Spectral theorem and ergodicity for a class of second order non-Gaussian processes

Krzysztof Podgórski Mathematical Statistics Lund University

August 17, 2010

Krzysztof Podgórski, Lund University

Outline

Spectral representation

- 2 Strictly stationary processes
- 3 The case of asymetric Laplace distribution
- 4 Spectral theorem for LMA Open problem No. 1
- 5 Ergodic theorem for Laplace process Open problem No. 2

• $X(\tau)$ – a weakly stationary stationary process

- $X(\tau)$ a weakly stationary stationary process
- $\tau \in \mathbb{R}$ time variable,

- $X(\tau)$ a weakly stationary stationary process
- $\tau \in \mathbb{R}$ time variable,
- $au = (x, y, t) \in \mathbb{R}^3$ spatio-temporal fields

- $X(\tau)$ a weakly stationary stationary process
- $\tau \in \mathbb{R}$ time variable,
- $au = (x, y, t) \in \mathbb{R}^3$ spatio-temporal fields

Covariance function

- $X(\tau)$ a weakly stationary stationary process
- $\tau \in \mathbb{R}$ time variable,
- $au = (x, y, t) \in \mathbb{R}^3$ spatio-temporal fields

Covariance function \mapsto Bochner theorem

- $X(\tau)$ a weakly stationary stationary process
- $\tau \in \mathbb{R}$ time variable,
- $au = (x, y, t) \in \mathbb{R}^3$ spatio-temporal fields

Covariance function \mapsto Bochner theorem \mapsto Spectral measure

- X(τ) a weakly stationary stationary process
- $\tau \in \mathbb{R}$ time variable,
- $au = (x, y, t) \in \mathbb{R}^3$ spatio-temporal fields

Covariance function \mapsto Bochner theorem \mapsto Spectral measure

$$R(au) = \mathbb{C}ov(X(au), X(\mathbf{0})) = \int_{\mathbb{R}^d} \exp(i\lambda^T au) \ d\sigma(\lambda)$$

- X(τ) a weakly stationary stationary process
- $\tau \in \mathbb{R}$ time variable,
- $au = (x, y, t) \in \mathbb{R}^3$ spatio-temporal fields

Covariance function → Bochner theorem → Spectral measure

$$egin{aligned} R(au) = \mathbb{C}\textit{ov}(X(au), X(\mathbf{0})) &= \int_{\mathbb{R}^d} \exp(i\lambda^T au) \; d\sigma(\lambda) \ X(au) &\stackrel{isometry}{\longleftrightarrow} \exp(i\lambda^T au) \end{aligned}$$

- X(τ) a weakly stationary stationary process
- $\tau \in \mathbb{R}$ time variable,
- $au = (x, y, t) \in \mathbb{R}^3$ spatio-temporal fields

Covariance function \mapsto Bochner theorem \mapsto Spectral measure

$$egin{aligned} R(au) = \mathbb{C}\textit{ov}(X(au), X(\mathbf{0})) &= \int_{\mathbb{R}^d} \exp(i\lambda^T au) \; d\sigma(\lambda) \ X(au) &\stackrel{isometry}{\longleftrightarrow} \exp(i\lambda^T au) \end{aligned}$$

• *Y* – random variable defined through $X(\tau)$, $\mathbb{E}|Y|^2 < \infty$

- X(τ) a weakly stationary stationary process
- $\tau \in \mathbb{R}$ time variable,
- $au = (x, y, t) \in \mathbb{R}^3$ spatio-temporal fields

Covariance function → Bochner theorem → Spectral measure

$$egin{aligned} R(au) = \mathbb{C}\textit{ov}(X(au), X(\mathbf{0})) &= \int_{\mathbb{R}^d} \exp(i\lambda^T au) \; d\sigma(\lambda) \ X(au) &\stackrel{isometry}{\longleftrightarrow} \exp(i\lambda^T au) \end{aligned}$$

Y - random variable defined through X(τ), E|Y|² < ∞
 f - function on R^d, ∫ |f|²dσ < ∞
 Y isometry f

Krzysztof Podgórski, Lund University

• Take $f = \mathbf{1}_A$ and $Y = \zeta(A)$ be corresponding random variable

$$Y = \int \mathbf{1}_{\mathcal{A}}(\boldsymbol{\lambda}) d\zeta(\boldsymbol{\lambda}) \stackrel{isometry}{\longleftrightarrow} \mathbf{1}_{\mathcal{A}}$$

