Anisotropy analysis of the system of air pores in polar ice

Claudia Lautensack with Katja Schladitz, Aila Särkkä, Johannes Freitag, Oliver Wirjadi, Mickaël Gandon

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik

Workshop Spatial and spatio-temporal modelling in biology, ecology and geosciences Smögen, August 21-25, 2006

Motivation

Polar ice is compacted (sintered) snow. During the compression air pores are isolated in the ice.

Image: Freitag 1), Kipfstuhl 1), Stauffer 2)

1) Alfred-Wegener-Institute for polar and marine research, Bremerhaven 2) University Bern

Motivation

Aim

Question

investigation of the spatial arrangement of air pores in the ice

Does the location of the pores tell anything about the movements of the ice?

Folie 3

tomographic images of ice cores
4 images per depth
number 250 610 910 1209 depth 137.5 335.5 500.5 664.95
smoothing -> binarization -> labelling -> postprocessing

Fraunhofer Institut Techno- und Wirtschaftsmathematik

ITWM

Methods in 2d

- point-pair rose density (Stoyan, Benes, 1991) and directional K-function (Stoyan, Kendall, Mecke, 1995)
- directional pair correlation function (Stoyan, Stoyan, 1992)
- Fry-method (Fry, 1979)
- 0-contour of the density $\frac{d}{d\varphi}K(r,\varphi)$ (SKM, 1995)

Ideas for 3d	
Requirements	 measurement of characteristics easy and robust
	 methods for visualisation of results
Consider	 nearest neighbour directions (Fisher et. al., 1987) -> nearest neighbours and directions only
	 directional G-function -> only nearest neighbours, directions and distances
	 directional K-function / Fry-method

-> all points, directions and distances

Nearest neighbour directions

Investigate set of directions from a point to its nearest neighbour.

Cartesian coordinates

$$(x_1,y_1,z_1),\ldots,(x_n,y_n,z_n)$$

Cylindrical coordinates

 $(arphi_1, z_1), \ldots, (arphi_n, z_n)$

Uniform distribution on unit sphere

$$U = \begin{pmatrix} \cos(\Phi)\sqrt{1-Z^2} \\ \sin(\Phi)\sqrt{1-Z^2} \\ Z \end{pmatrix},$$

with $Z \sim U(0, 1)$ and $\Phi \sim U(0, 2\pi)$.

p-values of a χ^2 -test (10 groups)				
	250 ₂	250 ₃	2504	250 ₅
Φ	0.8075	0.0243	0.5812	0.6446
Z	0.3224	0.5547	0.2757	0.1079
	6101	6102	610 ₃	6104
Φ	0.4830	0.5712	0.4388	0.4894
Z	1.6e - 5	0.0001	0.0365	0.0038
	9101	910 ₂	910 ₃	9104
Φ	0.8847	0.5924	0.5341	0.22835
Z	0.0052	0.1160	0.6090	0.0005
	12091	1209 ₃	12094	
Φ	0.7359	0.6934	0.0005	
Z	1.9e - 5	0.1794	0.0215	

Anisotropy analysis of the system of air pores in polar ice

Gine's statistic

Gine's statistic

Tests uniform distribution against models which are symmetric to center of the sphere.

 ψ_{ij} angle between u_i and u_j .

$$G_n = \frac{n}{2} - \frac{4}{n\pi} \sum_{i=1}^{n-1} \sum_{j=i+1}^n \sin(\psi_{ij})$$

1.413(20%), 1.816(10%), 2.207(5%), 3.090(1%)

250 ₂	0.41	610_{1}	1.45	910 ₁	1.84	1209 ₁	1.68
250 ₃	0.88	610 ₂	2.16	910 ₂	0.97	1209 ₃	1.27
2504	1.01	610 ₃	0.89	910 ₃	0.74	12094	2.29
250 ₅	0.60	6104	1.83	9104	2.11		

Orientation matrix

Givenn unit vectors $(x_1, y_1, z_1), \dots, (x_n, y_n, z_n).$ Orientation matrix $T = \begin{pmatrix} \sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i y_i & \sum_{i=1}^{n} x_i z_i \\ \sum_{i=1}^{n} x_i y_i & \sum_{i=1}^{n} y_i z_i & \sum_{i=1}^{n} y_i z_i \end{pmatrix}.$ Normalized eigenvalues $\tau_1 \le \tau_2 \le \tau_3$ Shape parameter $\gamma = \frac{\log \left(\frac{\tau_3}{2}\right)}{\log \left(\frac{\tau_1}{2}\right)}$ Strength parameter $\zeta = \log \left(\frac{\tau_3}{\tau_1}\right)$

