Image analysis of defects of railway wheels: a challenge for mathematicians

Elena Kabo
CHARMEC / Caran
elena.kabo@me.chalmers.se
Overall scope

- Railway operations need to ensure:
 - safety
 - reliability
- Railway wheels are safety critical components:
 - regularly monitored
 - re-profiled as needed
- Reprofiling:
 - is costly
 - causes operational disturbances
 - ensures safe operations

∴ Need to classify wheels to ensure optimal reprofiling intervals
Contents

- Wheel damages – appearances and mechanisms
- Wheel reprofiling – short introduction
- Image analysis – an overview of some challenges
- Examples of workshop images
Wheel damage – surface fatigue
Wheel damage – subsurface fatigue
Wheel damage – thermal damage

- Heating (due to tread braking) followed by rapid cooling causes tensile surface stresses
- Result
 - vertical cracks in typical “dry clay” pattern
 - martensite (white etching layer)
Wheel damage – wheel flats

○ Formed by a locked wheel sliding on a rail
○ Part of the wheel becomes flattened
○ Thermal damage (and martensite) may form at the flat
○ Causes high impact loads that may result in cracking, noise and discomfort
Wheel damage – indentations

- Gravel (or other objects) are trapped between the wheel and the rail
- Typically results in smooth pits that are benign (no further crack growth)
Wheel damage – wear

- Wear occurs from sliding between the wheel and rail, typically in the flange root area.
- Benign (slow process). Too high wear is monitored by geometry measurements.
Wheel reprofiling

- Owing to surface cracks and/or unacceptable geometry, wheels are reprofiled.
- Decision based on:
 - ultrasonic testing (subsurface cracks)
 - measurements (e.g. flange thickness)
 - visual inspection (surface cracks)

- Typically 250 000 km between reprofiling, \(\approx 6 \) times around the earth (depends on operational conditions). Typically three reprofiling before scrapping of the wheel.

Principle between optimum wheel reprofiling intervals
Image analysis – some challenges

- Damage identification
 - seldom a single damage, but a mix with different origins and formed at different times (overlapping may occur)
 - often similar appearance (e.g. indentation and surface fatigue)
 - a single damage is sometimes owing to a mix of different mechanisms (e.g. a surface crack may be formed due to sliding which causes thermal damage and surface fatigue)
Image analysis – some challenges

- **Inspection conditions**
 - light conditions may vary between workplaces
 - reflection of light may occur
 - the surface of the wheels may be dirty and/or corroded
 - the whole circumference of the wheel needs to be inspected – need for position identification
 - the process must be (reasonable) fast owing to operational constraints
Image analysis – outcome

- A “perfect” image analysis should be able to identify:
 - causes of damage (or at least benign vs detrimental)
 - degree of deterioration (e.g. how much of the total circumference is affected and to what degree)

- A working image analysis would:
 - aid the workshop staff
 - improve the standardization of inspections and classifications
 - provide a statistical database of wheel damages
Wheel flat / surface plastification

flange

severe plastic deformation

rust
Surface fatigue and indentations

- Indentations
- Wear
- Surface fatigue
- Miscolouring
- Indentations
Thermal damage