Image analysis of defects of railway wheels: a challenge for mathematicians

Elena Kabo CHARMEC / Caran elena.kabo@me.chalmers.se

Overall scope

- Railway operations need to ensure
 - safety
 - reliability
- Railway wheels are safety critical components
 - regularly monitored
 - re-profiled as needed

Reprofiling

- is costly
- causes operational disturbances
- ensures safe operations
- Need to classify wheels to ensure optimal reprofiling intervals

Contents

- Wheel damages appearances and mechanisms
- Wheel reprofiling short introduction
- Image analysis an overview of some challenges
- Examples of workshop images

Wheel damage – surface fatigue

Wheel damage – subsurface fatigue

Wheel damage – thermal damage

- Heating (due to tread braking) followed by rapid cooling causes tensile surface stresses
- o Result
 - vertical cracks in typical "dry clay" pattern
 - martensite (white etching layer)

Wheel damage – wheel flats

- Formed by a locked wheel sliding on a rail
- Part of the wheel becomes flattened
- Thermal damage (and martensite) may form at the flat
- Causes high impact loads that may result in cracking, noise and discomfort

Wheel damage – indentations

- Gravel (or other objects) are trapped between the wheel and the rail
- Typically results in smooth pits that are benign (no further crack growth)

Wheel damage – wear

- Wear occurs from sliding between the wheel and rail, typically in the flange root area
- Benign (slow process). Too high wear is monitored by geometry measurements

Wheel reprofiling

- Owing to surface cracks and/or unacceptable geometry, wheels are reprofiled.
- Decision based on:
 - ultrasonic testing (subsurface cracks)
 - measurements (e.g. flange thickness)
 - visual inspection (surface cracks)

 Typically 250 000 km between reprofilings
 ≈ 6 times around the earth (depends on operational conditions). Typically three reprofilings before scrapping of the wheel

Image analysis – some challenges

Damage identification

- seldom

 a single damage,
 but a mix with
 different origins
 and formed at
 different times
 (overlapping
 may occur)
- often similar appearance (e.g. indentation and surface fatigue)

a single damage is sometimes owing to a mix of different mechanisms (e.g. a surface crack may be formed due to sliding which causes thermal damage and surface fatigue)

Image analysis – some challenges

Inspection conditions

- light conditions may vary between workplaces
- reflection of light may occur
- the surface of the wheels may be dirty and/or corroded

- the whole circumference of the wheel needs to be inspected
 - need for position
 identification
- the process must be (reasonable) fast owing to operational constraints

Image analysis – outcome

- A "perfect" image analysis should be able to identify:
 - causes of damage (or at least benign vs detrimental)
 - degree of deterioration (e.g. how much of the total circumference is affected and to what degree)

- A working image analysis would:
 - aid the workshop staff
 - improve the standardization of inspections and classifications
 - provide a statistical database of wheel damages

Wheel flat / surface plastification

Surface fatigue and indentations

Thermal damage

