poisson process, B(t), with intensity α .
- 2) Individuals get iid $Exp(\mu)$ -distributed life-times (D(t) counts deaths).
- It can also be viewed as an $M/M/\infty$ -queue.

- We use the immigration-death process for $\{N(t)\}_{t>0}$.
- It is a Markov chain in continuous time.
- State space $E = \{0, 1, ...\}$. Parameters $\theta = (\alpha, \mu) \in \Theta \subseteq \mathbb{R}^2_+$.
- A particular type of birth-death process.

 $N(t) = B(t; lpha) - D(t; \mu) =$

- 1) New individuals arrive according to a Poisson process, B(t), with intensity α .
- 2) Individuals get iid $Exp(\mu)$ -distributed life-times (D(t) counts deaths).
- It can also be viewed as an $M/M/\infty$ -queue.

- We use the immigration-death process for $\{N(t)\}_{t>0}$.
- It is a Markov chain in continuous time.
- State space $E = \{0, 1, ...\}$. Parameters $\theta = (\alpha, \mu) \in \Theta \subseteq \mathbb{R}^2_+$.
- A particular type of birth-death process.

 $N(t) = B(t; \alpha) - D(t; \mu) =$

- 1) New individuals arrive according to a Poisson process, B(t), with intensity α .
- 2) Individuals get iid $Exp(\mu)$ -distributed life-times (D(t) counts deaths).
- It can also be viewed as an $M/M/\infty$ -queue.

- We use the immigration-death process for $\{N(t)\}_{t>0}$.
- It is a Markov chain in continuous time.
- State space $E = \{0, 1, ...\}$. Parameters $\theta = (\alpha, \mu) \in \Theta \subseteq \mathbb{R}^2_+$.
- A particular type of birth-death process.

 $N(t) = B(t; \alpha) - D(t; \mu) =$

- 1) New individuals arrive according to a Poisson process, B(t), with intensity α .
- 2) Individuals get iid $Exp(\mu)$ -distributed life-times (D(t) counts deaths).
- It can also be viewed as an $M/M/\infty$ -queue.

- We use the immigration-death process for $\{N(t)\}_{t>0}$.
- It is a Markov chain in continuous time.
- State space $E = \{0, 1, ...\}$. Parameters $\theta = (\alpha, \mu) \in \Theta \subseteq \mathbb{R}^2_+$.
- A particular type of birth-death process.

 $N(t) = B(t; \alpha) - D(t; \mu) =$

- 1) New individuals arrive according to a Poisson process, B(t), with intensity α .
- 2) Individuals get iid $Exp(\mu)$ -distributed life-times (D(t) counts deaths).
- It can also be viewed as an $M/M/\infty$ -queue.

- We use the immigration-death process for $\{N(t)\}_{t>0}$.
- It is a Markov chain in continuous time.
- State space $E = \{0, 1, ...\}$. Parameters $\theta = (\alpha, \mu) \in \Theta \subseteq \mathbb{R}^2_+$.
- A particular type of birth-death process.

 $N(t) = B(t; \alpha) - D(t; \mu) =$

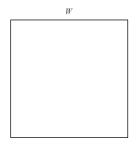
- 1) New individuals arrive according to a Poisson process, B(t), with intensity α .
- 2) Individuals get iid $Exp(\mu)$ -distributed life-times (D(t) counts deaths).
- It can also be viewed as an $M/M/\infty$ -queue.

- Wrap $W \subseteq \mathbb{R}^2$ onto a torus.
- $N(t) = B(t; \alpha) D(t; \mu)$ controls $\Omega_t = \{ \text{individuals present in } W \text{ at time } t \}$
- Arrival of individual *i* at time t_i^0 :
 - Location: $X_i \sim Uni(W)$
 - Initial mark: M_i(t⁰_i) = M⁰_i > 0 (radius of the closed disk B_{Xi}[M_i(t)])
- X(t): (thinned) spatial marked Poisson process.
- The $N = B(T; \alpha) \sim Poi(\alpha T)$ marks change size:

 $dM_1(t) = \Big[f(M_1(t);\psi) + \sum_{j\in\Omega_t}h(M_1(t),M_j(t),X_1,X_j;\psi)\Big]dt + \sigma dW_1(t)$

$$dM_N(t) = \Big[f(M_N(t);\psi) + \sum_{j\in\Omega_t} h(M_N(t),M_j(t),X_N,X_j;\psi)\Big]dt + \sigma dW_N(t)$$

 $W_1(t),\ldots,W_N(t)$ Brownian motions.

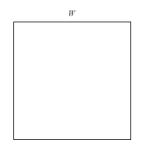


- Wrap $W \subseteq \mathbb{R}^2$ onto a torus.
- $N(t) = B(t; \alpha) D(t; \mu)$ controls $\Omega_t = \{ \text{individuals present in } W \text{ at time } t \}.$
- Arrival of individual *i* at time t_i^0 :
 - Location: $X_i \sim Uni(W)$
 - Initial mark: M_i(t⁰_i) = M⁰_i > 0 (radius of the closed disk B_{Xi}[M_i(t)])
- X(t): (thinned) spatial marked Poisson process.
- The $N = B(T; \alpha) \sim Poi(\alpha T)$ marks change size:

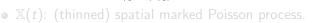
 $dM_1(t) = \Big[f(M_1(t);\psi) + \sum_{j\in\Omega_t}h(M_1(t),M_j(t),X_1,X_j;\psi)\Big]dt + \sigma dW_1(t)$

$$dM_N(t) = \Big[f(M_N(t);\psi) + \sum_{j\in\Omega_t} h(M_N(t),M_j(t),X_N,X_j;\psi)\Big]dt + \sigma dW_N(t)$$

 $W_1(t),\ldots,W_N(t)$ Brownian motions.



