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Overview

In many spatial situations:

• point locations of mark variables (e.g. tree heights) plays key role in the space-time
generating mechanism of e.g. forest growth;

• marks and points can be highly inter-dependent;

• current analyses investigate conditional mark structure based on a given point
structure.

We shall therefore try to disentangle marks and points through:

• a Discrepancy Function which isolates the mark structure;

• it involves a harmonic decomposition of the mark frequencies.

The concept is introduced via:

• cosine wave & thinned point process examples;

• Spanish daily ozone data with missing values;

• a spatial growth-interaction process;

• a classic longleaf pine data set from Georgia, USA.
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Summary of the Spectral Approach

Lattice marks: {Xst} (s = 1, . . . , m; t = 1, . . . , n).

Fourier coeffs. Apq(Bpq) =
∑m

s=1

∑
t=1,n(Xst −X) cos (sin)[2π(ps/m + qt/n)]

• Lattice periodogram: IL
pq = (A2

pq + B2
pq)/mn

over p = 1, . . . , m/2; q = −n/2, . . . , n/2− 1.

Marked Point Process: paired-set {(xi, yi); Xi} of locations (xi, yi) & marks Xi.

Fourier coeffs. apq(bpq) =
∑N

i=1(Xi −X) cos (sin)[2π(pxi + qyi)]

• Mark periodogram: IM
pq = (a2

pq + b2
pq)/N

over some p = 1, . . . , fx; q = −fy, . . . , fy − 1.

• Point periodogram replace Xi −X by 1.
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Square Point Wave Example

Consider the one-dimensional mark function

mi = 2 + cos(6πi) over i = (0, 1, . . . , 29)/30 .

As the periodogram of a regular lattice is zero, the mark periodogram is a spike at
frequency p = 3 and zero elsewhere, i.e. at p = 1, 2, 4, 5, . . . , 15.

So what happens if we inject point structure by sampling mi at the 15 non-zero points

Ω = {(0, 1, 2, 6, 7, 8, . . . , 24, 25, 26)/30} ?
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(a) marks mi = 2 + cos(6πi) superimposed
on a regular square wave of frequency 5
over the points i = (0, 1, . . . , 29)/30;
i.e. mi = 0 at missing points.

(b) mark periodogram IL
p based on

all 30 points;

(c) point IP
p and (d) mark

periodograms IM
p based on the 15

non-empty points.

In (d) note the resonant frequencies at
p = 5− 3 = 2, 5 + 3 = 8 and 3× 5− 3 = 12.

4



The Discrepancy Function

• So the fundamental question is whether we can derive a function which better isolates
the spatial structure of the marks alone?

The 1-D Fourier mark coeffs. are

ap =

N∑
i=1

(Xi −X) cos(2πpxi) and bp =

N∑
i=1

(Xi −X) sin(2πpxi) ,

and the 1-D point Fourier coeffs. are

cp =

N∑
i=1

cos(2πpxi) and dp =

N∑
i=1

sin(2πpxi) .

Denote IM
p by Ip and IP

p by Jp, and consider the simple cosine example

mi = a + cos(2πri) .
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Then we can write

NIp = (1/4)(NJp+r + NJr−p + 2cp+rcr−p − 2dp+rdr−p)

+ (a− X̄)2NJp + (a− X̄)cp(cp+r + cr−p)

+ (a− X̄)dp(dp+r − dr−p)

for p ∈ {1, 2, . . . , r−1}, with similar expressions when p = r and p ∈ {r+1, . . . , N/2}.

• These 3 relationships not only highlight the interplay between the mark and the
point spectrum, but they are easily extended to cover the general cosine mark sum

mi = constant +

m∑
j=1

kj cos(2πipj + φj) . (0.1)

Here kj and φj denote the amplitude and phase of frequency pj.

• The underlying principle is that we place each r by a fixed integer s, and then choose
that value of s which minimises the distance of the resulting function S(s, p) from Ip.
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• Write S(s, p) ≡ Ip at r = s.

• Evaluate
D(s) ≡ ‖{S(s, p)− Ip}‖

over all possible integers s.

• Then select that value of s which minimises D(s) – we call D(s) the discrepancy
function.

• Obvious distance measures include

D1(s) =
∑

p

|S(s, p)− Ip| , D2(s) =
∑

p

[S(s, p)− Ip]
2 , D3(s) =

√
D2(s) .

Note that S(s, p) is automatically defined through NIp: for p ∈ {1, 2, . . . , s− 1}
NS(s, p) = (1/4)(NJp+s + NJs−p + 2cp+scs−p − 2dp+sds−p)

+ (a− X̄)2NJp + (a− X̄)cp(cp+s + cs−p) + (a− X̄)dp(dp+s − ds−p) ;

with similar expressions for p ∈ {s + 1, s + 2, . . . , N/2} and p = s.
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Example: mi = 2 + cos(6πi) , i.e. frequency 3.

