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”classical” extreme value theory, one dimension 

Block maxima model 

Observe yearly maximum water levels, fit generalized extreme 
value distribution 

𝐺 𝑥 = exp{−(1 + 𝛾
𝑥 − 𝜇

𝜎
)−1/𝛾} 

possibly with timedependent parameters 

Peaks over thresholds model 

Observe excesses over high level, fit generalized Pareto 
distribution 

𝐺 𝑥 = 1−(1 + 𝛾
𝑥

𝜎
)−1/𝛾 

possibly with timedependent parameters 



Modelling strategy (as in one distribution): estimate conditional 
distribution of excess 𝑿 − 𝒖,  and the probability of an 
exceedance, and then for  any event  𝐴 ∈ {𝒙;   𝒙 ≤ 𝒖} use 

𝑃 𝐴 = 𝑃 𝐴  𝑿 ≤ 𝒖)P(𝑿 ≤ 𝒖) 

to estimate the probability of  𝐴 

Additionally a Poisson number of  
occurences of  A: ”tells how  
often 𝐴  occurs” 
 

𝑿 = (𝑋1, …𝑋𝑑) water level at locations  1,… , 𝑑 
𝒙 = 𝑥1…𝑥𝑑  and 𝒖 = 𝑢1…𝑢𝑑  𝑑-dimensional variables 

threshold exceedance if  𝑿 ≤ 𝒖, with 𝒖 ”large” 

𝑥2 

𝑥1 

𝑢2 

𝑢1 

𝐴 

       𝑃 𝐴 =? 



𝐺 𝒙 = 𝐺(𝑥1, … , 𝑥𝑑)                multivariate generalized extreme 
                                                      value (MGEV) distribution function 

”model for yearly maxima at several locations” 

 
 

𝐻 𝒙 =
1

− log 𝐺(𝟎)
log 

𝐺(𝒙)

𝐺(𝒙    𝟎)
     multivariate generalized Pareto  

                                                        (MGP) distribution function 
                                                        (assumes 0<𝐺 𝟎 <1) 
”model for exceedances at several locations” 

^
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𝐺 𝟎 = 𝑒−1, 
 𝑑 = 2 

  

 𝐻 𝒙 = 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Exceedance in 𝑥2, 
not in 𝑥1 

 
 
 
 
 
 
 
 
 

Exceedance in both 
 𝑥1 and 𝑥2 

 
 
 
 
 
 
 
 
 

Exceedance in 𝑥1, 
not in 2 

Tajvidi (1996), Segers (2004), Rootzén &Tajvidi (2006) 



    Lower dimensional margins, scale change:  

• E.g., if  𝐻 𝑥1, 𝑥2, 𝑥3   is a 3-dim MGP, then 𝐻 𝑥1, 𝑥2, ∞   is  
     not a 2-dim  MGPD:   

• However, if  𝐻 𝑥1, 𝑥2, 𝑥2   is  MGP, then   
     𝐻 𝑥1, 𝑥2, ∞ /𝐻 0,0,∞  is  MGP, since this is the conditional 
     distribution  of  𝑋1, 𝑋2  given that at least one of them 
     exceeds its  level 
• In particular, the conditional distribution of   𝑋1  given that  
 𝑋1> 0 is GP.  

    Instead 𝐻 𝑥1, 𝑥2, ∞  is distribution  of  𝑋1, 𝑋2  given 
    that at least one of  𝑋1, 𝑋2, 𝑋3  exceeds its  level.  This is not 
    the same  as the as   distribution  of  𝑋1, 𝑋2  given that at least 
    one of 𝑋1, 𝑋2 exceeds its  level – which is a 2-dim  MGP 

• The class of MGP distributions is closed under scale changes 



Background  (assuming  0 < 𝐺 𝟎 < 1 and G( 0,∞ 𝑑) > 0):  

• a MGEV  𝐺(𝒙)  is determined by its values for  𝒙 > 0 
• 𝐺(𝒙)  is a MGEV iff  𝐺(𝒙)𝑡 is a MGEV for any  t> 0, and then 

there are constants  𝝈𝑡 > 0, 𝝁𝑡 with 𝐺(𝝈𝑡𝒙 + 𝝁𝑡)
𝑡 = 𝐺(𝒙)  