- Wrap $W \subseteq \mathbb{R}^2$ onto a torus.
- $N(t) = B(t; \alpha) D(t; \mu)$ controls $\Omega_t = \{ \text{individuals present in } W \text{ at time } t \}.$
- Arrival of individual *i* at time t_i^0 :
 - Location: $X_i \sim Uni(W)$
 - Initial mark: $M_i(t_i^0) = M_i^0 > 0$ (radius of the closed disk $B_{X_i}[M_i(t)]$)

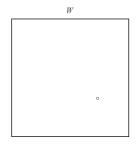


• The $N = B(T; \alpha) \sim Poi(\alpha T)$ marks change size:

 $dM_1(t) = \left[f(M_1(t);\psi) + \sum_{j\in\Omega_t}h(M_1(t),M_j(t),X_1,X_j;\psi)
ight]dt + \sigma dW_1(t)$

$$dM_N(t) = \Big[f(M_N(t);\psi) + \sum_{j\in\Omega_t} h(M_N(t),M_j(t),X_N,X_j;\psi)\Big]dt + \sigma dW_N(t)$$

 $W_1(t),\ldots,W_N(t)$ Brownian motions.

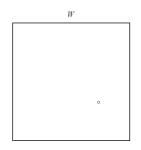


- Wrap $W \subseteq \mathbb{R}^2$ onto a torus.
- $N(t) = B(t; \alpha) D(t; \mu)$ controls $\Omega_t = \{$ individuals present in W at time $t \}.$
- Arrival of individual *i* at time t_i^0 :
 - Location: X_i ~ Uni(W)
 - Initial mark: $M_i(t_i^0) = M_i^0 > 0$ (radius of the closed disk $B_{X_i}[M_i(t)]$)
- X(t): (thinned) spatial marked Poisson process.
- The $N = B(T; \alpha) \sim Poi(\alpha T)$ marks change size:

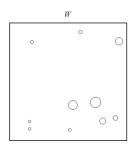
 $dM_1(t) = \left[f(M_1(t);\psi) + \sum_{j\in\Omega_t} h(M_1(t),M_j(t),X_1,X_j;\psi)
ight]dt + \sigma dW_1(t)$

$$dM_N(t) = \Big[f(M_N(t);\psi) + \sum_{j\in\Omega_t} h(M_N(t),M_j(t),X_N,X_j;\psi)\Big]dt + \sigma dW_N(t)$$

 $W_1(t), \ldots, W_N(t)$ Brownian motions.



- Wrap $W \subseteq \mathbb{R}^2$ onto a torus.
- $N(t) = B(t; \alpha) D(t; \mu)$ controls $\Omega_t = \{$ individuals present in W at time $t \}.$
- Arrival of individual *i* at time t_i^0 :
 - Location: $X_i \sim Uni(W)$
 - Initial mark: $M_i(t_i^0) = M_i^0 > 0$ (radius of the closed disk $B_{X_i}[M_i(t)]$)



- X(t): (thinned) spatial marked Poisson process.
- The $N = B(T; \alpha) \sim Poi(\alpha T)$ marks change size:

$$dM_1(t) = \Big[f(M_1(t);\psi) + \sum_{j\in\Omega_t}h(M_1(t),M_j(t),X_1,X_j;\psi)\Big]dt + \sigma dW_1(t)$$

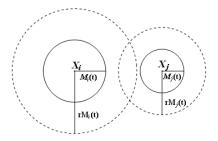
$$dM_N(t) = \left[f(M_N(t);\psi) + \sum_{j\in\Omega_t} h(M_N(t),M_j(t),X_N,X_j;\psi)\right]dt + \sigma dW_N(t)$$

 $W_1(t), \dots, W_N(t)$ Brownian motions. Ottmar Cronie ML estimation in a spatio-temporal MPP

Definition

The influence zone of individual i at time t is the closed disk, $B_{X_i}[rM_i(t)]$, centred at X_i with radius $rM_i(t)$, r > 0.

Two individuals interact at time *t* if their influence zones overlap.



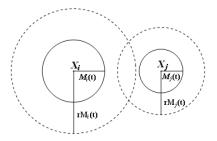
Possible death scenarios for individual *i*:

- Natural death: Its $Exp(\mu)$ -distributed lifetime expires.
- Competitive death: $M_i(t) \leq 0$.

Definition

The influence zone of individual i at time t is the closed disk, $B_{X_i}[rM_i(t)]$, centred at X_i with radius $rM_i(t)$, r > 0.

Two individuals interact at time *t* if their influence zones overlap.



