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Introduction and summary: Density estimation for iid. observations

Given iid. observations where Yi ∼ h◦. We want to estimate the density
and try to fit members of the class Hθ = {hθ : θ ∈ Θ ⊂ Rp}, where h◦
might not be in Hθ, see Claeskens & Hjort (2008).

Under reasonable conditions the ML-estimate θ̂n converges at rate
root-n to the least false parameter value θ0, i.e.

θ̂n = arg max
θ
`n(hθ)→Ph◦ arg min

θ
KL(h◦, hθ) = θ0.

The Kullback-Leibler distance between the true and estimated model is
given by

KL(h◦, hθ̂n) =

Z
h◦(ω) log

h◦(ω)

hθ̂n(ω)
dω

=

Z
h◦(ω) log h◦(ω) dω −

Z
h◦(ω) log hθ̂n(ω) dω.

In addition one can prove that

n1/2(θ̂n − θ0)→d Np(0, J
−1KJ−1)

where J and K will be defined later. If the model is correctly specified
J = K.
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Introduction and summary: Density estimation for iid. observations

The Akaike’s Information Criterion (AIC) of a candidate model hθ is
defied by

AIC(hθ) = 2`n,max(hθ)− 2dim(θ) = 2`n(hθ̂n)− 2pθ.

The AIC formula is related to the K-L distance. In the sense that it
can be viewed as a scaled first order bias corrected versions of the
naive estimate of the model specific part, i.e. we wish to estimateZ

h◦(ω) log hθ̂n(ω) dω by n−1
nX
i=1

log hθ̂n(Yi).

By choosing the model with the highest AIC score we are choosing the
model with minimal estimated KL-distance.
There is a model robust version of AIC, known as AIC∗ or TIC, given
by

AIC∗(hθ) = 2`n,max(hθ)− 2 tr(Ĵ−1
n K̂n),

and again if J = K we get the usual AIC formula since tr(J−1K) =
tr(Ipθ ) = pθ.
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Introduction and summary: Time series models

There exists several types of model selection criteria for stationary
time series. They all aims at choosing the best model among a set of
candidate model.
Note that best does not have the same interpretation for the different
criteria.
Examples of such are AIC AICc, FPE, Cp, HQ, etc., see McQuarrie
and Tsai (1998).
Some of these, like the AIC, aims at estimating a distance between the
assumed true model and a given candidate model.
In the literature these criteria are often studied and justified under the
assumption that the true model is within the same family (such as AR)
as the candidate models.
The goal is to derive a version of AIC∗ within large class of models
without assuming that the true model necessarily is included among
the candidate models.
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Introduction and summary: Autoregressive models

As an example, consider a sample from a standard AR(p0) with
unknown order p0. The object is to choose the “optimal” order for the
estimated AR(p) model.
By assuming that the true model is also autoregressive, conditioning
on the first p observations and under the assumption that p > p0 a
corrected version of AIC is given by

AICc(p) = −m log σ̂2
p −m(m+ p)/(m− p− 2)

where σ̂p = (m−1P
j(yj − ŷj)

2)1/2 and m = n− p, see Clifford & Tsai
(1989) or Claeskens & Hjort (2008).
Another choice is to use AICu(p) where σ̂p is replaced by the unbiased
estimate ŝp, see McQuarrie & Tsai (1998).
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Derivation of AIC∗: Conditions

Consider a smooth regular parametric model with ML-estimate θ̂n that
converges at root-n rate to the least false parameter value θ0.

i) Suppose we have the process convergence

Hn(s) = `n(θ0 + sn−1/2)− `n(θ0)→d H(s) = stU − 2−1stJs,

where U ∼ Np(0,K).
For the classical model we have Hn(s) = sUn − 2−1stJns+ oP (1), where

Un = n−1/2`′n(θ0)→d Np(0,K) and Jn = −n−1`′′n(θ0)→P J.

ii) Under some extra conditions we have that
Zn = arg max(Hn) = n1/2(θ̂n − θ0)→d Z = arg max(H) = J−1U .

maxHn = Hn(Zn) = `n(θ̂n)−`n(θ0)→d maxH = H(Z) = 2−1UtJ−1U.
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Derivation of AIC∗

The goal is to estimate the model specific part of the KL-distance, A(θ̂n) =
Eh◦ log h(Y, θ̂n), since

An(θ) = n−1`n(θ)→Ph◦ A(θ) = Eh◦ log h(Y, θ)

we can start with An(θ̂n) as an estimate for A(θ̂n).

