

Spatial modeling of micro-structure in porous material

Smögen Workshop, August 25-29, 2014

Henrike Häbel

Mathematical Sciences, Chalmers University of Technology Joint with AstraZeneca R&D Mölndal and Fraunhofer ITWM

Spatial modeling of micro-structure in porous material

Motivation and data Conclusions prior to modeling

Germ-Grain models Boolean model Quermass-interaction model

Multi-layer modeling of pore connectivity Example from the literature

Discussion

Summary

Spatial modeling of micro-structure in porous material

Motivation and data Conclusions prior to modeling

Germ-Grain models Boolean model Quermass-interaction model

Multi-layer modeling of pore connectivity Example from the literature

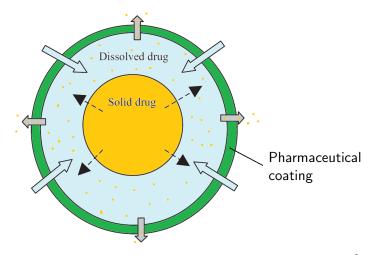
Discussion

Summary

Spatial modeling of micro-structure in porous material

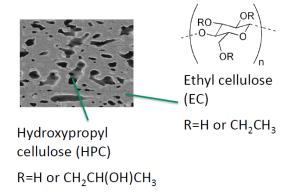
Goal

Characterizing and **modeling** micro-structures of porous materials in order to better understand and control their properties


Taking germ-grain models to the next level!?

Spatial modeling of micro-structure in porous material

Motivation: Controlled drug release


Spatial modeling of micro-structure in porous material

CHALMERS

Polymer blended coating

Spatial modeling of micro-structure in porous material

Summary: Important data features

- From images
 - isotropic surface, but anisotropic cross-section
- Results from experiments
 - film is permeable \rightarrow percolation path through sample
 - pore connectivity is essential
- Results from 2D image analysis
 - HPC area fraction and **pore shape** significant factors for permeability
 - number of endpoints in skeleton good measure of pore shape

Conclusions prior to modeling

3D modeling with marked point processes

Step I Germ-grain models for the surfaces

- stack of marked point processes

$$\Phi = \{ [X_i, M_i] : i = 1, 2, \ldots \}$$

- assign shape parameter(s) to points as marks M_i defining the grains
- **Step II** Link surfaces by displacement vectors capturing the chain like HPC structure in z-direction
 - skeleton
 - mark correlation

Spatial modeling of micro-structure in porous material

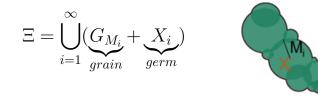
Motivation and data Conclusions prior to modeling

Germ-Grain models Boolean model Quermass-interaction model

Multi-layer modeling of pore connectivity Example from the literature

Discussion

Summary


Spatial modeling of micro-structure in porous material

Germ-Grain models

Based on marked point process $\Phi_M = \{ [X_i, M_i] : i = 1, 2, \ldots \}$

- $\Phi = \{X_i\}$ point process
- G_{M_i} (random) compact set defined by parameter(s) M_i

•
$$(G_{M_i} + X_i) = \{x + X_i : x \in G_{M_i}\}$$

Boolean model

Overlapping sphere system
$$\Xi = \bigcup_{i=1}^{\infty} (\underbrace{G_{M_i}}_{grain} + \underbrace{X_i}_{germ})$$

- $\{X_i\}$ (in)homogeneous Poisson process
- $G_{M_i} = b(o, M_i)$ with fixed or random radii $M_i: \ \Omega \to (0, \infty)$
- + Well known properties
- Limited variety of generated structures

Spatial modeling of micro-structure in porous material

Quermass-interaction model

Adding morphological interaction between grains s.t. absolutely continuous w.r.t. marked Poisson process with density

 $\propto exp(-H_{\Phi}^{\theta})$

$$H^{\theta}_{\Phi_W} = \theta_1 \mathcal{A}(\Phi_W) + \theta_2 \mathcal{L}(\Phi_W) + \theta_3 \chi(\Phi_W)$$

 $heta\ = (heta_1, heta_2, heta_3)\in \mathbb{R}^3$ for Quermass functionals

 ${\mathcal A}$ area ${\mathcal L}$ perimeter χ Euler number (# objects - # wholes)

 $\Phi_W = \{X_i\}$ Poisson process in observation window $W \in \mathbb{R}^d$

Quermass-interaction model: Examples

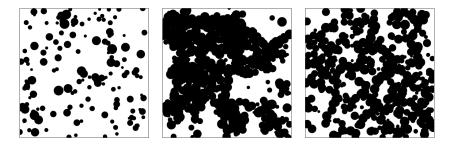


Figure : Examples based on marked Poisson process with intensity λ and spheres with radii $M_i \sim U[0.5, 2]$: left $\lambda = 0.1$, $\theta = (0.2, 0, 0)$, middle $\lambda = 0.2$, $\theta = (0, 0.4, 0)$, right $\lambda = 0.1$, $\theta = (0, 0, 1)$

[DLS14]

Quermass-interaction model

Adding morphological (Quermass) interaction between grains via

$$H^{\theta}_{\Phi_W} = \theta_1 \mathcal{A}(\Phi_W) + \theta_2 \mathcal{L}(\Phi_W) + \theta_3 \chi(\Phi_W)$$

- + Large variety of generated structures
- Complicated parameter estimation based on K chosen test functions f_k for Takacs-Fiksel method

$$(\hat{\lambda}_{\Phi}, \ \hat{\theta}) := \arg\min_{\lambda_{\Phi}, \theta} \sum_{k=1}^{K} (\underbrace{C_{W}^{\lambda_{\Phi}, \theta}(\Phi; f_{k})}_{r.v.})^{2}$$