Possible death scenarios for individual *i*:

- Natural death: Its $Exp(\mu)$ -distributed lifetime expires.
- Competitive death: $M_i(t) \leq 0$.

The RS-model: Individual growth- and interaction-function

Here
$$\psi = (\lambda, K, c, r)$$
.

• The linear (individual) growth function:

$$f(M_i(t);\psi) = \lambda \left(1 - \frac{M_i(t)}{\kappa}\right)$$

Growth rate: $\lambda > 0$ Carrying capacity (upper bound): K > 0

• Area interaction:

$$h(M_{i}(t), M_{j}(t), X_{i}, X_{j}; \psi) = c \frac{\nu \left(B_{X_{i}} \left[rM_{i}(t) \right] \cap B_{X_{j}} \left[rM_{j}(t) \right] \right)}{\nu \left(B_{X_{i}} \left[rM_{i}(t) \right] \right)}$$

The range of interaction: r > 0The force of interaction: c > 0**Note**: Large individuals affect small individuals more than the other way around.

The RS-model: Individual growth- and interaction-function

Here
$$\psi = (\lambda, K, c, r)$$
.

• The linear (individual) growth function:

$$f(M_i(t);\psi) = \lambda \left(1 - \frac{M_i(t)}{\kappa}\right)$$

Growth rate: $\lambda > 0$ Carrying capacity (upper bound): K > 0

• Area interaction:

$$h(M_i(t), M_j(t), X_i, X_j; \psi) = c \frac{\nu\left(B_{X_i}\left[rM_i(t)\right] \cap B_{X_j}\left[rM_j(t)\right]\right)}{\nu\left(B_{X_i}\left[rM_i(t)\right]\right)}$$

The range of interaction: r > 0The force of interaction: c > 0**Note**: Large individuals affect small individuals more than the other way around.

The RS-model: A realisation (scaled marks)

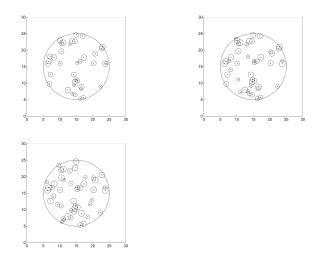


Figure: Simulated on $W = [0, 30] \times [0, 30]$ (radii scaled by a factor of 10), sampled at $T_1 = 22$ (top left), $T_2 = 27$ (right), $T_3 = 33$ (bottom left) in the circular region.

What is $\mathbb{X}(t) = \{ [X_i, M_i(t)] : i \in \Omega_t \}, t \in [0, T] \}$?

• A marked spatial Poisson process Φ with intensity $T\alpha\nu(W)$, living on the torus W.

 Φ has points X_1, \ldots, X_N and associated (dependent) marks $M_1(t), \ldots, M_N(t)$ which are diffusions.

(The arrival and death times control the supports of the sample paths $M_1(t; \omega), \ldots, M_N(t; \omega)$).

- A <u>multivariate diffusion</u>, M(t, Φ) = (M₁(t, Φ), ..., M_N(t, Φ)), parametrised by a spatial Poisson process Φ = [X₁,..., X_N] with intensity Tαν(W), living on the torus W. (The arrival and death times control the supports of the sample paths M₁(t, Φ; ω), ..., M_N(t, Φ; ω)).
- Note that since $\nu(W) < \infty$ and $T < \infty$ we have that $N = B(T; \alpha \nu(W)) < \infty$ a.s.

What is $\mathbb{X}(t) = \{ [X_i, M_i(t)] : i \in \Omega_t \}, t \in [0, T] \}$?

• A marked spatial Poisson process Φ with intensity $T\alpha\nu(W)$, living on the torus W.

 Φ has points X_1, \ldots, X_N and associated (dependent) marks $M_1(t), \ldots, M_N(t)$ which are diffusions.

(The arrival and death times control the supports of the sample paths $M_1(t; \omega), \ldots, M_N(t; \omega)$).

- A <u>multivariate diffusion</u>, M(t, Φ) = (M₁(t, Φ), ..., M_N(t, Φ)), parametrised by a spatial Poisson process Φ = [X₁,..., X_N] with intensity Tαν(W), living on the torus W. (The arrival and death times control the supports of the sample paths M₁(t, Φ; ω), ..., M_N(t, Φ; ω)).
- Note that since $\nu(W) < \infty$ and $T < \infty$ we have that $N = B(T; \alpha \nu(W)) < \infty$ a.s.

What is $\mathbb{X}(t) = \{ [X_i, M_i(t)] : i \in \Omega_t \}, t \in [0, T] \}$?

• A marked spatial Poisson process Φ with intensity $T\alpha\nu(W)$, living on the torus W.

 Φ has points X_1, \ldots, X_N and associated (dependent) marks $M_1(t), \ldots, M_N(t)$ which are diffusions.

(The arrival and death times control the supports of the sample paths $M_1(t; \omega), \ldots, M_N(t; \omega)$).

