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Quantitative imaging

Quantitative imaging

Quantitative imaging is image acquisition together with the subsequent image analysis. It

should be objective (un-biased) and more than merely descriptive.

Most commonly, the analysis is automated, which forces the methods to be

• adaptive (adapt to different illumination conditions etc.)

• robust (”know” when something is wrong. If so: tell the user.)
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Quantitative imaging

Human vs computer

Even though the human is an extraordinary image analyzer,

the benefits of using computerized image analysis are that they give us

• more accurate,

• faster and less tedious,

• and more sophisticated, measurements.
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Quantitative imaging

Examples

(a) Particles tracking (b) Yeast cell recognition

In particle tracking, typically 50 images per second is produced, and in each image over

100 particles are present.

In yeast cell recognition, we study 20-100 cells over several hours, using both bright-field

and fluorescence images.
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Yeast Cell Study

Yeast Cell Study

(a) Bright-field (b) Fluorescence

Goal for each pair of images: Measure the amount of fluorescence signal from each cell.

Main goal: Continue to do this as time passes (2-D lapse microscopy) and/or compare

with large amounts of gene-disruptants of cells (high-throughput screening).

The amount of data is huge here, so this must be done via some kind of automation.
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Yeast Cell Study

Software output: example

Example: Compare the fluorescence signals from different cells over time.
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Yeast Cell Study

Software output: example

Example: Compare the fluorescence signals from different cells over time.
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Yeast Cell Study

Used paradigm for yeast cell studies

Before one can proceed with any kind of measurements, the cells have to be found. One

common method to find is fluorescent staining of the cell membrane.

However, for in vivo cell studies, fluorescent staining of the cell membranes is generally

not appropriate.

Therefore we use the following methodology:

• Use bright-field images for cell recognition

• Fluorescence images are used only for measuring the protein expression signals
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Cell recognition

Cell Recognition

The cell recognition step will be done in the bright-field image.

For humans, it is (in most cases) easy to identify the were the cells are.

However, it is not a trivial problem to ”tell” the computer how to find them, due to the

difference in appearance of cells and that they might overlap.

Example cells:
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Cell recognition

Basic steps for cell recognition

• Segmentation: differentiate foreground (the cells) from background. This step must

be able to adapt to density of cells and different illumination conditions.

• Candidate Cell Centres: Finding suitable locations in the segmented image where

cells could be located. Here: see where circles can fit.

• Find Cell Contours: For each candidate centre, find a connected sequence of pixels

surrounding the centre. Use criteria on both shape and pixel intensities.

- - -
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Cell recognition: Contour extraction

Finding contours surrounding the candidate centres

For each candidate centre, find a reasonable cell contour surrounding this point. Look at

the directional derivatives at points along the rays emanating from a candidate centre:

A reasonable contour around this cell

could be to join the positions along the rays

where the directional derivatives change from

large magnitude pointing inwards,

to large magnitude pointing outwards.

That is, where the projection of the directional

second derivative, along the rays pointing

outwards, is large.
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Cell recognition: Contour extraction

Polar plot

First, let us plot the second derivative values at 30 equally spaced points along the 32 rays

(counter-clockwise) in a polar plot:.

-

Reference system: For each of the 32 rays, pick a point such that in the end, these points

represents a cell contour.

However, in all generality, the state space to search for an optimal solution, is huge.
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Cell recognition: Contour extraction

Conditions on contour shape

There are a lot of conditions on the shape of the cell contour.

The two most obvious ones:

• Closed and continuous: no jumps along the contour.

Others :

• Convex or

• Elliptical (Yeast cells are typically elliptical)

We probably also want to have restrictions on the

• size of the cell; not too big and not too small

How do we incorporate conditions like these while keeping the

computational complexity low?
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Cell recognition: Contour extraction

Path from left to right: dynamic programming

If we restrict ourselves to the discrete contour coordinates in the polar plot, there is a

method for finding the ”cheapest” path from left to right (in the polar plot).

It is called dynamic programming (the Viterbi algorithm).
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Cell recognition: Contour extraction

Dynamic Programming (simple example)

Task: Find the path from left to right with lowest cumulative cost!