• Take $f = \mathbf{1}_A$ and $Y = \zeta(A)$ be corresponding random variable

$$Y = \int \mathbf{1}_{\mathcal{A}}(oldsymbol{\lambda}) d\zeta(oldsymbol{\lambda}) \stackrel{\textit{isometry}}{\longleftrightarrow} \mathbf{1}_{\mathcal{A}}$$

• $\zeta(\boldsymbol{\lambda}) \stackrel{\text{def}}{=} \zeta(-\infty, \boldsymbol{\lambda}].$

• Take $f = \mathbf{1}_A$ and $Y = \zeta(A)$ be corresponding random variable

$$Y = \int \mathbf{1}_{\mathcal{A}}(oldsymbol{\lambda}) d\zeta(oldsymbol{\lambda}) \stackrel{isometry}{\longleftrightarrow} \mathbf{1}_{\mathcal{A}}$$

ζ(λ) ^{def} = ζ(-∞, λ].
ζ(λ) - complex, zero mean, orthogonal (uncorrelated) increments,

• Take $f = \mathbf{1}_A$ and $Y = \zeta(A)$ be corresponding random variable

$$Y = \int \mathbf{1}_{\mathcal{A}}(\boldsymbol{\lambda}) d\zeta(\boldsymbol{\lambda}) \stackrel{isometry}{\longleftrightarrow} \mathbf{1}_{\mathcal{A}}$$

 ζ(λ) ^{def} = ζ(-∞, λ].
 ζ(λ) – complex, zero mean, orthogonal (uncorrelated) increments, E(|ζ(λ)|²) = σ(-∞, λ]

• Take $f = \mathbf{1}_A$ and $Y = \zeta(A)$ be corresponding random variable

$$Y = \int \mathbf{1}_{\mathcal{A}}(\boldsymbol{\lambda}) d\zeta(\boldsymbol{\lambda}) \stackrel{isometry}{\longleftrightarrow} \mathbf{1}_{\mathcal{A}}$$

 ζ(λ) ^{def} = ζ(-∞, λ].
 ζ(λ) - complex, zero mean, orthogonal (uncorrelated) increments,
 E(|ζ(λ)|²) = σ(-∞, λ] ζ(Λ) = ζ(-Λ)

• Take $f = \mathbf{1}_A$ and $Y = \zeta(A)$ be corresponding random variable

$$Y = \int \mathbf{1}_{\mathcal{A}}(\boldsymbol{\lambda}) d\zeta(\boldsymbol{\lambda}) \stackrel{isometry}{\longleftrightarrow} \mathbf{1}_{\mathcal{A}}$$

- ζ(λ) ^{def} = ζ(-∞, λ].
 ζ(λ) complex, zero mean, orthogonal (uncorrelated) increments,
 E(|ζ(λ)|²) = σ(-∞, λ] ζ(Λ) = ζ(-Λ)
- Spectral representation

$$X(au) = \int_{\mathbb{R}^d} \exp(i\lambda^T au) \ d\zeta(\lambda) \stackrel{isometry}{\longleftrightarrow} \exp(i\lambda^T au)$$

Spectral theorem through discretization – simulation

Spectral theorem through discretization – simulation

$$X(au) = \sum_{oldsymbol{\lambda}_j \in \Lambda_+} \sqrt{2\sigma(oldsymbol{\lambda}_j)} R_j \cos(oldsymbol{\lambda}_j^T au + \epsilon_j),$$

Spectral theorem through discretization – simulation

$$X(au) = \sum_{oldsymbol{\lambda}_j \in \Lambda_+} \sqrt{2\sigma(oldsymbol{\lambda}_j)} R_j \cos(oldsymbol{\lambda}_j^{\mathsf{T}} au + \epsilon_j),$$

 σ²(λ_j) is proportional to the increments of the spectral measure σ over the grid cell Δλ_i corresponding to λ_i,

Spectral theorem through discretization – simulation

$$X(au) = \sum_{oldsymbol{\lambda}_j \in \Lambda_+} \sqrt{2\sigma(oldsymbol{\lambda}_j)} oldsymbol{R}_j \cos(oldsymbol{\lambda}_j^{\mathsf{T}} oldsymbol{ au} + \epsilon_j),$$

- σ²(λ_j) is proportional to the increments of the spectral measure σ over the grid cell Δλ_i corresponding to λ_j,
- R_i is a zero mean random variable uncorrelated with other R_i's,

$$extsf{R}_{j} = \sigma(\Delta oldsymbol{\lambda}_{j}) / \sqrt{\mathbb{V} extsf{ar}(\sigma(\Delta oldsymbol{\lambda}_{j}))}.$$