- A <u>multivariate diffusion</u>, M(t, Φ) = (M₁(t, Φ), ..., M_N(t, Φ)), parametrised by a spatial Poisson process Φ = [X₁,..., X_N] with intensity Tαν(W), living on the torus W. (The arrival and death times control the supports of the sample paths M₁(t, Φ; ω), ..., M_N(t, Φ; ω)).
- Note that since $\nu(W) < \infty$ and $T < \infty$ we have that $N = B(T; \alpha \nu(W)) < \infty$ a.s.

• • = • • = •

ML-estimation

- $\mathbb{X}(t)$ is observed at $0 < T_1 < \ldots < T_n$ as $\{\mathbf{X}_j\}_{j=1}^n$.
- Estimate the parameters $\Lambda = (\alpha, \mu, \lambda, K, c, r, \sigma)$:
 - Immigration-death parameters: α,μ
 - Spatial growth and interaction parameters: $\psi = (\lambda, K, c, r)$
 - Diffusion parameter: $\sigma > 0$
- Aim: Simultaneous ML-estimation of Λ
- X(t) is a Markov process:
 - $(M_1(t), \ldots, M_N(t))$ is a Markov process (diffusion)
 - N(t) is a continuous time Markov chain
- Find the transition densities, P_{X(T_j)|X(T_{j-1})}(X_j|X_{j-1}; Λ):

$$L(\Lambda) = \prod_{i=1}^{n} P_{\mathbb{X}(T_j)|\mathbb{X}(T_{j-1})}(\mathbf{X}_j|\mathbf{X}_{j-1};\Lambda)$$

Estimation of $(\lambda, K, c, r, \sigma)$ from $\{(M_1(T_j), \ldots, M_N(T_j))\}_{j=1}^n$.

• When $\sigma = 0$ (Särkkä, 2006): Deterministic mark growth;

$$dM_i(t) = \left[f(M_i(t);\psi) + \sum_{j\in\Omega_t} h(M_i(t), M_j(t), X_i, X_j;\psi)\right]dt.$$

 \Rightarrow Least squares estimation of $\psi,$ ML-estimation of $\alpha,\mu.$

• When c = 0: No spatial interaction, i.e. independent SDEs;

 $dM_i(t) = f(M_i(t); \psi)dt + \sigma dW_i(t)$

Transition densities (linear growth): $(M_i(t)|M_i(s) = m_s) \sim N\left(K + (m_s + K)e^{-\lambda t/K}, \frac{\sigma^2(1-e^{-2\lambda t/K})}{2\lambda/K}\right)$

When c, σ ≠ 0: (M₁(t),..., M_N(t)) multivariate SDE (components interact):

$$dM_i(t) = \left[f(M_i(t);\psi) + \sum_{j\in\Omega_t} h(M_i(t),M_j(t),X_i,X_j;\psi)\right] dt + \sigma dW_i(t)$$

Find transition densities of $(M_1(t), \ldots, M_M(t))$

Estimation of $(\lambda, K, c, r, \sigma)$ from $\{(M_1(T_j), \dots, M_N(T_j))\}_{j=1}^n$. • When $\sigma = 0$ (Särkkä, 2006): Deterministic mark growth;

$$dM_i(t) = \left[f(M_i(t);\psi) + \sum_{j\in\Omega_t} h(M_i(t),M_j(t),X_i,X_j;\psi)\right]dt.$$

⇒ Least squares estimation of ψ , ML-estimation of α , μ . • When c = 0: No spatial interaction, i.e. independent SDEs;

 $dM_i(t) = f(M_i(t); \psi)dt + \sigma dW_i(t)$

Transition densities (linear growth): $(M_i(t)|M_i(s) = m_s) \sim N\left(K + (m_s + K)e^{-\lambda t/K}, \frac{\sigma^2(1-e^{-2\lambda t/K})}{2\lambda/K}\right)$

When c, σ ≠ 0: (M₁(t),..., M_N(t)) multivariate SDE (components interact):

$$dM_i(t) = \left[f(M_i(t);\psi) + \sum_{j\in\Omega_t} h(M_i(t),M_j(t),X_i,X_j;\psi)
ight]dt + \sigma dW_i(t)$$

Find transition densities of $(M_1(t), \ldots, M_N(t))$

Estimation of $(\lambda, K, c, r, \sigma)$ from $\{(M_1(T_j), \dots, M_N(T_j))\}_{j=1}^n$. • When $\sigma = 0$ (Särkkä, 2006): Deterministic mark growth;

$$dM_i(t) = \left[f(M_i(t);\psi) + \sum_{j\in\Omega_t} h(M_i(t),M_j(t),X_i,X_j;\psi)\right]dt.$$

 \Rightarrow Least squares estimation of $\psi,$ ML-estimation of $\alpha,\mu.$

• When c = 0: No spatial interaction, i.e. independent SDEs;

 $dM_i(t) = f(M_i(t); \psi)dt + \sigma dW_i(t)$

Transition densities (linear growth): $(M_i(t)|M_i(s) = m_s) \sim N\left(K + (m_s + K)e^{-\lambda t/K}, \frac{\sigma^2(1-e^{-2\lambda t/K})}{2\lambda/K}\right)$ • When $c, \sigma \neq 0$: $(M_1(t), \dots, M_N(t))$ multivariate SDE (components interact):

$$dM_i(t) = \Big[f(M_i(t);\psi) + \sum_{j\in\Omega_t} h(M_i(t),M_j(t),X_i,X_j;\psi)\Big]dt + \sigma dW_i(t)$$