(Only straight and diagonal movements are allowed.)
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Cell recognition: Contour extraction

Dynamic Programming (simple example)

Question: In column 2, row 1: if this is cell is part of the optimal solution, what is the

optimal path coming to this cell (i.e. from column 1)?
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Cell recognition: Contour extraction

Dynamic Programming (simple example)

Answer: We must have come from row 2 in column 1. Make a note of this path and the

cumulative sum up to this point.
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Cell recognition: Contour extraction

Dynamic Programming (simple example)

Now do the same analysis for the cell in row 2 in column 2. Here we have three candidate

cells.
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Cell recognition: Contour extraction

Dynamic Programming (simple example)

Again, make a note of the cheapest path and the cumulative sum.
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Cell recognition: Contour extraction

Dynamic Programming (simple example)

... and continue with the rest of the cells in the column.
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Cell recognition: Contour extraction

Dynamic Programming (simple example)

In column 3, do the same. Here, be sure to compare the cumulative sums for the previous

cell candidates.
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Cell recognition: Contour extraction

Dynamic Programming (simple example)

... and the same again for column 4. Now the first step of the algorithm is completed.
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Cell recognition: Contour extraction

Dynamic Programming (simple example)

Step 2 is to find the cell in the last column with the minimum cumulative sum, which is

the cell in row 4.
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Cell recognition: Contour extraction

Dynamic Programming (simple example)

Step 3 is to trace back in the opposite direction of pointing arrows...
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Cell recognition: Contour extraction

Dynamic Programming (simple example)

Step 3 is to trace back in the opposite direction of pointing arrows...
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Cell recognition: Contour extraction

Dynamic Programming (simple example)

Step 3 is to trace back in the opposite direction of pointing arrows... After arriving at the

start column, we are done. This is the dynamic programming scheme.
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Cell recognition: Contour extraction

Dynamic programming (restrictions)

There are certain restrictions:

• First, a ”direction” is needed: go from left to right in the polar plot

• ”Markovianity”: the cost of joining two points (along two rays), given that the previous

point (according to the chosen direction) is a part of the solution, must depend on

these two points only.

Unmodified, the second restriction implies that it is not even possible to guarantee a

closed contour. This is of course a serious drawback of the method.
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Cell recognition: Contour extraction

Dynamic Programming (closed and continuous contour)

Suppose that we want to have a closed and continuous contour.

• Continuity can, heuristically, be imposed by not letting the solution move ”too far”

between ray points along the contour. This we did in the simple example.

This does however not always work, e.g. for elliptical contours, where the candidate centre

is located to far from the centre (of gravity) of the ellipse.

(Note that we have not defined what we mean with a continuous contour in discrete polar

coordinates...)
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Cell recognition: Contour extraction

Dynamic Programming (closed and continuous contour)

Closedness seems harder. However:

• We can solve the problem for each initial point in the first column separately, putting

infinite weights in the cost matrix for all other points in the last column.

• A heuristic resort for closedness, is to let the algorithm work on several laps, e.g.

three, and the solution be the middle lap.

The first method will guarantee a closed contour, but will severely increase the

computational cost.
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Cell recognition: Contour extraction

Resulting Erroneous contour

Here, we have used the three laps method for a closed contour, and the restriction of

not letting the optimal contour change more than one one unit (radial wise) between two

consecutive points.

-
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Cell recognition: Contour extraction

Dynamic Programming (Convex Contour)

Suppose instead that that we want to have a convex contour.

For a convex contour, the vectors joining

three consecutive points (in the polar plot) must

always take ”left-turns”:

Remark 1: This is a necessary condition for convexity.

Remark 2: Together with closedness, it is also a sufficient condition for convexity.

(But remember that closedness is however not guaranteed.)
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Cell recognition: Contour extraction

Dynamic Programming (Convex Contour)

One problem remains: Convexity does not follow the Markovian rule needed for dynamic

programming.

Easy remedy: Expand the state space to pairs of two consecutive points. This is an

quadratic increase in the number of states, but the problem is still manageable.
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We use a soft penalizing condition on turning
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rate for a circle.)

Mats Kvarnström, August 2006



Cell recognition: Contour extraction

Resulting contour

-
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Cell recognition: Contour extraction

Dynamic Programming (Conclusions)

Compared to using deformable templates in a Bayesian framework (MCMC and ICM) for

finding cells in microscope images (e.g. Rue & Husby (1998), Mardia et al. (1997), Gray

(1999)) and Active Contour Models (snakes), the benefits and drawbacks are

+ Deterministic stopping rule

+ Repeatable outcome

+ Fast

- Local rules only → closedness not guaranteed

- We have no continuous representation of the contour.

Possible modifications to our method

• Add/combine the angle penalty with conditions on the change in radial distance.

• Modify and iterate if global conditions are not met.
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