

Inspection of railway infrastructure by image analysis

> Anders Ekberg CHARMEC / Chalmers anders.ekberg@me.chalmers.se

Overall scope

- Railway operations need to ensure
 - safety
 - reliability
- Railway infrastructure
 - is costly
 - is intended to last for a long time
 - must be maintained to provide functionality

- Manual track inspections
 - cause operational disturbances
 - are costly
 - may only be carried out say every second month
- Video based inspections
 - a possible aid?

Inspection of railway infrastructure

- Track
 - surroundings (road crossings, vegetation, fences, etc)
 - rail
 - fastenings
 - sleepers
 - switches & crossings
 - ballast

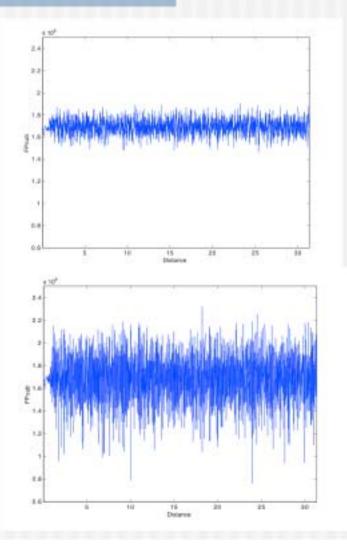
...

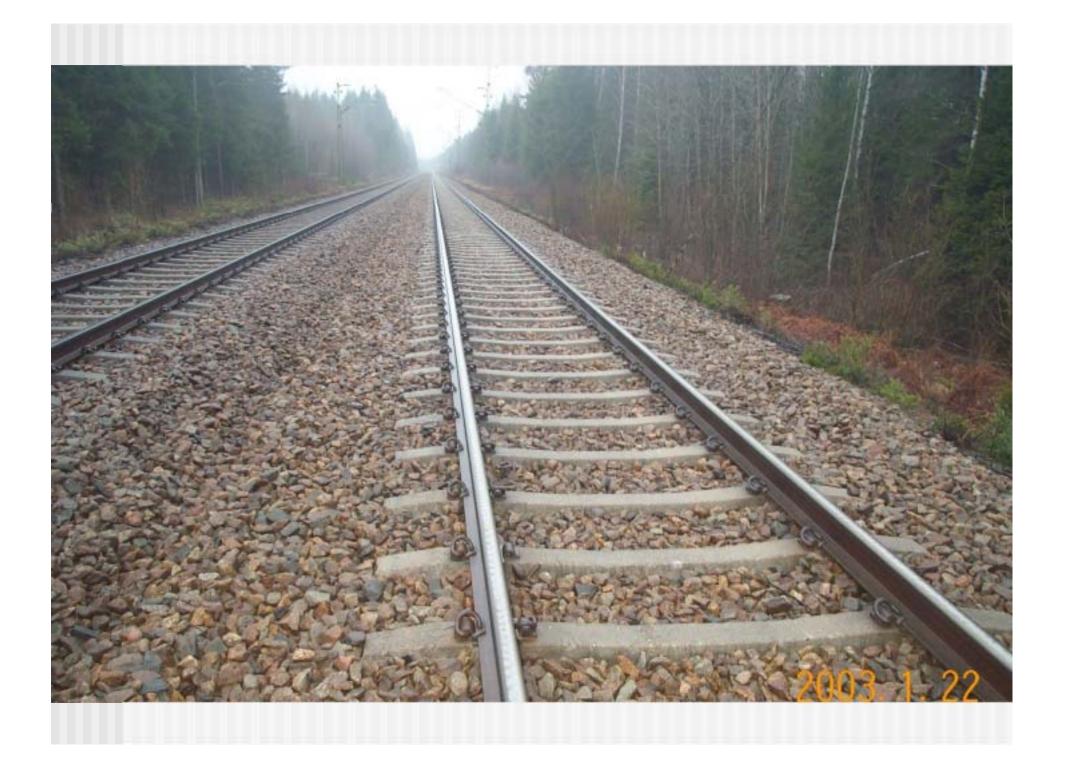
 groundwork (culverts, drainage, bridges, tunnels, etc)

- Electricity
 - catenary (position, vibrations)
 - poles
 - S&C heating
 - ...
 - Signalling
 - signalling lamps
 - signalling system
 - short-circuits
 - ...

Examples – surroundings

- free sight at crossings
 - planned cutting
- foreign objects in the track
 - sabotage
- trees close to catenary
 - risk of powercut
- vegetation in the track
 - need for spraying
- damaged animal fences
 - safety & economy


Examples – catenary


- contact between catenary and collector is varying sideways
- too little deviation gives high wear
- too much deviation may give a "hook up"

Examples - corrugation

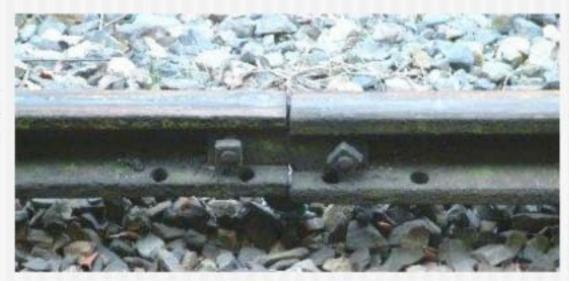
- Corrugation leads to a wavy rail surface
 - this causes high vertical loads (and noise)
 - difficult to detect by normal force measurements due to high frequency
- Can image analysis (perhaps in combination with force measurements) be used to identify corrugation?

Examples – ballast geometry

- Ballast provides support for the sleeper
 - a shoulder outside the sleeper to provide resistance against sun-kinks

Examples - rail geometry

- Examples of causes
 - surface cracking of rails
 - wear of the rail
 - developing sun-kinks
 - misaligned tracks
- these are safety-related


Example – rail joints

- On jointed tracks, the joints need to be maintained
 - too large a gap

 high contact
 forces and risk
 for cracks
 - too close a gap

 risk for lateral
 buckling of the
 track

Can the size (and shape) of the gap be estimated by image analysis?

Example – fastenings

- Fastenings attach the rail to the sleepers
 - missing fastenings may cause sun-kinks
 - may cause damage to the sleeper
 - loose sleepers may cause crushing of ballast (whitening)

Image analysis – some challenges

- Inspection conditions
 - weather conditions (sun, rain, mist)
 - reflection of sunlight
 - dirt and miscolouring of rail, ballast, etc
 - varying speed

...

window reflections

- Identification
 - position identification (km-poles & GPS)
 - classification (thresholds, degrees, uncertainties, etc)
 - quantification (to provide a database)

Practical considerations

- Equipment
 - video-cameras
 - storage
 - processing
 - transmission
- Handling
 - must be "invisible" for train operator
- Interfaces
 - must co-operate with current software and databases

- A working image analysis would:
 - aid the track inspectors
 - improve standardization of inspections and classifications (e.g. degree of vegetation)
 - provide additional data to the track database