Find transition densities of $(M_1(t), \ldots, M_N(t))$

Estimation of $(\lambda, K, c, r, \sigma)$ from $\{(M_1(T_j), \dots, M_N(T_j))\}_{j=1}^n$. • When $\sigma = 0$ (Särkkä, 2006): Deterministic mark growth;

$$dM_i(t) = \left[f(M_i(t);\psi) + \sum_{j\in\Omega_t} h(M_i(t), M_j(t), X_i, X_j;\psi)\right]dt.$$

 \Rightarrow Least squares estimation of $\psi,$ ML-estimation of $\alpha,\mu.$

• When c = 0: No spatial interaction, i.e. independent SDEs;

$$dM_i(t) = f(M_i(t); \psi)dt + \sigma dW_i(t)$$

Transition densities (linear growth): $(M_i(t)|M_i(s) = m_s) \sim N\left(K + (m_s + K)e^{-\lambda t/K}, \frac{\sigma^2(1 - e^{-2\lambda t/K})}{2\lambda/K}\right)$ • When $c, \sigma \neq 0$: $(M_1(t), \dots, M_N(t))$ multivariate SDE (components interact):

$$dM_i(t) = \left[f(M_i(t);\psi) + \sum_{j\in\Omega_t} h(M_i(t),M_j(t),X_i,X_j;\psi)\right] dt + \sigma dW_i(t)$$

Find transition densities of $(M_1(t), \ldots, M_N(t))$.

ML-estimation: Discretely sampled immigration-death

- Sample $\{N(t)\}_{t\geq 0}$ as $(N(0), N(T_1), \dots, N(T_n)) = (0, N_1, \dots, N_n).$
- The log-likelihood function of $\theta = (\alpha, \mu) \in \Theta \subseteq \mathbb{R}^2_+$:

$$l_n(\theta) = \sum_{k=1}^n \log p_{N_{k-1}N_k}(T_k - T_{k-1}; \theta).$$

Proposition (Transition probabilities)

The transition probabilities $p_{ij}(t; \theta) := \mathbb{P}(N(h+t) = j|N(h) = i)$:

$$\begin{aligned} p_{ij}(t;\theta) &= \left(f_{Poi(\alpha(1-e^{-\mu t})/\mu)} * f_{Bin(i,e^{-\mu t})}\right)(j) \\ &= \sum_{k=0}^{j} f_{Poi(\alpha(1-e^{-\mu t})/\mu)}(k) f_{Bin(i,e^{-\mu t})}(j-k) \end{aligned}$$

where $i, j \in E = \mathbb{N}$, $\theta = (\alpha, \mu) \in \Theta \subseteq \mathbb{R}^2_+$.

ଚଦ୍ଦ

ML-estimation: Discretely sampled immigration-death

- Sample $\{N(t)\}_{t\geq 0}$ as $(N(0), N(T_1), \dots, N(T_n)) = (0, N_1, \dots, N_n).$
- The log-likelihood function of $\theta = (\alpha, \mu) \in \Theta \subseteq \mathbb{R}^2_+$:

$$l_n(\theta) = \sum_{k=1}^n \log p_{N_{k-1}N_k}(T_k - T_{k-1}; \theta).$$

Proposition (Transition probabilities)

The transition probabilities $p_{ij}(t; \theta) := \mathbb{P}(N(h+t) = j|N(h) = i)$:

$$p_{ij}(t;\theta) = (f_{Poi(\alpha(1-e^{-\mu t})/\mu)} * f_{Bin(i,e^{-\mu t})})(j)$$

$$= \sum_{k=0}^{j} f_{Poi(\alpha(1-e^{-\mu t})/\mu)}(k) f_{Bin(i,e^{-\mu t})}(j-k)$$

where $i,j\in {\sf E}=\mathbb{N}$, $heta=(lpha,\mu)\in {\sf \Theta}\subseteq \mathbb{R}^2_+.$

900

ML-estimation: Discretely sampled immigration-death

- Sample $\{N(t)\}_{t\geq 0}$ as $(N(0), N(T_1), \dots, N(T_n)) = (0, N_1, \dots, N_n).$
- The log-likelihood function of $\theta = (\alpha, \mu) \in \Theta \subseteq \mathbb{R}^2_+$:

$$l_n(\theta) = \sum_{k=1}^n \log p_{N_{k-1}N_k}(T_k - T_{k-1}; \theta).$$

Proposition (Transition probabilities)

The transition probabilities $p_{ij}(t; \theta) := \mathbb{P}(N(h+t) = j|N(h) = i)$:

$$p_{ij}(t;\theta) = (f_{P_{oi}(\alpha(1-e^{-\mu t})/\mu)} * f_{Bin(i,e^{-\mu t})})(j)$$

= $\sum_{k=0}^{j} f_{P_{oi}(\alpha(1-e^{-\mu t})/\mu)}(k) f_{Bin(i,e^{-\mu t})}(j-k)$

where $i, j \in E = \mathbb{N}$, $\theta = (\alpha, \mu) \in \Theta \subseteq \mathbb{R}^2_+$.