Spectral theorem through discretization – simulation

$$X(au) = \sum_{oldsymbol{\lambda}_j \in \Lambda_+} \sqrt{2\sigma(oldsymbol{\lambda}_j)} R_j \cos(oldsymbol{\lambda}_j^{\mathsf{T}} au + \epsilon_j),$$

- σ²(λ_j) is proportional to the increments of the spectral measure σ over the grid cell Δλ_i corresponding to λ_j,
- R_i is a zero mean random variable uncorrelated with other R_i's,

$$R_j = \sigma(\Delta \lambda_j) / \sqrt{\mathbb{V}ar(\sigma(\Delta \lambda_j))}.$$

 If *R_j*'s are easy to obtain it can serve as a convenient method of simulation over the entire ℝ^d.

Outline

Spectral representation

- 2 Strictly stationary processes
- 3 The case of asymetric Laplace distribution
- 4 Spectral theorem for LMA Open problem No. 1
- 5 Ergodic theorem for Laplace process Open problem No. 2

Strictly stationary second order process

Our interest is in the strictly stationary processes, i.e. for each $k \in \mathbb{N}$, $A_j \subset \mathbb{R}$, \mathbf{t}_j , $\mathbf{s} \in \mathbb{R}^d$:

 $\mathbb{P}(X(\mathsf{t}_1) \in A_1, \dots, X(\mathsf{t}_k) \in A_k) = \mathbb{P}(X(\mathsf{t}_1 + \mathbf{s}) \in A_1, \dots, X(\mathsf{t}_k + \mathbf{s}) \in A_k)$

Strictly stationary second order process

Our interest is in the strictly stationary processes, i.e. for each $k \in \mathbb{N}$, $A_j \subset \mathbb{R}$, \mathbf{t}_j , $\mathbf{s} \in \mathbb{R}^d$:

$$\mathbb{P}(X(\mathsf{t}_1) \in A_1, \dots, X(\mathsf{t}_k) \in A_k) = \mathbb{P}(X(\mathsf{t}_1 + \mathbf{s}) \in A_1, \dots, X(\mathsf{t}_k + \mathbf{s}) \in A_k)$$

We are still interested in the second order processes so the covariance function is well defined.

Strictly stationary second order process

Our interest is in the strictly stationary processes, i.e. for each $k \in \mathbb{N}$, $A_j \subset \mathbb{R}$, \mathbf{t}_j , $\mathbf{s} \in \mathbb{R}^d$:

$$\mathbb{P}(X(\mathsf{t}_1) \in A_1, \dots, X(\mathsf{t}_k) \in A_k) = \mathbb{P}(X(\mathsf{t}_1 + \mathbf{s}) \in A_1, \dots, X(\mathsf{t}_k + \mathbf{s}) \in A_k)$$

We are still interested in the second order processes so the covariance function is well defined.

Are there any interesting processes of this sort?

Let ζ be a stochastic measure build upon some infinitely divisible distribution with finite second moments.

Let ζ be a stochastic measure build upon some infinitely divisible distribution with finite second moments.

Harmonizable processes

$$X(au) = \int_{\mathbb{R}^d} \exp(i\lambda^T au) \ d\zeta(\lambda),$$

Let ζ be a stochastic measure build upon some infinitely divisible distribution with finite second moments.

Harmonizable processes

$$X(au) = \int_{\mathbb{R}^d} \exp(i oldsymbol{\lambda}^T au) \ d\zeta(oldsymbol{\lambda}),$$

• By a proper choice of ζ one can get 'any' covariance.

Let ζ be a stochastic measure build upon some infinitely divisible distribution with finite second moments.

Harmonizable processes

$$X(au) = \int_{\mathbb{R}^d} \exp(i \lambda^T au) \ d\zeta(\lambda),$$

By a proper choice of ζ one can get 'any' covariance.
Moving average processes

$$X(au) = \int_{\mathbb{R}^d} f(au - oldsymbol{\lambda}) \; d\zeta(oldsymbol{\lambda}).$$

Let ζ be a stochastic measure build upon some infinitely divisible distribution with finite second moments.

Harmonizable processes

$$X(au) = \int_{\mathbb{R}^d} \exp(i \lambda^T au) \ d\zeta(\lambda),$$

- By a proper choice of ζ one can get 'any' covariance.
- Moving average processes

$$X(au) = \int_{\mathbb{R}^d} f(au - oldsymbol{\lambda}) \ d\zeta(oldsymbol{\lambda}).$$

By a proper choice of the kernel f one can get 'any' covariance.

