Anisotropy analysis of 3d point processes

Claudia Lautensack
with Aila Särkkä, Johannes Freitag, Katja Schladitz

Hochschule Darmstadt

Smögen Workshop
Smögen, August 18-22, 2008
Motivation

Polar ice is compacted (sintered) snow. During the compression air pores are isolated in the ice.

Question
Does the location of the pores tell anything about the movements of the ice?
Anisotropy analysis of 3d point processes

Data

tomographic images of ice samples
cylinder 15 mm height, 15 mm diameter
imaged inside a cold room at -15°C

images from three depths: 153 m, 353 m, 505 m

14 samples per depth
Anisotropy analysis of 3d point processes

Model for pressing

shape of the pores not significant -> concentrate on pore centres

Transformation

volume preserving compression

\[
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \mapsto \begin{pmatrix}
x \\
\sqrt{c}y \\
\sqrt{c}z
\end{pmatrix}, \quad 0 < c < 1
\]

Aim

- detection of the distortion
- estimation of the parameter c
Anisotropy analysis of 3d point processes

Methods in 2d

- point-pair rose density (Stoyan, Beneš, 1991)
- directional pair correlation function (Stoyan, Stoyan, 1992)
- Fry-method (Fry, 1979)
- directional K-function, 0-contour of the density $\frac{d}{d\varphi}K(r, \varphi)$ (Stoyan, Kendall, Mecke, 1995)

Idea

partition of circle
compare estimates of summary statistics for different directions
Anisotropy analysis of 3d point processes

Problems and ideas in 3d

Requirements
– measurement of characteristics easy and robust
– methods for visualisation of results

Problems
– more parameters than in 2d
– partition of the ball into suitable equal volume parts?

-> choose cumulative instead of density functions
-> adapt directions of investigation to the problem
Idea

- investigate point pattern in double cones aligned along coordinate axes
- compare observations
- large differences -> anisotropy

here: $\theta = \frac{\pi}{4}$

Advantage of cone

+ easy parametrisation w.r.t. spherical coordinates
+ can be rotated to arbitrary directions -> adaptable to data
Anisotropy analysis of 3d point processes

Directional summary statistics: directional K

Directional version of the K-function

K_{dir}

Second reduced moment measure of the cone C
expected number of points within the double cone $x_0 + C$

Estimator

$$\lambda^2 \hat{K}_{\text{dir}, u, \theta}(r) = \sum_{x \in \psi} \sum_{y \in \psi, y \neq x} \frac{\mathbb{1}_{C_u(r, \theta)}(x - y)}{|W_x \cap W_y|}, \ r \geq 0,$$

W_x translation of the window W by the vector x
$|B|$ volume of a set $B \subset \mathbb{R}^3$
Anisotropy analysis of 3d point processes

Directional summary statistics: local G

Directional version of the nearest neighbour distance distribution function G

G_{loc}

Distribution function of the distance from the typical point of the process to the closest point in the cone $x_0 + C$.

Estimator

$$\hat{G}_{\text{loc},u,\theta}(r) = \frac{\sum_{(x,d) \in \psi} \mathbb{I}_{[0,r]}(d) \mathbb{I}\{x + C_u(d, \theta) \subset W\}}{\sum_{(x,d) \in \psi} \mathbb{I}\{x + C_u(d, \theta) \subset W\}}, \ r \geq 0.$$
Anisotropy analysis of 3d point processes

Directional summary statistics: global G

Directional version of the nearest neighbour distance distribution function G

G_{glob}

Distribution function of the distance between x_0 and its nearest neighbour y conditioned on $y \in x_0 + C$.

Estimator

$$
\tilde{G}_{glob,u,\theta}(r) = \frac{\sum_{(x,y)\in\Psi} \mathbb{1}_{C_{u}(r,\theta)}(x-y) \mathbb{1}_{W \ominus b(0,||x-y||)}(x)}{\sum_{(x,y)\in\Psi} \mathbb{1}_{C_{u}(\infty,\theta)}(x-y) \mathbb{1}_{W \ominus b(0,||x-y||)}(x)}, r \geq 0.
$$

less points investigated, stronger for higher intensities?
Anisotropy analysis of 3d point processes

Isotropy tests

Given

\(n \) point patterns \(\psi_1, \ldots, \psi_n \).

\(\hat{S}_x, \hat{S}_y, \hat{S}_z \)

Estimators of one of the summary statistics with respect to the \(x-, y-, \) and \(z- \) direction.