• Clearly, S(3, p) = Ip, so a perfect match when s = 3.

• Plots for s 6= 3 differ substantially from that at s = 3; the discrepancy function
exploits this difference in shape.

• Both D1(s) and D2(s) show a clear minimum at s = 3 – the true mark frequency
uncorrupted by the point structure.

• As D2(s) shows the change with p better than D1(s), we retain it for our study.
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(a) Values of S(s, p) over p = 1, 2, . . . , 15 for s = 2, 3, 5, 6, 9, 11.
(b) Values of the discrepancy functions D1(s) (· · · ) and D2(s) (—) for s = 1, . . . , 15.
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Example: mi = 2 + cos(6πi) with thinning

• Will such clarity be present when randomness is introduced?

• Replace regular point structure with a thinned point wave with frequency 5.

• Each of 60 random locations were retained only if

Ui ≤ 1 + cos(10πi) .

• Point periodogram highlights this frequency 5.

• Mark periodogram highlights frequency p = 3, but also the point/mark confounding
frequency at 3 + 5 = 8.

• D2(s) shows a perfect match at s = 3, so rules out p = 8
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(a) marks mi = 2 + cos(6πi) on a thinned 44-point cosine wave of frequency 5;
(b) point periodogram Jp; (c) mark periodogram Ip;
(d) values of the discrepancy function D2(s) for s = 1, . . . , 22.
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Two-frequency structures

• In reality would not know either amplitude k or phase φ of trial mark structure

mi = a + k cos(2πsxi + φ)

• So need to minimise over k and φ as well.

• Also, no reason why underlying mark frequency p = 3 should be integer.

• So full analysis means minimising D(k, s, φ) over all

0 < |k| ≤ kmax , 0 ≤ φ < π and 0 < s ≤ smax .

for some kmax and smax.

• m-frequency case is far worse:
need to minimise over 3m parameters;
discrepancy surface is highly nonlinear.

• Simple double cosine

mi = 2 + cos(6πxi) + cos(14πxi)

exhibits high mountain ridges interpersed with local peaks.
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Discrepancy function D(s1, s2) plotted over s1, s2 = 1, . . . , 22 for the candidate mark
structure mi = 2 + cos(2πs1xi) + cos(2πs2xi) and actual mark structure mi = 2 +
cos(6πxi)+cos(14πxi) superimposed on a thinned random set of 44 points with frequency
5 in [0, 1].
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Optimisation Algorithms

• This highly nonlinear structure means that a general simultaneous procedure in
which D(·) is evaluated first over a coarse grid of points, say

ki, k2 = 0, 0.1, . . . , 2.0 and φ1, φ2 = 0o, 10o, . . . , 1700 ,

and then over selectively finer grids based around the previous minimum is unlikely to
work:

• for it may well become trapped in a local, high-dimensional, minimum.

• We shall therefore adopt an alternative sequential procedure.

• Use a grid-based search to find amplitude-phase-frequency triple (k̂1, φ̂1, ŝ1) that
minimises D(k1, φ1, s1) based on

mi = â + k1 cos(2πs1xi + φ1) .

• Then determine the second-order triple (k̂2, φ̂2, ŝ2) which minimises D(k2, φ2, s2|k̂1, φ̂1, ŝ1)
based on

mi = â + k̂1 cos(2πŝ1xi + φ̂1) + k2 cos(2πs2xi + φ2) .

• Repeat, obtaining sequential estimates Ωj = {â, k̂i, φ̂i, ŝi; i = 1, 2, . . . , j}, until the
rate of decrease in D(·|Ωj) reaches some preassigned arbitrary level, or ‘flattens off’.
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Example: mi = 2 + 0.8 cos(6πxi) + cos(14πxi) + U(−0.2, 0.2) on a thinned 44-point
cosine wave of frequency 5

• Note frequency 7 dominates.

• This mark/point structure provides a sharp test – we have to differentiate between
three frequencies based on a relatively small data set of only 44 points.

• Coarse grid gives:
s1 k̂1 φ̂1 D(s1|k̂1, φ̂1)
2 0.9 10o 66.70
3 0.6 80o 136.68
7 0.9 10o 29.15

12 1.1 80o 83.76

So best choice is frequency 7.

• Then a medium + fine grid search gives D = 28.4848 at ŝ1 = s1 = 7 for k̂1 = 0.878
and φ̂1 = 3o.

• Figure (a) shows the first-order discrepancy function.
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Discrepancy function plotted over s1 = 1, . . . , 22 and k1 = −2.0,−1.9, . . . , 2.0.
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• Figure (b) shows the second-order function.

• Figures (c) & (d) show the third-order function is effectively flat, i.e. there is no
further structure.