Spatial moving avarges

Let ζ be a stochastic measure build upon some infinitely divisible distribution with finite second moments.

Spatial moving avarges

Let ζ be a stochastic measure build upon some infinitely divisible distribution with finite second moments.

Harmonizable processes

$$X(au) = \int_{\mathbb{R}^d} \exp(i \lambda^T au) \ d\zeta(\lambda),$$

Spatial moving avarges

Let ζ be a stochastic measure build upon some infinitely divisible distribution with finite second moments.

Harmonizable processes

$$X(au) = \int_{\mathbb{R}^d} \exp(i oldsymbol{\lambda}^T au) \ d\zeta(oldsymbol{\lambda}),$$

• By a proper choice of ζ one can get 'any' covariance.

Spatial moving avarges

Let ζ be a stochastic measure build upon some infinitely divisible distribution with finite second moments.

Harmonizable processes

$$X(au) = \int_{\mathbb{R}^d} \exp(i \lambda^T au) \ d\zeta(\lambda),$$

By a proper choice of ζ one can get 'any' covariance.
Moving average processes

$$X(au) = \int_{\mathbb{R}^d} f(au - oldsymbol{\lambda}) \; d\zeta(oldsymbol{\lambda}).$$

Spatial moving avarges

Let ζ be a stochastic measure build upon some infinitely divisible distribution with finite second moments.

Harmonizable processes

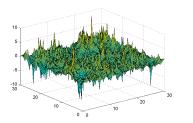
$$X(au) = \int_{\mathbb{R}^d} \exp(i \lambda^T au) \ d\zeta(\lambda),$$

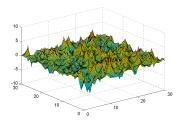
- By a proper choice of ζ one can get 'any' covariance.
- Moving average processes

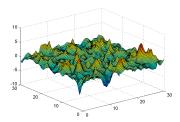
$$X(au) = \int_{\mathbb{R}^d} f(au - oldsymbol{\lambda}) \ d\zeta(oldsymbol{\lambda}).$$

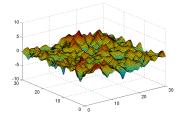
By a proper choice of the kernel f one can get 'any' covariance.

Symmetric spatial models - realizations

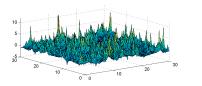


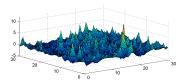


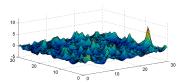


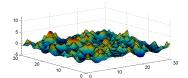


Asymmetric spatial models



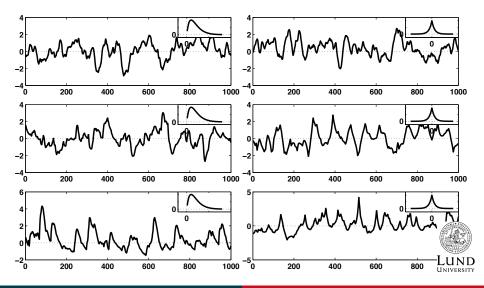




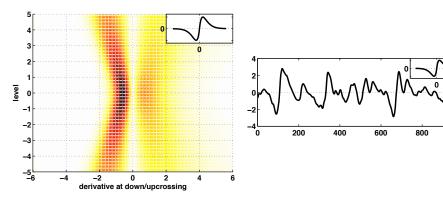


Krzysztof Podgórski, Lund University

Tilting of trajectories



Another way of tilting



1000

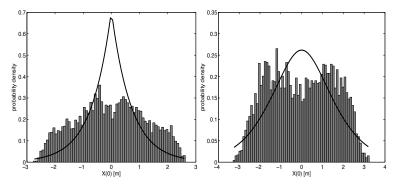
Krzysztof Podgórski, Lund University

Sampling distributions

Krzysztof Podgórski, Lund University

Sampling distributions

• The sampling distribution compared with the marginal



Outline

- Spectral representation
- Strictly stationary processes
- 3 The case of asymetric Laplace distribution
- 4 Spectral theorem for LMA Open problem No. 1
- 5 Ergodic theorem for Laplace process Open problem No. 2

Asymmetric Laplace distribution

Asymmetric Laplace distribution

 An interesting class of processes is obtained by considering an infinitely divisible distribution of

$$\sigma \sqrt{W} Z + \mu W + \delta,$$

where W is a standard exponential independent of a standard normal Z (can be multidimensional).