Spatial modeling of micro-structure in porous material

Motivation and data Conclusions prior to modeling

Germ-Grain models Boolean model Quermass-interaction model

Multi-layer modeling of pore connectivity Example from the literature

Discussion

Summary

Spatial modeling of micro-structure in porous material

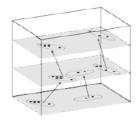
Multi-layer modeling of pore connectivity

Task: Capture heterogeneity and correlation of chain like HPC

- Continuum percolation
 - Boolean model with dependent growth of radii: spheres grow until they have touched k neighbors
 - random-connection model based on a connection function

Multi-layer modeling of pore connectivity

Task: Capture heterogeneity and correlation of chain like HPC


- Continuum percolation
 - Boolean model with dependent growth of radii: spheres grow until they have touched k neighbors
 - random-connection model based on a connection function
- Markov chain as stationary process in 3D based on displacement vectors as well as birth and death rates

Example: Matérn process Markov chain

Spatial birth-and-death process with random displacement¹

- Stack of $s\geq 1$ elliptical Matérn cluster processes $\{S_n^{(s)},\ s\geq 1\}$ in \mathbb{R}^2
- High correlation of center locations in z-direction
 - stationary Markov chain with small displacements between $0 < r_{min} < r_{max} \in \mathbb{R}$ of clusters
 - births and deaths of clusters

¹[SHT⁺11] Spatial modeling of micro-structure in porous material

Example: Matérn process Markov chain ctd. Underlying Poisson process $\{\Phi_n^{(s)}, n \ge 1\}$ with intensity λ defined by

- **Births**: $\{B_n^{(s)}\}$ Poisson process with intensity λ_B
- **Deaths**: $\{\delta_n^{(s)}\}\ i.i.Ber(p) \text{ s.t. } \lambda p + \lambda_B = \lambda$, independent of $\{B_n^{(s)}\}$
- Displacement vectors: $\{D_n^{(s)}\}\ i.i.U$ on $b(o, r_{max}) \setminus b(o, r_{min})$, independent of $\{B_n^{(s)}\}$ and $\{\delta_n^{(s)}\}$

$$\{\Phi_n^{(s+1)}\} = \bigcup_{i:\delta_i^{(s)}=1} \{\Phi_j^{(s)} + D_j^{(s)}\} \cup \{B_n^{(s)}\}$$

Example: Matérn process Markov chain ctd.

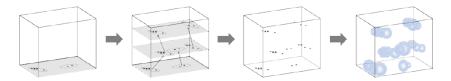


Figure : Modeling germs with Markov chain of Matérn cluster processes and spherical grains with random radii

[SHT⁺11]

CHALMERS

Spatial modeling of micro-structure in porous material

Henrike Häbel

August 26, 2014

Motivation and data Conclusions prior to modeling

Germ-Grain models Boolean model Quermass-interaction model

Multi-layer modeling of pore connectivity Example from the literature

Discussion

Summary

Spatial modeling of micro-structure in porous material

Main challenge: Germ-grain model

Question: What kind of grains should we model?

- Overlapping sphere system
- Quermass-interaction model tricky parameter estimation

- Poisson process
 Matérn cluster process
 Gibbs process
 Gibbs process

Spatial modeling of micro-structure in porous material

Henrike Hähel

August 26, 2014

CHALMERS

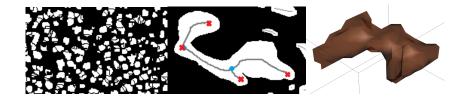
CHALMERS

Main challenge: Germ-grain model

Question: What kind of grains should we model?

- Overlapping sphere system

- Poisson process
 Matérn cluster process
 Gibbs process
 Gibbs process
- Quermass-interaction model tricky parameter estimation
- System of overlapping compact but more complex sets
 - + better control over pore shape
 - + germs as midpoints of Watershed objects
 - unclear how to capture pore connectivity



More complex sets as grains

Possible candidates

- Watershed
- skeleton endpoints
- Fourier transform

- tensors
- set of basic shapes
- . . .

Spatial modeling of micro-structure in porous material

Henrike Häbel

August 26, 2014

CHALMERS

Motivation and data Conclusions prior to modeling

Germ-Grain models Boolean model Quermass-interaction model

Multi-layer modeling of pore connectivity Example from the literature

Discussion

Summary

Spatial modeling of micro-structure in porous material

Summary

- Task: 3D model of porous micro-structure
 - pore shape and connectivity VERY important
- Step I: Extraction of marked point pattern
 - overlapping sphere system
 - system of overlapping more complex sets
- Step II: Connectivity in z-direction
 - continuum percolation
 - Markov chain
- **Question**: Use none of the above and base model on, e.g., a dilated skeleton?

Important references

- Dereudre, D., Lavancier, F., and Staňková Helisová, K. Estimation of the intensity parameter of the germ-grain quermass-interaction model when the number of germs is not observed. Scandinavian Journal of Statistics, 41:239–246, 2014.
- Kaunisto, Erik, Marucci, M., Borgquist, P., and Axelsson, A. Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems.

International Journal of Pharmaceutics, 418:54–77, 2011.

Stenzel, O., Hassfeld, H., Thiedmann, R., Koster, L.J.A., Oosterhout, S.D., van Bavel, S.S., Wienk, M.M., Loos, J., Janssen, R.A.J., and Schmidt, V. Spatial modeling of the 3d morphology of hybrid polymer-zno solar cells, based on electron tomography data.

The Annals of Applied Statistics, 5(3):1920–1947, 2011.

Thank you for your attention and let us have a nice discussion!

Spatial modeling of micro-structure in porous material