• So the ‘best’ estimated sequential function is

m̂seq(t) = 1.901 + 0.878 cos(14πt + 3o)− 0.771 cos(6πt + 152o) ,

which agrees quite closely with the generating process.

• A follow-on simultaneous search over a finer and finer grid produced

m̂sim(t) = 1.901 + 1.000 cos(14πt + 182o)− 0.870 cos(6πt− 4o) ,

with D = 0.116 now considerably lower.

• So m̂sim(t) gives a much closer fit to the true function m(t) than m̂seq(t).

• Clearly, this sequential→simultaneous approach provides an efficient procedure for
determining the minimising function.
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Non-integer Frequencies

• Now grid-based search procedures are grossly inefficient.

• So use established nonlinear iterative algorithms:

1. Nelder-Mead (N-M) is based on evaluating a function at the vertices of a simplex,
which is then iteratively shrunk until some desired bound is obtained – can be slow to
converge, but it is robust.

2. Sann is a variant of simulated annealing. Uses the Metropolis function for the
acceptance probability: candidate points are generated from a Gaussian Markov kernel
with scale proportional to the actual ‘temperature’.

3. BFGS is a Quasi-Newton method based on fast descents. The next candidate point is
xk+1 = xk + αkd

k, where αk denotes jump length and dk is the descent direction given
by −Dk∇f (xk) for Dk a symmetric and positive definite matrix. Sophisticated ways
reconstruct the curvature in Dk so that Dk approximates the (∇2f (·))−1 in Newton’s
method; BFGS currently appears to be the best one.

4. CG uses conjugated gradients – well-behaved but inferior to the BFGS method.
Accelerates the speed of convergence of the fastest descent method whilst trying to
avoid the problems associated with Newton’s method (very good when minimising a
quadratic function).
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Result of using these four approaches with initial values given by the sequential
estimates m̂seq(t) above and convergence tolerance 10−6.

N-M BFGS CG Sann
s1 6.989 6.995 6.995 7.074
k1 0.966 0.990 0.990 0.948
φ1 5.01o 3.25o 3.25o −16.25o

s2 3.060 3.021 3.021 3.125
k2 -0.835 -0.852 -0.852 -0.787
φ2 166.70o 171.71o 171.71o 140.33o

s3 -0.1 0.000 0.000 1.858
k3 0.543 0.000 0.000 -0.072
φ3 −28.54o 0.000o 0.000o 84.13o

discrepancy 0.066074 0.076921 0.076921 1.316153
time 2.95 1 5.914 27.939

• So discard Sann.

• N-M incorrectly suggests a possible frequency s13 = 0.1.

• CG converges 6 times slower than BFGS, so choose BFGS.
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Analysis of Spanish Ozone Data

• Daily ozone levels for Castellon de la Plana station from 31/3/01 to 30/11/03.

• Strong seasonal component + missing values (87 & 34 for 2003 & 2004).
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• Note point and mark structures are not related: so provides a ‘mid-way’ illustration.

• Strengthen missing point structure: Pr(point accepted) = [2 + cos(14πi/N)]/4

• Single wave spans 914 days, i.e. a frequency of 2.51.

wavenumber sequential Sann BFGS
1 -24.50 2.53 -24.50 2.53 -25.86 2.50
2 3.51 5.49 3.51 5.49 5.61 5.40
3 -3.00 9.55 -3.00 9.55 -2.57 9.23
4 -1.80 7.00 -1.80 7.00 0.27 6.48
5 -2.10 3.79 -2.10 3.79 -6.15 3.47
6 -1.50 1.06 -1.50 1.06 -5.75 1.04
7 1.19 8.44 1.19 8.44 0.90 8.21

Table : First 7 of 15 estimated amplitudes and frequencies showing sequential estimates
together with the Sann and BFGS simultaneous estimates.

• Only primary frequency 2.53 conveys genuine mark information.

• So point structure has been eliminated.
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Application to Space-Time Growth-Interaction Analyses

• Highly interdependent mark/point structures are generated in Renshaw & Särkkä
(2001) Särkkä & Renshaw (2006).

• Stochastically: points {i} arrive at rate α with U(0, 1) marks (say); die at rate µ.

• Deterministically: In (t, t + dt) each mark mi(t) changes through

mi(t + dt) = mi(t) + f (mi(t))dt +
∑

j 6=i

h(mi(t),mj(t); ‖xi − xj‖)dt .

• Särkkä & Renshaw (2006) consider the linear growth function

f2(mi(t)) = λ(1−mi(t)/K) ,

in conjunction with the area-interaction function

h2(mi(t),mj(t)) = −b area{D(xi, rmi(t)) ∩D(xj, rmj(t))}/πr2m2
i (t)

where D(x, s) denotes the disk with centre x and radius s.

