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SYNOPSIS
Slepian models are derived describing a stochastic process observed
at level crossings of a moving average driven by a Laplace noise.

The approach is through a Gibbs sampler of a Slepian model for the
Laplace noise and it allows for simultaneously studying a number of
stochastic characteristics observed at the level crossing instants.

It is observed that the behavior of the process at high level crossings
is fundamentally different from that in the Gaussian case.

The shape of extreme episodes resembles the (asymmetric) kernel
while for Gaussian model the shape is given by the correlation function
of which is symmetric in time.
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Rice’s formula

Biased sampling distribution

N(T ,A) – “number” of times the field X takes value u in [0,T ] and
at the same time a possibly another process Y has a property A
For ergodic stationary processes

lim
T→∞

N(T ,A)

N(T )
=

E
[
{Y ∈ A}|Ẋ (0)|

∣∣X (0) = u
]

E
[
|Ẋ (0)|

∣∣X (0) = u
] ,

RHS represents the biased sampling distribution when sampling is
made over the u-level contour Cu = {τ : X (τ ) = 0} (argument of
the process X can be multivariate)
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Rice’s formula

Rice formula for the crossing intensity

Rice formula – general case

µ+(u) = E
(

Ẋ +(0)|X (0) = u
)

fX(0)(u)

Gaussian case

µ+(u) =
1

2π

√
λ2

λ0
e−

u2
2λ0 ,

λ0, λ2 – spectral moments

Application – upper bound for maximum in the Gaussian case

P(MT > u) ≤ Φ(u/
√
λ0) + T · 1

2π

√
λ2

λ0
e−

u2
2λ0
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Rice’s formula

Non-Gaussian case – Laplace moving average

By means of stochastic integrals we define

X (τ ) =

∫
Rd

f (τ − s)dΛ(s).

Λ(A) has the generalized asymmetric Laplace distribution

φ(t) =
1(

1− iµt + σ2

2 t2
)λ(A)

,

where λ is the Lebesgue measure in Rd .
If d = 1, then Λ(−∞, x ] = B(Γ(x)), where B is a Brownian motion
with drift and Γ is a gamma process.
Conditionally on Γ the process Xt can be viewed as a
non-stationary Gaussian process.
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Rice’s formula

Non-Gaussian case – why it is interesting

For a covariance R a matching symmetric kernel is given by
fsym = F−1

√
FR,

Symmetric kernels can not produce front-back asymmetries even
if the moving average process is not Gaussian
Ornstein-Uhlenbeck autocorrelation e−|x | can be obtained both by
symmetric and asymmetric kernels
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Rice’s formula

Slope distributions at level crossings

derivative at down/upcrossing
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Rice’s formula

Biased sampling in non-Gaussian case – why it is difficult

Biased sampling distribution

Pu(A) =
E
[
{Y ∈ A}|Ẋ (0)|

∣∣X (0) = u
]

E
[
|Ẋ (0)|

∣∣X (0) = u
] ,

requires joint distribution of Y (·) and (Ẋ (0),X (0)).
This can be difficult if (Y ,X ) are not jointly Gaussian
When X is non-Gaussian even the denominator can be a problem
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Rice’s formula

Illustration of difficulties – crossing intensity

The joint distribution of X (0) and Ẋ (0)

φX ,Ẋ (ξ1, ξ2) = exp
(
−
∫ ∞

0
ln
(

1 +
1
2

(ξ2
1 + ξ2

2λ
2)

)
dF (λ)

)
.

the process and its derivative are uncorrelated but not independent as
it is in a Gaussian case

by inverse Fourier transform

fX ,Ẋ (u, z) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

e−i(ξ1u+ξ2z)φX ,Ẋ (ξ1, ξ2) dξ1 dξ2.

the crossing intensity can be computed by evaluating the integral

µ+(u) =
1

4π2

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

ze−i(ξ1u+ξ2z)φX ,Ẋ (ξ1, ξ2) dξ1 dξ2 dz.
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Slepian model

Representing biased sampling distributions

X – a stationary process having a.s. absolutely continuous sample and fX ,Ẋ of
X (0), Ẋ (0) exists.
upcrossing set within interval [0, 1] is defined as

C(u) = {s ∈ [0, 1] : X (s) = u, Ẋ (s) > u}.