Results	5	$ au_1$	$ au_2$	$ au_3$	per	γ	ζ
250 ₂	87	0.2312	0.3673	0.4016	0.4178 (10%)	0.19	0.55
250 ₃	140	0.2707	0.3327	0.3965	0.4000 (10%)	0.85	0.38
2504	104	0.2421	0.3365	0.4215	0.4106 (10%)	0.68	0.55
250 ₅	112	0.2900	0.3348	0.3752	0.4078 (10%)	0.79	0.26
6101	179	0.2635	0.2873	0.4492	0.4109 (1%)	5.16	0.53
610 ₂	173	0.2379	0.2970	0.4652	0.4123 (1%)	2.02	0.67
610 ₃	119	0.2471	0.3154	0.4375	0.4285 (1%)	1.34	0.57
6104	250	0.2484	0.3437	0.4079	0.3990 (1%)	0.53	0.50
9101	284	0.2717	0.3095	0.4188	0.3949 (1%)	2.32	0.43
910 ₂	237	0.2765	0.3104	0.4132	0.4008 (1%)	2.47	0.40
910 ₃	193	0.2811	0.3077	0.4112	0.4081 (1%)	3.21	0.38
9104	218	0.2779	0.2889	0.4332	0.4036 (1%)	10.42	0.44
1209 ₁	205	0.2617	0.2888	0.4495	0.4058 (1%)	4.48	0.54
1209 ₃	236	0.2847	0.3037	0.4117	0.4009 (1%)	4.71	0.37
12094	211	0.2524	0.2840	0.4636	0.4048 (1%)	4.16	0.61
							Folie 10

Anisotropy analysis of the system of air pores in polar ice

Principal axis

Axis about which the moment of inertia is least

Eigenvector with respect to τ_3

		2	3103	9104	12091	12093	12094
x 0.03 0.08 0.16	-0.08 0.09	-0.12	0.51	0.01	-0.01	-0.25	0.99
y -0.25 0.06 -0.08 z 0.97 1.00 -0.98	-0.02 -0.12	-0.24 0.96	0.05	-0.03	-0.20 0.98	-0.47 0.84	0.1

Pressed point processes

Transformation

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \\ cz \end{pmatrix}, 0 < c < 1$$

Aim

- detection of the distortion
- estimation of the parameter c

Simulations

	Test of the methods using simulated data
	Matern hard-core process, R=0.05
Dataset I	$\lambda_I = 1000, W_I = [0, 1]^3, c = 1$
Dataset II	$\lambda_{II} = 500, W_{II} = [0, 1]^2 \times [0, 2], c = 1/2$
Dataset III	$\lambda_{III} =$ 333, $W_{III} = [0, 1]^2 \times [0, 3], c = 1/3$
	-> three point processes of intensity 1000 within the unit cube

Folie 13

Directional G-function

Distribution function of the distance to the nearest neighbour conditioned on directions

Let (R, Φ, Θ) be the spherical coordinates of the vector from the typical point to its nearest neighbour and $\vartheta_M \in [0, \pi]$.

$$G_g(l) := \mathbb{P}(R \leq l \mid \Theta \in [0, \vartheta_M] \cup [\pi - \vartheta_M, \pi]).$$

Might be inaccurate for low intensities.

Let $(\tilde{R}, \tilde{\Phi}, \tilde{\Theta})$ be the spherical coordinates of the vector from the typical point to its nearest neighbour within a double cone defined by ϑ_M .

$$G_l(l) := \mathbb{P}(\tilde{R} \leq l)$$

Fry-method	
	method used in 2d by geologists (Fry,1979)
Assumption	Originally centers of objects are isotropic and obey some hard core condition.
Idea	plot all center-to-center-vectors
	isotropic -> circular void in the center
	strain -> elliptical void in the center
	-> fit ellipse to central void
Fry vs. SKM p	artition of the unit sphere, handling of outliers

Fitting of the ellipsoid

Requirements

Cost function

- ellipsoid should model void in the Fry plot
- ellipsoid should contain little or no points
- ellipsoid's shape should not be influenced by points far away

Let S be a 3×3 diagonal shape matrix and R a rotation of \mathbb{R}^3 .

$$E(X, \lambda) = \sum_{x \in X} |\min(1, \lambda(||SRx||^2 - 1))|$$

-> Nelder-Mead nonlinear optimization algorithm

Results simulations

	r_x	$arphi_x$	$artheta_x$	r_y	$arphi_y$	$artheta_y$	r_{z}	$arphi_z$	$artheta_z$
	0.050	179.568	-1.32	0.050	-90.85	18.67	0.053	-86.50	-71.26
ll	0.051	13.01	4.49	0.054	102.35	-7.78	0.027	132.75	81.00
	0.052	32.39	-7.09	0.059	-56.26	10.76	0.022	89.61	77.06

l, xy, xz, yz

Results simulations

ll, xy, xz, yz

III, xy, xz, yz

Conclusion	
Result –	- isotropy in upper layers
-	- anisotropy in z-direction in deeper layers
-	- have a closer look at behaviour far down
In general	further methods for directional analysis of 3d data should be developed

References

Image: Freitag 1), Kipfstuhl 1), Stauffer 2)1) Alfred-Wegener-Institute for polar and marine research, Bremerhaven2) University Bern

- Fisher, Lewis and Embleton, Statistical analysis of spherical data., Cambridge University Press, Cambridge, 1987
- Fry, Random point distributions and strain measurement in rocks. Tectonophysics 60, p. 89-105, 1979
- Stoyan and Benes, Anisotropy analysis for particle systems.
 Journal of Microscopy 164, p. 159-168, 1991
- Stoyan, Kendall and Mecke, Stochastic Geometry and its applications. Wiley, Chichester, 1995
- Stoyan and Stoyan, Fraktale, Formen, Punktfelder. Akademie Verlag, Berlin, 1992