The ML-estimation

• The ML-estimator of $\theta = (\alpha, \mu) \in \Theta$:

$$(\hat{\alpha}_n, \hat{\mu}_n) = \hat{\theta}_n(N(T_1), \dots, N(T_n)) = \arg \max_{\theta \in \Theta} I_n(\theta).$$

- No closed form expression for (â_n, μ̂_n).
 Dimension reduction: â_n = â_n(μ) is a function of μ and the sample {N(T₁),..., N(T_n)}. Maximise l_n(â_n(μ), μ) w.r.t. μ.
- Assume now that $T_k T_{k-1} = t$, k = 1, ..., n, so that

$$I_n(\theta) = \sum_{i,j\in E} N_n(i,j) \log p_{ij}(t;\theta),$$

where $N_n(i,j) = \sum_{k=1}^n \mathbf{1} \{ (N_{k-1}, N_k) = (i,j) \}.$

The ML-estimation

• The ML-estimator of $\theta = (\alpha, \mu) \in \Theta$:

$$(\hat{\alpha}_n, \hat{\mu}_n) = \hat{\theta}_n(N(T_1), \dots, N(T_n)) = \arg \max_{\theta \in \Theta} I_n(\theta).$$

No closed form expression for (â_n, μ̂_n).
 Dimension reduction: â_n = â_n(μ) is a function of μ and the sample {N(T₁),..., N(T_n)}. Maximise l_n(â_n(μ), μ) w.r.t. μ.

• Assume now that $T_k - T_{k-1} = t$, k = 1, ..., n, so that

$$I_n(\theta) = \sum_{i,j\in E} N_n(i,j) \log p_{ij}(t;\theta),$$

where $N_n(i,j) = \sum_{k=1}^n \mathbf{1} \{ (N_{k-1}, N_k) = (i,j) \}.$

The ML-estimation

• The ML-estimator of $\theta = (\alpha, \mu) \in \Theta$:

$$(\hat{\alpha}_n, \hat{\mu}_n) = \hat{\theta}_n(N(T_1), \dots, N(T_n)) = \arg \max_{\theta \in \Theta} I_n(\theta).$$

- No closed form expression for (â_n, μ̂_n).
 Dimension reduction: â_n = â_n(μ) is a function of μ and the sample {N(T₁),..., N(T_n)}. Maximise I_n(â_n(μ), μ) w.r.t. μ.
- Assume now that $T_k T_{k-1} = t$, $k = 1, \ldots, n$, so that

$$I_n(\theta) = \sum_{i,j\in E} N_n(i,j) \log p_{ij}(t;\theta),$$

where $N_n(i,j) = \sum_{k=1}^n \mathbf{1} \{ (N_{k-1}, N_k) = (i,j) \}.$

Asymptotics

Denote by $\theta_0 = (\alpha_0, \mu_0) \in \Theta$ the true parameter pair.

Proposition (Strong consistency)

Let Θ be any compact subset of \mathbb{R}^2_+ . Then, as $n \to \infty$, the maximum likelihood estimator for the immigration-death process satisfies

 $(\hat{\alpha}_n, \hat{\mu}_n) \xrightarrow{a.s.} (\alpha_0, \mu_0).$

Proposition (Asymptotic normality)

Let Θ be any compact subset of \mathbb{R}^2_+ . Furthermore, assume that $(\log(\alpha_0 + \mu_0) - \log(\alpha_0))/\mu_0 \ge 2t$. Then, as $n \to \infty$,

$$\sqrt{n}\left(\left(\hat{\alpha}_n,\hat{\mu}_n\right)-\left(\alpha_0,\mu_0\right)\right)\stackrel{d}{\rightarrow} N\left(\mathbf{0},I(\theta_0)^{-1}\right),$$

where $I(\theta_0)^{-1}$ is the inverse of the Fisher information matrix.

Asymptotics

Denote by $\theta_0 = (\alpha_0, \mu_0) \in \Theta$ the true parameter pair.

Proposition (Strong consistency)

Let Θ be any compact subset of \mathbb{R}^2_+ . Then, as $n \to \infty$, the maximum likelihood estimator for the immigration-death process satisfies

 $(\hat{\alpha}_n, \hat{\mu}_n) \xrightarrow{a.s.} (\alpha_0, \mu_0).$

Proposition (Asymptotic normality)

Let Θ be any compact subset of \mathbb{R}^2_+ . Furthermore, assume that $(\log(\alpha_0 + \mu_0) - \log(\alpha_0))/\mu_0 \ge 2t$. Then, as $n \to \infty$,

$$\sqrt{n}\left(\left(\hat{\alpha}_n,\hat{\mu}_n\right)-\left(\alpha_0,\mu_0\right)\right)\stackrel{d}{\rightarrow} N\left(\mathbf{0},I(\theta_0)^{-1}\right),$$

where $I(\theta_0)^{-1}$ is the inverse of the Fisher information matrix.

Asymptotics

Denote by $\theta_0 = (\alpha_0, \mu_0) \in \Theta$ the true parameter pair.