• Note ‘soft-core’ and asymmetric since a small mark is affected more than a large one.
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(a) Point and (b) mark R-periodograms with upper and lower envelopes based on 99
simulations of 490 points under HPP, and 99 randomisations of marks on given 490 point
locations.
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Point spectrum:

• Significant peak at r = 7 associated with regular spacing of points having large
marks.

• Secondary peak at r = 13 probably indicative of the small-mark distance of ' 1/13
associated with small marks clustering in the gaps between larger marks.

Mark spectrum:

• Similar main peak at r = 7.

• plus a secondary peak at r = 7 indicative of an overall mark-mark interaction
distance of order 0.1.

Bivariate K-function: based on 448 ‘small’ and 42 ‘large’ marks.

• strong lack on inter-point distance < 0.09.

• Significant point-point distance of ' 0.13, in accord with frequency 7.
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The Discrepancy Function enables us to decide whether the r = 7 mark effect is an
artifact of the point pattern.

Sequential reduction in the discrepancy function based on estimated mark values

mi(1000) = 3.142 +

u∑
j=1

k̂j cos[2π(xi1ŝj1 + xi2ŝj2) + φ̂j] + εim

for u = 1, . . . , 15; i = 1, . . . , 490 at locations xj = (xj1, xj2) as the number of fitted
frequencies (ŝj1, ŝj2) is increased.

• Primary wave causes a large reduction in discrepancy.

• First 4 wavenumbers all relate to high-frequency, i.e. highly local, mark pattern with
frequencies of 20− 25, i.e. spatial structure at distances ' 0.04 parallel to axes (' 0.07
to diagonals).

• Remaining 10- wavenumbers relate to low-frequency mark structure in range 1− 3,
i.e. to spatial pattern caused by large well-established marks.

Since the earlier (conditional) r = 7 mark effect does not feature in the discrepancy
analysis, it must be an artefact of the point pattern.
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discrepancy kj s1j s2j rj φj

355 3.142 0 0 0.0 0
250 4.6 18 9 20.1 88.5
233 2.1 14 20 24.4 13.0
224 1.5 10 22 24.2 21.0
210 1.4 20 3 20.2 −5.5
207 0.5 0 −1 1.0 −15.0
205 0.5 −1 1 1.4 15.0
203 −0.5 2 0 2.0 15.0
201 0.5 2 1 2.2 15.0
199 −0.4 2 3 3.6 15.0
198 −0.4 1 3 3.2 −15.0
197 −0.3 −1 −1 1.4 15.0
196 0.3 −1 0 1.0 12.0
195 0.2 −1 2 2.2 10.5
195 0.2 2 −1 2.2 15.0

Sequential estimates based on the discrepancy function, showing D(·)×10−3, amplitude
kj, frequencies sj1 and sj2, isotropic frequency rj =

√
(s2

1j + s2
2j), and phase φj (j =

0, . . . , 15)
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Analysis of Longleaf Pine Data

Taken from the Wade Tract in Georgia, U.S.A. (1979): coordinates and diameters of
trees ≥ 2 cm d.b.h. in 4ha of old-growth forest.
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• Point R-periodogram shows frequencies r ≤ 12 are highly significant – indicative of
clustering with intercluster distances ≥ 20 m.

• Agrees with Cressie’s nested block quadrat effect.

• Point Θ-periodogram highlights a row effect, and a possible column effect.

• Mark periodogram shows high agreement with these point results.

Suggests it is the tree locations, and not their diameters, that forms the main component
of spatial pattern.

Using the Discrepancy Function allows us to explore this further since it provides useful
information on the unconditional mark structure.
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discrepancy kj s1j s2j rj φj

9999 26.84366 0 0 0 0
1000 22.0 18 1 18.03 53
808 6.6 0 −1 1.00 83
667 5.8 1 1 1.41 108.3
606 12.2 18 3 18.25 47
560 5.7 4 2 4.47 153
503 7.6 18 1 18.03 173
457 6.0 2 4 4.47 173
392 4.7 1 2 2.24 −3
369 4.9 12 8 14.42 147
346 3.4 1 4 4.12 173

Sequential estimates, showing D(·)×10−6, amplitude kj, frequencies sj1 and sj2, isotropic
frequency rj =

√
(s2

1j + s2
2j), and phase φj (j = 0, . . . , 10).

• Highlights a strong left-right local structure with frequency 18.

• Note r1 = 18 > spectral 12 and Cressie quadrat 8, so implies considerably shorter
interaction distances or, more likely, a different spatial effect.
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• Adding secondary waves detects zones with differing levels of mark variability. Main
wavelength of 18.03 agrees with the visual degree of dispersion shown by clusters with
small mark values.

• So by admitting a much greater degree of ‘DISENTANGLEMENT’ between marks
and points, the discrepancy approach enables us to make a far more definitive, and
quantifiably precise, assessment of spatial structure than that provided by standard
space or frequency domain techniques.
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