

Estimation of climate sensitivity

Magne Aldrin, Norwegian Computing Center and University of Oslo

Smögen workshop 2014

References

 Aldrin, M., Holden, M., Guttorp, P., Skeie, R.B., Myhre, G. and Berntsen, T.K. (2012).
 Bayesian estimation of climate sensitivity based on a simple climate model fitted to observations of hemispheric temperatures an global ocean heat content.
 Environmetrics, vol. 23, p. 253-271.

 Skeie, R.B., Berntsen, T., Aldrin, M., Holden, M., Myhre, M. (2014).

A lower and more constrained estimate of climate sensitivity using updated observations and detailed radiative forcing time series. Earth System Dynamics, vol. 5, p. 139-175.

$\label{eq:climate sensitivity} S$

Definition:

Climate sensitivity = S

= The temperature increase due to a doubling of CO_2 concentrations compared to pre-industrial time (1750), when all else is constant

Today: 40 % increase in CO_2 concentrations Estimate from IPCC AR4 (2007): 3°C, 90 % C.I. =(2.0-4.5) Estimate from IPCC AR5 (2013): 2.5°C, 90 % C.I. =(1.5-4.5)

Radiative forcing

- CO₂ is only one of several factors that affect the global temperature
- Radiative forcing = The change in net irradiance into the earth relative to 1750
- Measured in Watts per square meter
- The global temperature depends on the radiative forcing
- The climate sensitivity measures the strength of this dependency

Aim of study

To estimate the climate sensitivity

- by modelling the relationship between
 - estimates of radiative forcing since 1750 and
 - estimates of hemispheric temperature based on measurements since 1850
 - estimates of global ocean heat content based on measurements since about 1950
- using a climate model based on physical laws

Climate model

Could use

- an Atmospheric Ocean General Circulation Model, but complex and very computer intensive
- an approximation to an AOGCM, an emulator
- a simple climate model, our approach

The "true" global state of the earth in year t

- TNH_t Temperature at the northern hemisphere
- TSH_t Temperature at the southern hemisphere
- OHC_t Ocean heat content

Simple climate model

- Deterministic computer model (Schlesinger et al., 1992)
- based on
 - energy balance
 - upwelling diffusion ocean
- where the earth is divided into
 - atmosphere and ocean
 - northern and southern hemisphere
- with
 - radiative forcing into the system
 - energy mixing
 - \ast between the atmosphere and the ocean
 - * within the ocean

Simple climate model cont.

 $\mathbf{m}_t(\mathbf{x}_{1750:t}, S, \boldsymbol{\theta})$

- Yearly time resolution
- Output
 - o temperature northern hemisphere
 - o temperature southern hemisphere
 - o ocean heat content
- Input
 - $\mathbf{x}_{1750:t}$ yearly radiative forcing from 1750 until year t, separate for northern and southern hemisphere
 - $\circ~S$ the climate sensitivity, the parameter of interest
 - heta 6 other physical parameters

Response data

- \mathbf{y}_t 9-dimensional vector with yearly observed temperatures and ocean heat content
- Three pairs of series with temperature measurements for northern and southern hemisphere
 - 1850-2010 (HadCRUT3, Brohan et al.,2006)
 - o 1880-2010 (GISS, Hansen et al. 2006)
 - 1880-2010 (NCDC, Smith and Reynolds 2005)
- Three series with ocean heat content measurements 0-700m
 1955-2010 (Levitus et al. 2009)
 - 1950-2010 (Domingues et al. 2008; Church et a. 2011)
 - 1945-2010 (Ishii and Kimoto 2009)

Observations

Radiative forcing

- We will specify our best knowledge about historical radiative forcing as prior distributions of 11 independent components, based on temperature-independent estimates of each component, including uncertainties
 - long-lived greenhouse gases
 - direct aerosols
 - indirect aerosols
 - solar radiation
 - volcanoes
 - o land use
 - ο...

Priors of components of radiative forcing

Prior of total radiative forcing

Model for "true" global state of the earth

$$\mathbf{g}_t = (TNH_t, TSH_t, OHC_t)^T$$

Combined deterministic + stochastic model

$$\mathbf{g}_t = \mathbf{m}_t(\mathbf{x}_{t:1750}, S, \boldsymbol{\theta}) + \mathbf{n}_t^{siv} + \mathbf{n}_t^{liv} + \mathbf{n}_t^m$$

- \mathbf{n}_{t}^{siv} : short-term internal variation, related to El Ninõ episodes
- \mathbf{n}_t^{liv} : long-term internal variation, estimated from an AOGCM
- \mathbf{n}_t^m : model error, VAR(1)
- All terms have dimension 3

Model for observations

 $\mathbf{y}_t = \mathbf{A}\mathbf{g}_t + \mathbf{n}_t^o$

- A: 9x3 matrix copying each data series 3 times, to compare model values with observations
- \mathbf{n}_t^o : observational (measurement) error, dimension 9, VAR(1)

Estimation

- Bayesian approach (Kennedy and O'Hagan 2001), using MCMC
- Vague prior for S
- Informative priors for $\mathbf{x}_{t:1750}$ and $oldsymbol{ heta}$
- Vague priors for other parameters

Posterior of the climate sensitivity \boldsymbol{S}

Degrees Celcius

From the 5th Assessment Report of IPCC

Effect of 10 more years of data

Validation

Based on only one OHC series

Re-estimation 1850-1990 + prediction 1991-2007

Validation on data from an AOGCM

- The reality is complex, but our model are simple
- Can we trust the posterior for the climate sensitivity?
- $\bullet\,$ True S is unknown, can not validate on real data
- Validate on artificial data generated from an AOGCM

The CMIP3 experiment

- Coupled Model Intercomparison Project phase 3
- $\bullet\ CO_2$ increased by 1 % per year until a doubling in 1920, then constant
- Corresponding RF increased from 0 to 3.7 $W\!/m^2$
- (Deterministic) simulation 1859-2079 of temperature and OHC
- Our validation experiment, based on the Canadian CGCM3.1 model
 "True" climate sensitivity = 3.4°C
 - Training data: Temperatures 1860-2007, OHC 1955-2007

CMIP3 - Radiative forcing prior

CMIP3 - Data and predictions

CMIP3 - **Posterior for climate sensitivity**

- "True" climate sensitivity = $3.4^{\circ}C$
- Posterior mean 3.5° , CI=(2.4-5.3)

Further work

- Work in progress
 - Update model using data including 2013
 - Using updated RF prioirs from IPCC AR5
 - Including one more temperature series
 - Including one more OHC (above 700 m) series
 - Including data for OHC below 700 meters!
- Planned work
 - Improve the simple climate model
 - Using different simple climate models
 - Including other data types (ice melting, sea level, ...)

Thank you for your attention!

