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Background on weed mapping

A precision agriculture context

An “operationnal context oriented” study

Previous approaches: weed counts only,

use of covariates (soil properties, remote sensing data),

ground pictures at small scale
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A weed dataset

Data set collected on 15-16 may 2006 at the Bjertorp farm located 58.26◦N-

13.13◦E

A 30 hectare field

100 measurement sites with exact counts

pictures over a frame of 0.5 m by 0.75 m

3



The exact weed counts dataset

0 100 200 300 400 500

10
0

20
0

30
0

40
0

50
0

0

50

100

150

200

250

300

Display of exact weed count data. The color code stands for the number of observed plants.
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Examples of picture from the 2006 dataset
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Examples of pictures (from the 2005 dataset)
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The image analysis algorithm

Resolution of 3008 × 2000 pixels

Segmentation of soil and plants using excess green transform

Remove small objects considered as noise

Hough transform to identify crop rows

Extract large weeds covered by crop straws using combinations of morphological

operations
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Statistical features

Weed exact count
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Empirical histogram of exact counts pair plot and histogram of and image indexes
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Empirical variograms of the exact count data w(s) for various binnings of the spatial lag, and

theoretical fit with an exponential model (dashed line) with scale parameter equal to 50 m.
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Desired features of the model

Goal: making spatial prediction from a small sample of exact weed counts + a

large sample of images indexes

Take into account spatial correlation

Comply with the observed marginal distributions

Take into account the close relationship between w and i
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Model (1): spatial variation of weed counts

We assume a transformed Gaussian model, i.e. there is a zero mean, centered

Gaussian random field y(s), s ∈ R2 and a function φ : R −→ R such that

w(s) = φ(y(s)).

Accounts for non-Gaussian marginal distributions, while keeping the parsimony

and flexibility of Gaussian random fields

We assume that y has a stationary and isotropic correlation function ρ(h) with

exponential decay, namely

Cor[y(s), y(s + h)] = exp(−||h||/κ) (1)

for some unknown spatial correlation parameter κ.

11



Model (2): marginal distribution of weed counts

The weed counts being positive and displaying an asymmetric histogram, we

assume that the marginal distribution of w is Gamma, with shape parameter α

and scale parameter β, namely: π(w(s)|α, β) ∝ w(s)α−1e−βw(s).

Assuming a Gamma distribution, w(s) writes

w(s) = φ(y(s)) = F−1
α,β ◦ G(y(s)) (2)

where Fα,β is the c.d.f of a Gamma(α, β) distribution and G is the c.d.f of a

Normal(0,1) distribution.

Poorer results with exponential, log-normal or Poisson distribution
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Model (3): linking exact counts and picture indexes

Exact counts and image indexes are equal up to the blurring by a certain noise.

- Image values have to be positive whatever the values of the noise,

- Images covered by a large number of weeds more difficult to handle than those

with a few weeds only.

Hence the multiplicative model:

i(s) = λw(s)ε(s) (3)

λ is a scaling factor

ε error with uncorrelated Gamma distribution with unit mean and variance τ .
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Bayesian specification

Likelihood level
w(s) = F−1

α,β ◦ G(y(s)), Cor[y(s), y(s + h)] = exp(−||h||/κ)

y ∼ GRF (0, ρ)

i(s) = λw(s)ε(s) ε(s)
i.i.d
∼ Gamma(1/τ,1/τ)

5 unknown scalar parameters: θ = (κ, α, β, λ, τ)

Prior: Independent flat Gamma prior on the components of θ
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Connection with other approaches

Point process based models (Møller et al. 1998, Brix and Chadœuf 2001, Brix

and Møller 2001): appealing from a theoretical and an ecological point of view,

but interest not assessed for a prediction purpose.

Approximation of a log-Gaussian Cox process by a SGLMM (Christensen and

Waagepetersen, 2002): same appealing feature as above but still complies better

with discontinuous trajectory
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Simulation based inference and prediction (1): data augmentation

If D = (ws, it) and P = wu, simulation and inference carried out jointly by

sampling from π(P, θ|D)

Involves evaluating

π(it|ws, θ) =

∫
wt∈R

nt
+

π(it|wt, ws, θ)dπ(wt|θ) (4)

Data augmentation: make prediction of w also at sites t

P becomes = (wt, wu)

and we sample from π(P, θ|D) = π(wt, wu, θ|D) instead of π(wu, θ|D)
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Simulation based inference and prediction (2): reparameterisation

Single site Metropolis Hastings update of wt do not work

Metropolis Adapted Langevin Algorithm (MALA) often recommended

Proposed alternative:

In the our model, define w = (ws, wt, wu)

y = (ys, yt, yu)

Lκ lower triang. Choleski decomposition of V ar[y]

h = L−1
κ y

Propose update of w of the form w∗ = φ(Lκh
∗)
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Illustration of the proposed proposal for a bivariate normal
distribution

proposed state g*

current state g

Our proposal: y∗ = y + Lκδh

small increment with same distribu-

tion as π(y)

MALA proposal: y∗ = y+ηU−1
κ h+ δh

small increment approximately centered on

the gradient at y
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Inference for the Bjertorp dataset
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Trace of the Markov Chains for the inference of θ on the full data set. First row: mean α/β and variance

α/β2 of w. Second row α and β. Third row: τ and λ. Last row: κ.
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Goodness of fit assessment for the Bjertorp dataset
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Goodness of fit diagnostic. Top, from left to right: variogram with confidence interval envelopes, histogram

and fitted parametric density, quantile-quantile plot of predicted residuals ε∗. Bottom: variogram of predicted

Gaussian values y∗, histogram and quantile-quantile plot of predicted uncorrelated components h∗.
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Empirical cross-validation study

Bayesian predictor Kriging
10 counts, 30 images 54.5 58.1
10 counts, 50 images 53.7 59.6
50 counts, 90 images 51.4 52.4

Root mean square error on sub-sampled datasets for various sampling designs.
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Simulation study

Bayesian predictor Kriging
τ τ

Counts Images 0.23 0.5 0.23 0.5
50 100 51.1 53.2 55.1 54.7
30 100 54.4 54.6 59.9 58.0
10 100 59.9 60.9 66.6 67.2
10 300
0 300

Root mean square error on simulated datasets for various sampling designs and

two levels of noise.
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Conclusion

Simple model

Good fit

Improves on schemes based on weed counts only
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