Test statistics

\[
T_{xy} = \int_{r_1}^{r_2} |\hat{S}_x(r) - \hat{S}_y(r)| \, dr,
\]

and

\[
T_z = \min \left(\int_{r_1}^{r_2} |\hat{S}_x(r) - \hat{S}_z(r)| \, dr, \int_{r_1}^{r_2} |\hat{S}_y(r) - \hat{S}_z(r)| \, dr \right),
\]

where \([r_1, r_2]\) is a given interval.
Anisotropy analysis of 3d point processes

Isotropy tests

Test statistics

\[T_{xy} = \int_{r_1}^{r_2} |\hat{S}_x(r) - \hat{S}_y(r)| \, dr, \quad \text{and} \]

\[T_z = \min \left(\int_{r_1}^{r_2} |\hat{S}_x(r) - \hat{S}_z(r)| \, dr, \int_{r_1}^{r_2} |\hat{S}_y(r) - \hat{S}_z(r)| \, dr \right), \]

Test reject isotropy hypothesis at level \(\alpha \) if \(T_{z,i} \) is larger than 100(1 – \(\alpha \))% of the estimated \(T_{xy} \) values

Alternative Monte Carlo test, if few replications available requires model for the data
Anisotropy analysis of 3d point processes

Simulation study

Simulate regular point patterns in the unit cube. Compress with pressing factor \(c \).

Investigate different

- degrees of regularity: Matérn hard core point process and packing of balls (force biased algorithm)
- intensities: \(\lambda = 500 \) and \(\lambda = 1000 \)
- hard core radii: \(R = 0.025, 0.05, \) and \(0.075 \)
- pressing factors: \(c = 0.7, 0.8, \) and \(0.9 \)
Anisotropy analysis of 3d point processes

Simulation results: Matérn hard core

Parameters

\(\lambda = 500, \ R = 0.05, \ and \ c = 0.8 \)

\(K_{\text{dir}} \)

\(G_{\text{loc}} \)

\(G_{\text{glob}} \)
Anisotropy analysis of 3d point processes

Simulation results: Force biased

Parameters

\[\lambda = 500, \quad R = 0.05, \quad \text{and} \quad c = 0.8 \]

\[K_{\text{dir}} \]
\[G_{\text{loc}} \]
\[G_{\text{glob}} \]
Anisotropy analysis of 3d point processes

Powers of tests

Investigate influence of

- degree of regularity, intensity, hard core radius, pressing factor

- interval of observation

test intervals

\[[0, 1.1R], [0, 4/3 R], [0, 0.1] ([0, 0.2], resp.) \]

<table>
<thead>
<tr>
<th></th>
<th>(R = 0.05)</th>
<th>(R = 0.05)</th>
<th>(R = 0.05)</th>
<th>(R = 0.075)</th>
<th>(R = 0.075)</th>
<th>(R = 0.075)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_2)</td>
<td>0.1</td>
<td>0.067</td>
<td>0.055</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0825</td>
</tr>
<tr>
<td>(G_{\text{loc}})</td>
<td>17.2</td>
<td>73.8</td>
<td>97.2</td>
<td>91.7</td>
<td>99.8</td>
<td>100</td>
</tr>
<tr>
<td>(G_{\text{glob}})</td>
<td>21.3</td>
<td>68.2</td>
<td>96.6</td>
<td>93.9</td>
<td>98.6</td>
<td>100</td>
</tr>
<tr>
<td>(K_{\text{dir}})</td>
<td>19.9</td>
<td>79.7</td>
<td>98.8</td>
<td>36.9</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

powers of the tests on a 5% significance level, based on 1000 realisations
Anisotropy analysis of 3d point processes

Existence of outliers

In real data the existence of outliers, i.e. points which violate the hard core condition, is likely. How does this influence the results?

Therefore:

- use point patterns from previous simulation
- choose 5 random points \(x_1, \ldots, x_5 \) from each pattern
- include a further point \(y_i \) in balls of radius \(R \) centred in \(x_i \)

Result

- decreasing powers of the tests
- better results for \(K_{\text{dir}} \) and \(G_{\text{loc}} \) than for \(G_{\text{glob}} \).
- larger integration intervals should be chosen.
Anisotropy analysis of 3d point processes

Alternative: Investigate direction to nearest neighbour

Given

set of unit vectors \(v_i = (x_i, y_i, z_i), i = 1, \ldots, n \)

Orientation matrix

\[
A = \begin{pmatrix}
\sum x_i^2 & \sum x_i y_i & \sum x_i z_i \\
\sum x_i y_i & \sum y_i^2 & \sum y_i z_i \\
\sum x_i z_i & \sum y_i z_i & \sum z_i^2
\end{pmatrix}
\]

\(\lambda_1 \geq \lambda_2 \geq \lambda_3 \)

eigenvalues of \(A \)

Test statistic

largest eigenvalue \(\lambda_1 \)

Significance points

at 5% level: \(\frac{1}{3} + \frac{0.873}{\sqrt{n}} \) for \(n > 100 \), Anderson, Stephens (1972)

Results

weaker performance than tests based on summary statistics
Summary of results

- tests using summary statistics better than analysis of direction to nearest neighbour

Higher power for

- higher regularity, larger intensities, stronger pressing
- integration interval should be chosen suitably
- in most cases: K_{dir} yields best results
- test with G functions more stable when changing interval
- tests also work for compressed clustered patterns
Anisotropy analysis of 3d point processes

Estimation of the pressing factor

- rescale by \((\sqrt{d}, \sqrt{d}, \frac{1}{d})\) with \(d \in [0.6, 1.1]\)