Say that a MGEV  𝐺  and a MGP 𝐻  are associated (𝐺 ↔ 𝐻) if 

𝐻 𝒙 =
1

− log 𝐺(𝟎)
log 

𝐺(𝒙)

𝐺(𝒙    𝟎)
. Then ^

 
• 𝐺 ↔ 𝐻 iff 𝐺𝑡 ↔ 𝐻 for some  t > 0 iff 𝐺𝑡 ↔ 𝐻 for all  t > 0 

(pf:  Insert 𝐺(𝒙)𝑡 in the formula for  𝐻)  

• 𝐻 determines the curve 𝐺𝑡 ,  t > 0 in the space of distribution 
functions (pf:  Assume − log𝐺 𝟎 = 𝑡. Then, for 𝒙 > 0, 

𝐻 𝒙 =
1

𝑡
log 𝐺 𝒙 + 𝑡  so that  𝐺 𝒙 = 𝑒−𝑡(1−𝐻 𝒙 ) 

     = 𝑒
−𝑡𝐻 (𝒙)

 ,  for  𝒙 > 0) 



• If  𝐹 ∈ 𝐷 𝐺   then there exists a 𝒖 and a function 𝝈 𝐮 > 0 
such that  

                𝑃
𝑿−𝒖

𝝈 𝑢
≤ 𝒙  𝑿 ≤ 𝒖) → 𝐻(𝒙),    with 𝐺 ↔ 𝐻 

Asymptotics: 𝑿 has distribution function  𝐹,  𝒖 = 𝒖 𝑡 ; 𝑡 ≥ 1 
is an increasing continuous curve, 𝐹(𝒖 𝑡 ) → 1  as 𝑡 → ∞. Then  

• If there exists a 𝒖, a function 𝝈 𝐮 > 0, and  a distribution 
function 𝐻 with non-degenerate margins, such that 

𝑃
𝑿−𝒖

𝝈 𝑢
≤ 𝒙  𝑿 ≤ 𝒖) → 𝐻(𝒙),      

     then 𝐻 is a MGP distribution and   𝐹 ∈ 𝐷 𝐺 ,  with  𝐺 ↔ 𝐻 



• If 𝑿  has a MGP distribution then there exists a 𝒖 and a 
function 𝝈 𝐮 > 0 such that  

     𝑃
𝑿−𝒖

𝝈 𝑢
≤ 𝒙  𝑿 ≤ 𝒖) = 𝑃(𝑿 ≤ 𝒙),   for   𝑡 ∈ 1,∞  

Stability: 𝒖 = 𝒖 𝑡 ; 𝑡 ≥ 1 is an increasing continuous curve  
𝑃(𝑿 ≤ 𝒖 𝑡) → 1 as  𝑡 → ∞. Then 

• If there exists a 𝒖, and a function 𝝈 𝐮 > 0, such that 

𝑃
𝑿−𝒖

𝝈 𝑢
≤ 𝒙  𝑿 ≤ 𝒖) = 𝑃(𝑿 ≤ 𝒙),        𝑡 ∈ 1,∞ ,  

     and  𝑿  has non-degenerate margins, then 𝑿  has a MGP 
     distribution 



• conditioning on exceeding a  𝒖  outside the curve gives a 
different MGPD  

• conditioning on a 𝒖 on the  curve but using a different  𝝈  
gives a MGPD which is a scale transformation of the original 
one 

x 

x 

x 

x 

x 

x 

x 

”if  𝑿 has a MGP distribution, then 
there is a curve 𝒖 = 𝒖 𝑡   with 

𝑃
𝑿−𝒖

𝝈 𝑢
≤ 𝒙  𝑿 ≤ 𝒖) = 𝑃(𝑿 ≤ 𝒙)"  



Likelihood inference based on MGP model: 

•  {𝐺 𝒙; 𝜽 }  family of MGEV-s with 𝐺 𝟎; 𝜽 = 𝑒−1, 

      𝐻 ↔ 𝐺,   𝜽  includes location and scale parameters  

• 𝑿1, … , 𝑿𝒏  i.i.d. , distribution  𝐹 ∈ 𝐷 𝐺 ,  observed  𝑁  
threshold excesses  𝒚1 = 𝒙𝑡1 − 𝒖,… 𝒚𝒏 = 𝒙𝑡𝑁 − 𝒖 