N(u) – the number of elements in C(u).
A – a property of trajectories of another stationary stochastic process Y
N(A|u) – the number of s ∈ C(u) such that Y (s + ·) ∈ A.

Crossing level distributions of Y :

Pu(A) =
E [N(A|u)]
E [N(u)]

.

Slepian model for Pu– any stochastic process Yu with distribution given
by the upcrossing distribution

P(Yu ∈ A) = Pu(A).
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Slepian model

Slepian model in the Gaussian case

Z – a stationary Gaussian process Z
the Slepian model process Zu around u-upcrossing of Z is given
by

Zu(t) = u r(t)− R ṙ(t) + ∆(t),

r be the covariance function of Z ,
R is a standard Rayleigh variable
a non-stationary Gaussian process ∆ having covariance

r(t , s) = r(t − s)− r(t)r(s)− r ′(t)r ′(s).

R and ∆ are independent
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Slepian model

Random scaling – a simple non-Gaussian case

for non-random scaling X(t) =
√

k Z (t), t ∈ R, the Slepian model is

Xu(t) = u r(t)−
√

kRr ′(t) +
√

k∆(t)

random scaling K , (assume a gamma distribution), then X(t) =
√

K Z (t),
Slepian model for X :

Xu(t) = u r(t)−
√

K R ṙ(t) +
√

K ∆(t)

this is not the case!!!
X(t) conditionally on (K = k , Ẋ = z,X = u) is represented by u r(t)− z ṙ(t) +

√
k∆(t)

(k , z) has to be replaced by the Slepian model (Ku , Ẋu).
Ku is ‘biased’ to account for the fact that the behavior observed at u up-crossings for
specific u makes certain scalings more likely than other – ‘sampling bias’.
a correct Slepian model for Xu is given by

Xu(t) = u r(t)−
√

KuR ṙ(t) +
√

Ku∆(t),

fKu (k) =
βp/2

21−p/2upKp(
√

2βu)
· kp−1 exp

(
−

2βk + u2/k
2

)
,
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Slepian model through Slepian noise

Moving average process

A moving average process is a convolution of a kernel function with a
infinitesimal “white noise” process having variance equal to the discretization
step.
Gaussian moving average (GMA):

X (t) =
∫ ∞
−∞

g(s − t) dB(s)

Slepian model dBu(x) for the noise dB(x) at the crossing levels u of X

Bu(t) = Fu,g(t) + Gg(t) + B(t),

where the non-random compenent is

Fu,g(t) = u
∫ t

0
g,

the kernel only dependent random component

Gg(t) =
(

R −
∫

ġ dB
)
·
∫ t

0
ġ −

∫
g dB ·

∫ t

0
g,

and purely random noise represented by Brownian motion B(t).
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Slepian model through Slepian noise

Simulated Slepian noise
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Top: Brownian motion
(left), Deterministic part
Fu : u = 0.5, 1, 3, 5
(right),
Bottom: Bu for: u = 0.5
(left), u = 5 (right).
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Slepian model through Slepian noise

Non-Gaussian process at crossing of Gaussian one

Y1(t), t ∈ R– filtered original process X (t):

Y1(t) =

∫
h(s − t) dX (s) =

∫
h ∗ g(s − t) dB(s).

Laplace motion – subordination of the Brownian motion by the gamma
motion K , (K (1) has the gamma distribution with shape τ and scale 1/τ )
Laplace moving average

Y2(t) =

∫
f (s − t) dB ◦ K (s).

Jointly Y (t) = (Y1(t),Y2(t)) and X (t) are not Gaussian
Biased sampling distributions can be evaluated numerically,
although it can be a computational chalenge

How to get a Slepian model in this case with some
manageable structiure?
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Slepian model through Slepian noise

From Slepian noise to Slepian model

By using the Slepian noise Bu(t) one can provide with any Slepian
model for processes functionally dependent on this noise
Bivariate Slepian model

Y1u(t) =

∫
h(s − t) dX (s) =

∫
h ∗ g(s − t) dBu(s),

Y2u(t) =

∫
f (s − t) dBu ◦ K (s).