- compute statistics

\[
T_{\sum,d} = \int_{r_1}^{r_2} \left(|\hat{S}_{x,d}(r) - \hat{S}_{y,d}(r)| + |\hat{S}_{y,d}(r) - \hat{S}_{z,d}(r)| + |\hat{S}_{z,d}(r) - \hat{S}_{x,d}(r)| \right) \, dr,
\]

Estimator for \(c\)

\[
\hat{c} = \text{argmin}_d T_{\sum,d}
\]
Anisotropy analysis of 3d point processes

Results for simulated data

Parameters: \(\lambda = 500, R = 0.05 \)

<table>
<thead>
<tr>
<th>(r^2)</th>
<th>(c)</th>
<th>(\tilde{c}_{\text{loc}})</th>
<th>MSE</th>
<th>(\tilde{c}_{\text{glob}})</th>
<th>MSE</th>
<th>(\tilde{c}_K)</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.055</td>
<td>1.0</td>
<td>0.9828</td>
<td>3.944e-3</td>
<td>0.9795</td>
<td>6.763e-3</td>
<td>0.9875</td>
<td>4.850e-3</td>
</tr>
<tr>
<td>0.055</td>
<td>0.9</td>
<td>0.8810</td>
<td>5.813e-3</td>
<td>0.8855</td>
<td>5.138e-3</td>
<td>0.8933</td>
<td>3.631e-3</td>
</tr>
<tr>
<td>0.055</td>
<td>0.8</td>
<td>0.7780</td>
<td>5.363e-3</td>
<td>0.7818</td>
<td>4.544e-3</td>
<td>0.7923</td>
<td>2.844e-3</td>
</tr>
<tr>
<td>0.055</td>
<td>0.7</td>
<td>0.6880</td>
<td>1.850e-3</td>
<td>0.6913</td>
<td>1.981e-3</td>
<td>0.6860</td>
<td>1.988e-3</td>
</tr>
<tr>
<td>0.15</td>
<td>1.0</td>
<td>1.0005</td>
<td>2.625e-3</td>
<td>0.9385</td>
<td>2.081e-2</td>
<td>0.9955</td>
<td>1.813e-3</td>
</tr>
<tr>
<td>0.15</td>
<td>0.9</td>
<td>0.8953</td>
<td>2.806e-3</td>
<td>0.9060</td>
<td>1.819e-2</td>
<td>0.8993</td>
<td>1.669e-3</td>
</tr>
<tr>
<td>0.15</td>
<td>0.8</td>
<td>0.7968</td>
<td>2.306e-3</td>
<td>0.8655</td>
<td>2.511e-2</td>
<td>0.8030</td>
<td>1.013e-3</td>
</tr>
<tr>
<td>0.15</td>
<td>0.7</td>
<td>0.6958</td>
<td>1.631e-3</td>
<td>0.8128</td>
<td>3.222e-2</td>
<td>0.7015</td>
<td>7.125e-4</td>
</tr>
</tbody>
</table>
Ice: Choice of parameters

- between 329 and 733 pores per sample
- study degree of regularity using isotropic pair-correlation function
- investigation of distances to nearest neighbours shows existence of outliers
- choose larger interval of observation
Anisotropy analysis of 3d point processes

Ice: Isotropy test

Means and confidence bands of directional summary statistics

353 m

505 m

Pooling of the data as in Baddeley et. al. (1993)
Anisotropy analysis of 3d point processes

Ice: Estimation of pressing factors

<table>
<thead>
<tr>
<th>sample</th>
<th>153 m</th>
<th>353 m</th>
<th>505 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_V)</td>
<td>380.29</td>
<td>454.79</td>
<td>516.71</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>0.2528</td>
<td>0.3403</td>
<td>0.3241</td>
</tr>
<tr>
<td>(\mathring{c}_G)</td>
<td>0.807</td>
<td>0.630</td>
<td>0.534</td>
</tr>
<tr>
<td>(\mathring{c}_K)</td>
<td>0.821</td>
<td>0.641</td>
<td>0.545</td>
</tr>
</tbody>
</table>
Anisotropy analysis of 3d point processes

Summary

We have

– detected the anisotropy within the ice
– estimated the pressing factor

Nye formula

– simplified ice flow model

-> same trend but absolute values higher in our estimates (approx. 0.1)

However

bedrock conditions not taken into account unknown so far due to incomplete drilling could shift expected pressing factors to higher values
Further example: Foam

Aluminium foam: pressed before foaming process. The degree of isotropy grows during foaming.

References

Anderson, Stephens (1972) Tests for randomness of directions against equatorial and bimodal alternatives. Biometrika 59(3), 613-621

Fry (1979) Random point distributions and strain measurement in rocks. Tectonophysics 60, p. 89-105, 1979

Stoyan, Beneš (1991) Anisotropy analysis for particle systems. Journal of Microscopy 164, p. 159-168

Stoyan, Stoyan (1992) Fraktale, Formen, Punktfelder. Akademie Verlag, Berlin