This estimator overshoots its target. By a Taylor expansion we obtain
in the classical case

A(θ̂n) =̇ A(θ0)− 2−1(θ̂n − θ0)tJ(θ̂n − θ0) = A(θ0)− 2−1n−1ZtnJZn

and secondly

An(θ̂n) = n−1{`n(θ̂)− `n(θ0)}+An(θ0) = n−1Hn(Zn) +An(θ0).

Then

An(θ̂n)−A(θ̂n) =̇ εn + n−1{Hn(Zn) + 2−1ZtnJZn} = εn + n−1Wn,

where εn = An(θ0)−A(θ0) has mean zero and

Wn = Hn(Zn) + 2−1ZtnJZn →d H(Z) + 2−1ZtJZ = U tJ−1U.

Now the AIC∗ is given by

AIC∗ = 2{`n(θ̂n)− p̂∗}
where p̂∗ is a consistent estimate of p∗ = EU tJ−1U = tr(J−1K).
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Model and model assumptions

We consider real, zero mean, stationary Gaussian time series models,
{Yt} with dependency structure defined by the spectral density g, then

Cov(Yt, Yt+h) = Cg(h) = 2

Z π

0

cos(ωh)g(ω) dω and

g(ω) =
Cg(0)

2π
+

1

π

∞X
h=1

cos(ωh)Cg(h),

see Priestley (1981) or Brockwell & Davis (1991).
The true series is assumed to be of short memory, especially thatX

h

|h|2|Cg(h)|2 <∞,
X
h

|h||Cg(h)| <∞

and 0 < g(ω) <∞, for 0 ≤ ω ≤ π. Note that the first two conditions
are related to the continuity and smoothness of the spectral densities.
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Derivation of AIC∗ for stationary time series

Our candidate models are given by the set of spectral densities Fθ,
where θ ∈ Θ ⊂ Rp and all fθ ∈ Fθ are assumed to satisfy:

i) there exist m,M ∈ R such that 0 < m ≤ fθ(ω) ≤M <∞
ii) and fθ(ω) is smooth and continuous in both ω and θ,

for 0 ≤ ω ≤ π and θ ∈ Θ.
Note that the true spectral density g is not necessary included in Fθ.
The joint Gaussian log-density:

`n(fθ) = −2−1[n log 2π + log |Σfθ |+ ytΣ−1
fθ
y]

The Whittle approximation:

`wn (fθ) = −n
2

»
1

2π

Z π

−π
log(2πfθ(ω)) dω +

1

2π

Z π

−π

In(ω)

fθ(ω)
dω + log(2π)

–
where In(ω) = (2πn)−1|

P
j Yj exp{−iωj}|2 is the periodogram.

The connections between ln and lwn are throughly studied under the
assumption that the model is correctly specified, see Dzhaparidze
(1986) and Davis (1973).
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Derivation of AIC∗ for stationary time series

In density estimation the KL-distance can be motivated as the limit of
the following scaled log-likelihood differences. i.e.

n−1[`n(h◦)− `n(hθ)]→Ph◦ KL(h◦, hθ), for given θ.

Inspired from this we construct the following discrepancy measure

dn(g, fθ) = n−1[`n(g)− `n(fθ)]

= n−1[`wn (g)− `wn (fθ)] + n−1{[`n(g)− `wn (g)]− [`n(fθ)− `wn (fθ)]}

→Pg

1

2π

Z π

0

»
− log(g(ω)/fθ(ω)) +

„
g(ω)

fθ(ω)
− 1

«–
dω

= d(g, fθ)

where d(g, fθ) ≥ 0 and d(g, fθ) = 0 if and only if g = fθ almost
everywhere. This limit is sometimes referred to as the asymptotic K-L
discrepancy information.
This idea was mentioned in Clifford & Tsai (1989) but only used under
the assumption that the true model was included in the set of
candidate models.
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Derivation of AIC∗ for stationary time series

There are essential two parallel stories, with two main points each. Let

θ̂wn = arg max
θ
`wn (fθ) and θ̂n = arg max

θ
`n(fθ)

then we would like to show for both θ̂wn and θ̂n:
i) consistency and asymptotic normality for the normalized estimator and
ii) construct a version of AIC∗.

