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“classical” extreme value theory, one dimension

Block maxima model

Observe yearly maximum water levels, fit generalized extreme
value distribution

X
G(x) =exp{—(1+Yy -
possibly with timedependent parameters

)1y

Peaks over thresholds model

Observe excesses over high level, fit generalized Pareto
distribution

GO =1-(1+y>)

possibly with timedependent parameters



X = (X4, ...X4) water level at locations 1, ...,d
x = (xq..xy5)and u = (uq ...uy) d-dimensional variables

threshold exceedance if X < u, with u ”large”

Modelling strategy (as in one distribution): estimate conditional
distribution of excess X — u, and the probability of an
exceedance, and then for any event A € {x; x % u} use

P(A) = P(A| X £ u)P(X < u)
to estimate the probability of A

Additionally a Poisson number of x5 4
occurences of A: "tells how
often A occurs 0 P(A) =?
4>
Uq X4




G(x) =G(xq,...,xq) multivariate generalized extreme
value (MGEV) distribution function

“model for yearly maxima at several locations”

Tajvidi (1996), Segers (2004), Rootzén &Tajvidi (2006)

1 G(x) o ,
“Togc(0) °8 G multivariate generalized Pareto
(MGP) distribution function
(assumes 0<G (0)<1)

“model for exceedances at several locations”

H(x) =

X
G(O) 1 2 A Exceedance in x5,
= e , .
d=2  logn B 1 141ogG((rx))
v Exceedance in both
-> >x1 x1 and x,
_ 0 G ((x1,%x2)) Exceedance in x
H(x) - log G((0,x2)) not in 2 '




Lower dimensional margins, scale change:

E.g., if H(xq{,xy,x3) isa3-dim MGP, then H (x4, x5, ) is
not a 2-dim MGPD:

Instead H(x1, x5, ) is distribution of X;,X, given

that at least one of X;, X5, X3 exceeds its level. This is not
the same as the as distribution of X;, X, given that at least
one of X;, X, exceeds its level —which is a 2-dim MGP

However, if H(x{,x5,x,) is MGP, then
H(xq,x5,00)/H(0,0,00) is MGP, since this is the conditional
distribution of X;,X, given that at least one of them

exceeds its level
In particular, the conditional distribution of X; given that
X1> 0is GP.

The class of MGP distributions is closed under scale changes



Background (assuming 0 < G(0) < 1 and G((0,0)%) > 0):

* aMGEV G(x) is determined by its values for x > 0
* G(x) isa MGEVIiff G(x)¢isa MGEV forany t> 0, and then
there are constants o, > 0, u, with G(o.x + u,)t = G(x)

Say thata MGEV G and a MGP H are associated (G < H) if

_ G(x)
H(x) = T10260; %8 G r0) Then

¢ G o Hiff Gt & Hforsome t > 0iff Gt & Hforall t> 0
(pf: Insert G(x)t in the formula for H)

« H determines the curve G¢, t > 0 in the space of distribution
functions (pf: Assume —logG(0) = t. Then, for x > 0,

H(x) = 7 (log G(x) + t) so that G(x) = e™t(1=HG)
= e ™ for x > 0)



Asymptotics: X has distribution function F, u = u(t);t > 1
is an increasing continuous curve, F(u(t)) - 1 ast — oo. Then

 If F €D(G) then there exists a u and a function a(u) > 0
such that

P(X - x‘Xﬁ_u)eH(x) with G & H

o(u) =

* If there exists a u, a function a(u) > 0, and a distribution
function H with non-degenerate margins, such that
X—u
P(a(u) _x| Xﬁu) - H(x),

then H is a MGP distributionand F € D(G), with G & H



Stability: u = u(t); t = 1is an increasing continuous curve
P(X <u(t)) »1as t » c.Then

If X has a MGP distribution then there exists a u and a
function o(u) > 0 such that
P(X = x| Xﬁ_u) = P(X <x), for t €|[1,00)

o(u) =

If there exists a u, and a function a(u) > 0, such that
X—u
P(a(u) <x|Xgu)=PX<x), te[lm)
and X has non-degenerate margins, then X has a MGP
distribution



X
”if X has a MGP distribution, then o ;%X
thereis a curve u = u(t) with o

PEE<x|Xgu)=PX<x) =

o(u) = / X

U1

e conditioning on exceeding a u outside the curve gives a
different MGPD

e conditioning on a u on the curve but using a different o
gives a MGPD which is a scale transformation of the original
one



Likelihood inference based on MGP model:

{G(x;0)} family of MGEV-s with G(0;0) = e~ 1,
H < G, 0 includes location and scale parameters

e X4, .., X, iid., distribution F € D(G), observed N
threshold excesses y; = Xt — U, ... Y = X¢, — U

e (approximate) likelihood

N N
d d
| [5H0:0) =] |5 0086056) - 610);6)
_Ldy _Ldy
l= L=

N

d
=1 Ad_ylog G(y;; 0)
=

* Poisson distribution of number of threshold exceedances,
probability of exceedance estimated by N/n