The main benefit is that all computational difficulties are in evaluating Bu,
and thus avoiding computation of the joint distribution of the processes
with complex structure.
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Slepian model through Slepian noise

Samples from joint Slepian model
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Left: Samples from GMA X = Y1 – (top) and LMA Y2 – (bottom).
Six samples of BM and for Y2 a single sample of gamma process
Middle: Joint Slepian model (Y1u ,Y2u) at the crossings of X at u = 0.5.
Right: Analogous samples at u = 5.
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Slepian model at crossings of non-Gaussian process

Moving averages driven by non-Gaussian noise

More challenging problem of finding of a Slepian model at crossings of
non-Gaussian process – a moving average driven by a non-Gaussian
noise dL(s) – Laplace motion, i.e.

X (t) =

∫
f (s − t) dL(s) =

∫
f (s − t) dB ◦ K (s),

where K (t) is a gamma process.

Gamma process as a subordinator is by convenience – other classes of
Lévy processes are possible.

Laplace motion is a pure jump process and generally there is no explicit
expression for the joint distribution of the process and its derivative.

Strategy:
find the Slepian model for the Laplace noise B ◦ K ,
obtaining the Slepian models by replacing the noise
in the original moving averages by the Slepian noise.
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Slepian model at crossings of non-Gaussian process

Details of the approach — Slepian for (Yu,Ku,Xu)

Given (Ku, Ẋu) = (k , ẋ), the process Yu(t) has the conditional distribution
of Y (t) given K = k , Ẋ = ẋ , and X = u, i.e. Y (t |k , ẋ ,u). This has
gaussian distribution..

Instead of (Ku, Ẋu) it happens easier to consider (Lu,Ku, Ẋu) by using the
Gibbs sampler with the conditionals

Ku|Lu, Ẋu and Lu, Ẋu|Ku

The first distribution is sampled from the generalized inverse Gaussian,
the second is obtained by two conditionals: Lu|Ẋu,Ku which is Gaussian,
and Ẋu|Ku which is can be expressed by the distribution which we called
the tilted Rayleigh and for which an effective simulation algorithm has
been developed

x · e(x−a)2/b
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Slepian model at crossings of non-Gaussian process

Example
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Left: Samples from BM (top)
and LM (bottom)
Right: Slepian model Lu at
the crossings of X at u = 0.5
(top) and u = 5 (bottom).
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Slepian model at crossings of non-Gaussian process

Gaussian vs. Laplace Slepian model
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Left: Slepian noise BM (top)
and LM (bottom), u = 5
Right: Slepian model Xu at
its own crossings at u = 0.5
(top) and u = 5 (bottom).
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Application – Modeling Stochastic Vehicle Responses

Quarter Vehicle and Road Variability

Quarter vehicle model: R
road profile, X mass mt
response, Y mass ms
response

Modeling of true loads is difficult since tires filter nonlinearly the road
profile, with very uncertain factors, e.g. tire’s pressure, wear etc.

Response X (x) is difficult to model and one sometimes considers X (x)
as an external input.

It is of interest to study and model both the response and the road
profile at locations when X reaches some extreme level i.e.
Slepian models for Xu and Ru and Yu, when X upcrosses u.

Krzysztof Podgórski, Lund University Slepian models for moving averages 27 / 31



Application – Modeling Stochastic Vehicle Responses

Two moving averages – the Gaussian and Laplace ones.
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The Laplace in the top three
graphs of each column and
the Gaussian case in the
bottom three graphs of each
column. Left: Road profile
R(x) (middle) and
responses X(x) (top), Y (x)
(bottom). Right: Slepian
models Xu(x), Ru(x) and
Yu(x) around the u = 7
upcrossing of X(x) in the
Laplace case (top three
graphs) and around the
u = 4.5 upcrossing of X(x)
for the Gaussian case
(bottom three graphs).
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Conclusions

Conclusions

The level crossings distributions are important in studying extremal behavior of
stochastic processes
Generalized Rice’s formula is utilized to obtain effectively level crossing
distributions
They are also important for studying asymmetries in the records, which requires
non-Gaussian models
Slepian model is a convenient way of representing level crossing distributions
Slepian model is quite straightforward in the Gaussian case
Non-Gaussian models requires special care
An approach through Slepian model for noise process is investigated
It allows for simultaneous study different models arising from such a noise.
A method of simulating from Slepian model in the case of Laplace noise is
obtained exploring the dependence of the noise on the subordinating Gamma
noise
Crossing level behavior for non-Gaussian models is fundamentally different from
the Gaussian counterpart
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Conclusions

Thank you!
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