• (approximate)  likelihood 

 
𝑑

𝑑𝒚

𝑁

𝑖=1

𝐻 𝒚𝑖; 𝜽 = 
𝑑

𝑑𝒚

𝑁

𝑖=1

(log 𝐺 𝒚𝑖; 𝜽 − 𝐺 𝒚   𝟎 ; 𝜃)

= 
𝑑

𝑑𝒚

𝑁

𝑖=1

log 𝐺 𝒚𝑖; 𝜽                                                 

• Poisson distribution of number of threshold exceedances,  
probability of  exceedance estimated by  N/n 

^



Practicalities: 

Perhaps one doesn’t have observations of  the 𝑿𝑖  on all of  
{𝒙; 𝒙 ≤ 𝒖}, or perhaps one doesn’t trust model on all of 
{𝒙; 𝒙 ≤ 𝒖}, and only want to use distributional form  of  𝐻 𝒙; 𝜽  
on part of {𝒙; 𝒙 ≤ 𝒖}. Then, instead of the likelihood  

 
𝑑

𝑑𝒚
𝑁
𝑖=1 log 𝐺 𝒚; 𝜽   one get’s a censored likelihood 

𝑥2 

𝑥1 

𝑢2 

𝑢1 

𝐴 

     𝑃 𝐴 =? 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

censor observations 
in pink areas? 



•  asymptotics holds iff there exists a 𝒖n and 𝝈𝑛 > 0 such that  

             𝜖
(
𝑖

𝑛
,
𝑿𝑖−𝒖𝑛
𝜎𝑛

)

𝑛
𝑖=1  PRM(𝑑𝑡 × 𝑑(− log 𝐺)) 

     on {𝒙;  𝐺 𝒙 ∈ 0,1 } 

Point process convergence: 𝑿1, 𝑿2, …  i.i.d. with distribution  
𝐹, 𝒖 = 𝒖𝑛 is  increasing , with 𝑃(𝑿 ≤ 𝒖𝑛) → 1 as  n → ∞. Then, 
with 𝜖(t,𝐱) denoting a point mass at (𝑡, 𝒙), 

 



Now, likelihood inference in point process model: 

•  {𝐺 𝒙; 𝜽 }  family of MGEV distributions, 𝜽  includes location 
and scale parameters  

• 𝑿1, … , 𝑿𝑛  i.i.d. , distribution  𝐹 ∈ 𝐷 𝐺 ,  observed  𝑁  
threshold excesses  𝒚1 = 𝒙𝑡1 − 𝒖,… 𝒚𝒏 = 𝒙𝑡𝑁 − 𝒖 

• (approximate)  point process likelihood 

𝑒− log 𝐺(𝟎;𝜽) 
𝑑

𝑑𝒚

𝑁

𝑖=1

(− log 𝐺 𝒚𝑖; 𝜽 ) 

Coles & Tawn (1991), Joe et al (2004), Smith et al (1997), Coles (2004) … 

• Reparametrize:   𝜆 = log𝐺(𝟎; 𝜽),  𝐺 𝒚; 𝜽 = 𝐺 𝒚; 𝜽 −1/𝜆 (so 

that 𝐺 𝟎; 𝜽 = 𝒆−𝟏)  gives likelihood 

𝑒−𝜆𝜆𝑁 
𝑑

𝑑𝒚

𝑁

𝑖=1

log 𝐺 𝒚𝑖; 𝜽  

     ”same” as  MGP likelihood (just as for 𝑑 = 1) 



Example: spatial hidden MA-process model 

𝑋𝑖,𝑗 = 𝜇𝑖,𝑗 + 𝐺𝑖𝑗 + 𝜎 log𝐻𝑖,𝑗 ,   1 ≤ 𝑖, 𝑗 ≤ 𝑑 

 
𝐻𝑖,𝑗 =  𝛿𝑆𝑘,𝑙 ,

(𝑘,𝑙)∈𝑛(𝑖,𝑗)

     𝑆𝑘,𝑙   i. i. d.   pos 𝛼 − stable

𝐺𝑖,𝑗  ~ Gumbel 0, 𝜎                                                            

 

gives MGEV 

𝐺 𝒙; 𝜽 = exp − 𝛿𝛼 (  exp

𝑖,𝑗 ∈  𝑛 𝑘,ℓ𝑘,𝑙

−
xi,j − 𝜇𝑖,𝑗

𝜎
) 
𝛼

. 