Practicalities:

Perhaps one doesn’t have observations of the X; on all of

{x; x < u}, or perhaps one doesn’t trust model on all of

{x; x £ u}, and only want to use distributional form of H(x; 6)
on part of {x; x £ u}. Then, instead of the likelihood

Iivzldiylog G(y; @) one get’s a censored likelihood

censor observations
X N
24 in pink areas?
A
u
2 P(A) =2
>
Uq X




Point process convergence: X4, X, ... i.i.d. with distribution
F,u = wu, is increasing, with P(X < u,) - 1as n — oo. Then,
with € x) denoting a point mass at (t, x),

* asymptotics holds iff there exists a u,, and o,, > 0 such that

T € i Xi—un, = PRM(dt X d(—log ))

)
n on

on{x; G(x) € (0,1)}



Coles & Tawn (1991), Joe et al (2004), Smith et al (1997), Coles (2004) ...

Now, likelihood inference in point process model:

 {G(x;0)} family of MGEV distributions, 8 includes location
and scale parameters

X4, ..., X, iid.,distribution F € D(G), observed N
threshold excesses y; = Xt — U, ... Y = X, — U

* (approximate) point process likelihood
N
d
e~ 108 G(0:6) 1_[ — (—log G(y;; 6))
i=1 dy

* Reparametrize: 1 =1ogG(0;0), G(y; 0) = G(y;0) Y (so
that G(0; 0) = e™1) gives likelihood
N

d ~
e AN d—ylog G(y; 0)

i=1
”same” as MGP likelihood (just as for d = 1)



Example: spatial hidden MA-process model

Xi,j :,Lli’j‘l‘Gij‘FO'logHi,j, 1Sl,]£d

.
H; ; = z O0Sk1, Sk 1.1.d. posa — stable
) (k,l)En(i,j)

\Gi,j ~ Gumbel(O, O')

gives MGEV
X — s\ @
G(x,e) = exp {—z5a( z eXp(_ 1] O_lul:])) }
(k1) (L,J))E ik p

Choosing § so that G(0;0) = e~ gives MGPD

Xij—Hi,j
H(x;0) = 1— Z(k.l) 6% (Z(i»j)Eﬁ{k,{’} €Xp (_ ] ]) )“

o

Density of MGPD easier than density of MGEV, but
understanding only on GEV level




The real problem!

Windstorm losses for
Lansforsdakringar 1982-2005

Gudrun January 2005
26 MEuro loss
% due to forest losses
4 times larger than second largest

&
$* ;% :



The data

all individual claims for windstorm damage to buildings and forest paid
out by Lansforsakringar during 1982-2005

Inflation adjusted into 2005 prices using the factor price index for building

appr 80 storm events where selected based on exceedances of three-day
moving sums, different selection for univariate and bivariate analysis

simplistic correction for portfolio changes

Houshold
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number of 15t 7
Y = . , . i
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Methods

One-dimensional analysis: total loss, standard PoT, ML estimation

Two-dimensional analysis: (loss from buildings , loss from forest)
bivariate GP model with symmetric logistic distribution — the
simplest mixture model, with simultaneous ML estimation of all
parameters, numerical computation of quantiles

Covariates may be incorporated in parameters (but turned out
not to be needed)



2-d analysis: Modelling, estimation and computation
in different areas!

buildings
AN
AN
computation in area over
diagonal line

B

\
-
forest

estimation using data in open rectangle

assumed GP model above and to the right of blue square



Results of univariate analysis

15 years 15 years
5 years 5 years
1 year 1year
0 2000 4000 0 4000 8000
“Naive” 10% prediction intervals. Bootstrapped 10% prediction intervals.

Black1982-2004 data, white 1982-2005 Black 1982-2004 data, white 1982-2005

Results of bivariate analysis

15 years mmm ' 15 years
5 years o 5 years
1 yearr 1 year
0 4000 7000 0 5000 9000
“Naive” 10% prediction intervals. Black: no portfolio change, grey: 20%

Black1982-2004 data, white 1982-2005 higher forest exposure, white 50% higher
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Ferreira & de Haan (2014)

Simple Pareto random vector: xz'ﬁ W lives here
1
W =YV, forY,V € R% such that f
1 —>
P(Y>y)=§, y>1, /1 X1
Ve{x=>0; maxx; = 1} V lives here

Generalized Pareto random vector withy > 0

_o(WY —1)
Yy

Wo-,y



Windstorm conclusions

e both univariate and bivariate models fitted the data and gave
credible prediction intervals — quantiles substantially different,

changes in probabilities of exceeding much less dramatic

e bivariate analysis may give the most correct evaluation of
the real uncertainties

e predicted losses were rather insensitive to changes in portfolio

size

e organizations should develop systematic ways of thinking
about “not yet seen” types of disasters