Following the work of Taniguchi (1987), (2000) and especially
Dahlhaus and Wefelmeyer (1996) let D be a discrepancy or distance
function and define

θ0 = arg min
θ
D(θ, g) and θ(ĝn) = arg min

θ
D(θ, ĝn).

The main objective in these articles is to determine under what
circumstances n1/2(θ(ĝn)− θ0) has a Gaussian limit distribution.
Note that if ĝn = In (periodogram) and

D(θ, g) = (4π)−1

Z π

−π
{log(fθ) + g(ω)/fθ(ω)} dω.

Result i) above, for both θ̂wn and θ̂n, is proved in Dahlhaus and
Wefelmeyer (1996).
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Derivation of AIC∗ for stationary time series

It follows now that

θ̂wn = arg max
θ
`wn (fθ)→Pg θ0 = arg min

θ
d(g, fθ)

and
n1/2(θ̂wn − θ0)→d J

−1U =d Np(0, J
−1KJ−1)

where J and K are defined below and the same result is also true for
θ̂n.
We further have the process convergence

Hw
n (s) = `wn (fθ0+sn−1/2)− `wn (fθ0)→d H(s) = stU − 2−1stJs,

where U ∼ Np(0,K),

K =
1

2π

Z π

0

Ψ̇θ0(ω)Ψ̇θ0(ω)t[g(ω)/fθ0(ω)]2 dω

and

J =
1

2π

Z π

0

Ψ̇θ0(ω)Ψ̇θ0(ω)tg(ω)/fθ0(ω)

+ Ψ̈θ0(ω)(fθ0(ω)− g(ω))/fθ0(ω) dω,

and where Ψθ = log fθ, Ψ̇θ = ∂/∂θ log fθ and Ψ̈θ = ∂2/∂θ∂θt log fθ.
Note that J = K if the model is correctly specified.
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The J and K matrices with estimates

By extending and using results from Ibragimov (1963) and Brillinger
(1975) we obtain consistent estimates for K and J from

2π

n

bn/2cX
j=1

h(ωj)In(ωj)→Pg

Z π

0

h(ω)g(ω) dω and

2π

n

bn/2cX
j=1

kjh(ωj)In(ωj)
2 →Pg

Z π

0

h(ω)g(ω)2 dω

where ωj = 2πj/n and kj = 1/3 if ωj = 0 mod π else kj = 1/2, where
j = 0, . . . , n− 1.
It is also possible to construct estimates based on integrals of In, see
Taniguchi (1980).

Combining all of this we get a version of the AIC∗ formula, SIC (Spectral
Information Criterion) given by

SIC(fθ) = 2`n(fθ̂n)− 2 tr(Ĵ−1
n K̂n )

as an alternative one can also use lwn (fθ̂wn
).
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Examples 1: p̂∗ as a penalization

n = 24, ρ = (0.9,−0.8) and σ = 1.
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p∗ = (5.54, 3.98, 5.98, 7.62) and p̂∗ = (2.03, 2.37, 3.24, 3.64).
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Example 2: Estimate of p∗ in a Matérn inspired model
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Example 3: AR(p) models

Selected model order
Criterion k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

AICu 4 94 2 0 0 0 0
AICc 1 87 8 2 2 0 0
AIC 0 66 9 4 6 6 9
SIC 1 70 11 10 6 2 0

n = 24, ρ = (0.9,−0.8) and σ = 1.

Selected model order
Criterion k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

AICu 27 9 4 52 5 2 1
AICc 16 7 4 57 6 5 5
AIC 14 7 4 56 6 7 6
SIC 5 6 4 57 14 6 8

n = 84, ρ = (0.3,−0.2, 0.2,−0.3) and σ = 1.
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Concluding remarks and further work

Better estimate of K and J , especially in small samples.

A more complete simulation study.

Include a trend component.

A version of FIC, Claeskens & Hjort (2008).

Relax the model assumptions, for example non-Gaussian models.

18 / 18


	Outline
	Introduction and summary
	Derivation of AIC
	Derivation of AIC for stationary time series
	Examples and illustrations
	Concluding remarks and further work