Proposition (Strong consistency)

Let Θ be any compact subset of \mathbb{R}^2_+ . Then, as $n \to \infty$, the maximum likelihood estimator for the immigration-death process satisfies

$$(\hat{\alpha}_n, \hat{\mu}_n) \xrightarrow{a.s.} (\alpha_0, \mu_0).$$

Proposition (Asymptotic normality)

Let Θ be any compact subset of \mathbb{R}^2_+ . Furthermore, assume that $(\log(\alpha_0 + \mu_0) - \log(\alpha_0))/\mu_0 \ge 2t$. Then, as $n \to \infty$,

$$\sqrt{n}\left(\left(\hat{\alpha}_{n},\hat{\mu}_{n}\right)-\left(\alpha_{0},\mu_{0}\right)\right)\overset{d}{\rightarrow}N\left(\mathbf{0},I(\theta_{0})^{-1}\right),$$

where $I(\theta_0)^{-1}$ is the inverse of the Fisher information matrix.

伺 と く ヨ と く ヨ と

Numerical evaluation

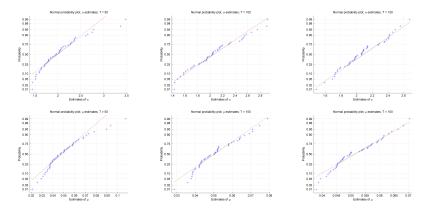
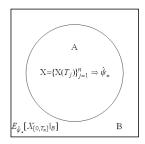


Figure: Normal probability plots of the estimates of $(\alpha_0, \mu_0) = (0.4, 0.01)$ based on 50 sample paths sampled at times $T_k = kt$, t = 1, k = 1, ..., T. Upper row: The estimates of α_0 at final times T = 50 (left), T = 100 (middle) and T = 150 (right). Lower row: The estimates of μ_0 at final times T = 50(left), T = 100 (middle) and T = 150 (right). Thank you for listening!

æ

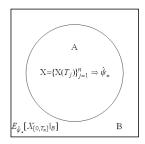
≪ ≣ ⊁

- Data, $\mathbb{X} = {\mathbb{X}(T_j)}_{j=1}^n$, is sampled in region A.
- No information about individuals in B = W \ A who interact with X - Edge effects! ⇒ Biased estimates!
- Existing edge corrections are not easily altered to the spatio-temporal case or remove data.
- Idea behind the new approach:
 - From $\{\mathbb{X}(T_j)\}_{j=1}^n$: non-edge corrected estimates $\hat{\psi}_*$.
 - $\begin{array}{c} \hline & \\ \hline & \\ \end{array} \text{ In region B: The "expected process",} \\ & \\ & \\ \mathbb{E}_{\hat{\psi}_*}\left[\mathbb{X}_{[0,\mathcal{T}_n]}|_B\right] \text{, under the regime of } \hat{\psi}_*. \end{array}$
 - Re-estimate ψ while letting E_{ψ̂*} [X_[0, T_n]|_B] interact with {X(T_j)}ⁿ_{j=1}.
 - New estimates $\hat{\psi}$ have been influenced by the "expected interaction" between \mathbb{X} and $\mathbb{E}_{\hat{\psi}_*} \left[\mathbb{X}_{[0, \mathcal{T}_n]} |_B \right].$



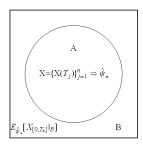
- Data, $\mathbb{X} = {\mathbb{X}(T_j)}_{j=1}^n$, is sampled in region A.
- No information about individuals in B = W \ A who interact with X - Edge effects! ⇒ Biased estimates!
- Existing edge corrections are not easily altered to the spatio-temporal case or remove data.
- Idea behind the new approach:
 - From $\{\mathbb{X}(T_j)\}_{j=1}^n$: non-edge corrected estimates $\hat{\psi}_*$.

 - Re-estimate ψ while letting E_{ψ̂*} [X_[0,Tn]|_B] interact with {X(T_j)}ⁿ_{j=1}.
 - New estimates $\hat{\psi}$ have been influenced by the "expected interaction" between \mathbb{X} and $\mathbb{E}_{\hat{\psi}_*} \left[\mathbb{X}_{[0, \mathcal{T}_n]} |_B \right].$



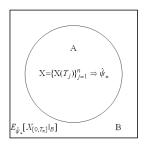
- Data, $\mathbb{X} = {\mathbb{X}(T_j)}_{j=1}^n$, is sampled in region A.
- No information about individuals in B = W \ A who interact with X - Edge effects! ⇒ Biased estimates!
- Existing edge corrections are not easily altered to the spatio-temporal case or remove data.
- Idea behind the new approach:
 - From $\{\mathbb{X}(T_j)\}_{j=1}^n$: non-edge corrected estimates $\hat{\psi}_*$.