Choosing  𝛿  so that 𝐺 𝟎; 𝜽 = e−1 gives  MGPD 

H 𝒙; 𝜽 = 1− 𝛿𝛼 ( exp𝑖,𝑗 ∈𝑛 𝑘,ℓ𝑘.𝑙 −
xi,j−𝜇𝑖,𝑗

𝜎

 
)𝛼 

Density of MGPD easier than density of MGEV,  but 
understanding only on GEV level 



 

 

 

 

Gudrun January 2005 
326 MEuro loss 
72 % due to forest losses   
4 times larger than second largest                          

Windstorm losses for 
Länsförsäkringar 1982-2005 

The real problem!  



 

 

 

 

The data 

•  all individual claims for windstorm damage to buildings and forest paid 

    out by Länsförsäkringar during 1982-2005  

 

•  inflation adjusted into 2005 prices using the factor price index for building  

 

•  appr 80 storm events where selected based on exceedances of three-day  

   moving sums, different selection for univariate and bivariate analysis  

 

•   simplistic correction for portfolio changes   

relative 

change in  

number of 

policies 



 

 

 

 

The data 

•  all individual claims for windstorm damage to buildings and forest paid 

    out by Länsförsäkringar during 1982-2005  

 

•  inflation adjusted into 2005 prices using the factor price index for building  

 

•  appr 80 storm events where selected based on exceedances of three-day  

   moving sums, different selection for univariate and bivariate analysis  

 

•   simplistic correction for portfolio changes   

relative 

change in  

number of 

policies 



 

 

One-dimensional analysis: total loss, standard PoT, ML estimation 
 
 
Two-dimensional analysis: (loss from buildings ,  loss from forest)  
bivariate GP model with symmetric logistic distribution – the 
simplest mixture model, with simultaneous ML estimation of all 
parameters, numerical computation of quantiles 
 
 
Covariates may be incorporated in parameters (but turned out 
not to be needed) 

Methods  



 

 

 
 

2-d analysis: Modelling, estimation  and computation 
in different areas! 

buildings 

forest 

estimation using data in open rectangle 
 
assumed  GP model above and to the right of blue square 

computation in area over  
diagonal line 



Results of univariate analysis 

15 years 

 5 years 

1 year 

“Naïve” 10% prediction intervals. 
Black1982-2004 data, white 1982-2005 

4000 2000 0 

15 years 

 5 years 

1 year 

8000 4000 0 

Bootstrapped 10%  prediction intervals. 
Black 1982-2004 data, white 1982-2005 

Results of bivariate analysis 

15 years 

 5 years 

1 year 

7000 4000 0 

“Naïve” 10% prediction intervals. 
Black1982-2004 data, white 1982-2005 

15 years 

 5 years 

1 year 

Black: no portfolio change, grey: 20% 
higher forest exposure, white 50% higher 

9000 5000 0 
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Simple Pareto random vector: 
 

𝑾 = Y𝐕,  for 𝑌, 𝑽 ∈ 𝑅𝑑  such that 

P Y > y =
1

y
, y > 1,   

 𝐕 ∈ {𝒙 ≥ 𝟎; max 𝒙𝑖 = 1} 
 

Ferreira & de Haan (2014) 

𝑥2 

𝑥1 

1 

1 

W lives here 

𝑽 lives here 

Generalized Pareto random vector with 𝜸 > 𝟎 
 

𝑾𝝈,𝜸 =
𝝈 𝑾𝜸 − 𝟏

𝜸
   



 

 

 
 

Windstorm conclusions 

•  both univariate and bivariate models fitted the data and gave  
    credible prediction intervals – quantiles substantially different,  
    changes in probabilities of exceeding much less dramatic 
 
•  bivariate analysis may give the most correct evaluation of 
   the real uncertainties 
 
•  predicted losses were rather insensitive to changes in portfolio 
   size  
 
•  organizations should develop systematic ways of thinking  
    about “not yet seen” types of disasters 