 - Re-estimate ψ while letting E_{ψ̂*} [X_[0,Tn]|_B] interact with {X(T_j)}ⁿ_{j=1}.
 - New estimates $\hat{\psi}$ have been influenced by the "expected interaction" between \mathbb{X} and $\mathbb{E}_{\hat{\psi}_*} [\mathbb{X}_{[0, \tau_n]}|_B].$



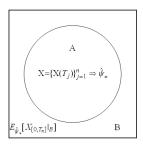
- Data, $\mathbb{X} = {\mathbb{X}(T_j)}_{j=1}^n$, is sampled in region A.
- No information about individuals in B = W \ A who interact with X - Edge effects! ⇒ Biased estimates!
- Existing edge corrections are not easily altered to the spatio-temporal case or remove data.
- Idea behind the new approach:
 - From $\{\mathbb{X}(T_j)\}_{j=1}^n$: non-edge corrected estimates $\hat{\psi}_*$.

 - ◎ Re-estimate ψ while letting $\mathbb{E}_{\hat{\psi}_*} \left[\mathbb{X}_{[0, T_n]} |_B \right]$ interact with $\{ \mathbb{X}(T_j) \}_{j=1}^n$.
 - New estimates $\hat{\psi}$ have been influenced by the "expected interaction" between \mathbb{X} and $\mathbb{E}_{\hat{\psi}_*} [\mathbb{X}_{[0,T_n]}|_B].$

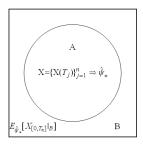


- Data, $\mathbb{X} = {\mathbb{X}(T_j)}_{j=1}^n$, is sampled in region A.
- No information about individuals in B = W \ A who interact with X - Edge effects! ⇒ Biased estimates!
- Existing edge corrections are not easily altered to the spatio-temporal case or remove data.
- Idea behind the new approach:
 - From $\{\mathbb{X}(T_j)\}_{j=1}^n$: non-edge corrected estimates $\hat{\psi}_*$.

 - Re-estimate ψ while letting E_{ψ̂*} [X_[0,Tn]|B] interact with {X(T_j)}ⁿ_{j=1}.
 - New estimates $\hat{\psi}$ have been influenced by the "expected interaction" between \mathbb{X} and $\mathbb{E}_{\hat{\psi}_*} [\mathbb{X}_{[0,T_n]}|_B].$

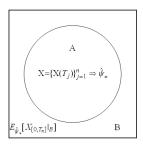


- Data, $\mathbb{X} = {\mathbb{X}(T_j)}_{j=1}^n$, is sampled in region A.
- No information about individuals in B = W \ A who interact with X - Edge effects! ⇒ Biased estimates!
- Existing edge corrections are not easily altered to the spatio-temporal case or remove data.
- Idea behind the new approach:
 - From $\{\mathbb{X}(T_j)\}_{j=1}^n$: non-edge corrected estimates $\hat{\psi}_*$.
 - **2** In region *B*: The "expected process", $\mathbb{E}_{\hat{\psi}_*} [\mathbb{X}_{[0, T_n]|B}]$, under the regime of $\hat{\psi}_*$.
 - ◎ Re-estimate ψ while letting $\mathbb{E}_{\hat{\psi}_*} \left[\mathbb{X}_{[0, T_n]} |_B \right]$ interact with $\{ \mathbb{X}(T_j) \}_{j=1}^n$.
 - New estimates $\hat{\psi}$ have been influenced by the "expected interaction" between \mathbb{X} and $\mathbb{E}_{\hat{\psi}_*} \left[\mathbb{X}_{[0, T_n]} | B \right]$.



- Data, $\mathbb{X} = {\mathbb{X}(T_j)}_{j=1}^n$, is sampled in region A.
- No information about individuals in B = W \ A who interact with X - Edge effects! ⇒ Biased estimates!
- Existing edge corrections are not easily altered to the spatio-temporal case or remove data.
- Idea behind the new approach:
 - From $\{\mathbb{X}(T_j)\}_{j=1}^n$: non-edge corrected estimates $\hat{\psi}_*$.

 - Solution Re-estimate ψ while letting $\mathbb{E}_{\hat{\psi}_*} \left[\mathbb{X}_{[0, T_n]} |_B \right]$ interact with $\{ \mathbb{X}(T_j) \}_{j=1}^n$.
 - New estimates $\hat{\psi}$ have been influenced by the "expected interaction" between \mathbb{X} and $\mathbb{E}_{\hat{\psi}_*} \left[\mathbb{X}_{[0, T_n]} | B \right].$



- Data, $\mathbb{X} = {\mathbb{X}(T_j)}_{j=1}^n$, is sampled in region A.
- No information about individuals in B = W \ A who interact with X - Edge effects! ⇒ Biased estimates!
- Existing edge corrections are not easily altered to the spatio-temporal case or remove data.
- Idea behind the new approach:
 - From $\{\mathbb{X}(T_j)\}_{j=1}^n$: non-edge corrected estimates $\hat{\psi}_*$.

 - Solution Re-estimate ψ while letting $\mathbb{E}_{\hat{\psi}_*} \left[\mathbb{X}_{[0, T_n]} | B \right]$ interact with $\{ \mathbb{X}(T_j) \}_{j=1}^n$.
 - New estimates $\hat{\psi}$ have been influenced by the "expected interaction" between \mathbb{X} and $\mathbb{E}_{\hat{\psi}_*} \left[\mathbb{X}_{[0, \mathcal{T}_n]} |_B \right].$