Asymmetric Laplace distribution

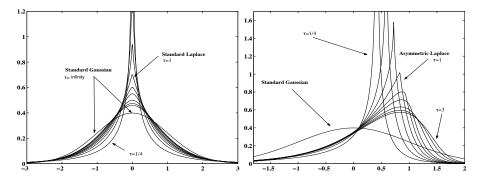
 An interesting class of processes is obtained by considering an infinitely divisible distribution of

$$\sigma\sqrt{W}Z + \mu W + \delta,$$

where W is a standard exponential independent of a standard normal Z (can be multidimensional).

• Complete infinitely divisible convolution group of distributions is obtained by taking for *W* a gamma random variable.

Examples of the densities



Outline

- Spectral representation
- 2 Strictly stationary processes
- 3 The case of asymetric Laplace distribution
- 4 Spectral theorem for LMA Open problem No. 1
- 5 Ergodic theorem for Laplace process Open problem No. 2

• By the means of stochastic integral we define

$$X(au) = \int_{\mathbb{R}^d} f(au - \mathbf{x}) d \Lambda(\mathbf{x}).$$

• By the means of stochastic integral we define

$$X(au) = \int_{\mathbb{R}^d} f(au - \mathbf{x}) d\Lambda(\mathbf{x}).$$

Λ(A) has the generalized asymmetric Laplace distribution

$$\phi(t) = \frac{1}{\left(1 - i\mu t + \frac{\sigma^2}{2}t^2\right)^{\lambda(A)}},$$

where λ is the Lebesgue measure in \mathbb{R}^d .

By the means of stochastic integral we define

$$X(au) = \int_{\mathbb{R}^d} f(au - \mathbf{x}) d\Lambda(\mathbf{x}).$$

Λ(A) has the generalized asymmetric Laplace distribution

$$\phi(t) = \frac{1}{\left(1 - i\mu t + \frac{\sigma^2}{2}t^2\right)^{\lambda(A)}},$$

where λ is the Lebesgue measure in \mathbb{R}^d .

If *d* = 1, then Λ(−∞, *x*] = *B*(Γ(*x*)), where *B* is a Brownian motion with drift and Γ is a gamma process.

By the means of stochastic integral we define

$$X(au) = \int_{\mathbb{R}^d} f(au - \mathbf{x}) d\Lambda(\mathbf{x}).$$

Λ(A) has the generalized asymmetric Laplace distribution

$$\phi(t) = \frac{1}{\left(1 - i\mu t + \frac{\sigma^2}{2}t^2\right)^{\lambda(A)}},$$

where λ is the Lebesgue measure in \mathbb{R}^d .

- If *d* = 1, then Λ(−∞, *x*] = *B*(Γ(*x*)), where *B* is a Brownian motion with drift and Γ is a gamma process.
- Conditionally on Γ the process X_t can be viewed as a non-stationary Gaussian process.

$$X(\tau) = \int_{\mathbb{R}^d} \exp(i\omega^T \tau) \ d\zeta(\omega)$$

$$X(\tau) = \int_{\mathbb{R}^d} \exp(i\omega^T \tau) \ d\zeta(\omega) = \int_{\mathbb{R}^d} f(\tau - \mathbf{x}) \ d\Lambda(\mathbf{x})$$

$$X(\tau) = \int_{\mathbb{R}^d} \exp(i\omega^T \tau) \ d\zeta(\omega) = \int_{\mathbb{R}^d} f(\tau - \mathbf{x}) \ d\Lambda(\mathbf{x})$$

• ζ is a stochastic measure with uncorrelated increments

$$X(\tau) = \int_{\mathbb{R}^d} \exp(i\omega^T \tau) \ d\zeta(\omega) = \int_{\mathbb{R}^d} f(\tau - \mathbf{x}) \ d\Lambda(\mathbf{x})$$

ζ is a stochastic measure with uncorrelated increments
Λ is a stochastic measure with independent increments

$$X(\tau) = \int_{\mathbb{R}^d} \exp(i\omega^T \tau) \ d\zeta(\omega) = \int_{\mathbb{R}^d} f(\tau - \mathbf{x}) \ d\Lambda(\mathbf{x})$$

- ζ is a stochastic measure with uncorrelated increments
- A is a stochastic measure with independent increments
- Problem: Express ζ in the terms of Λ and f and find its properties (distribution, dependence structure, etc.)

$$X(\tau) = \int_{\mathbb{R}^d} \exp(i\omega^T \tau) \ d\zeta(\omega) = \int_{\mathbb{R}^d} f(\tau - \mathbf{x}) \ d\Lambda(\mathbf{x})$$

- ζ is a stochastic measure with uncorrelated increments
- A is a stochastic measure with independent increments
- Problem: Express ζ in the terms of Λ and f and find its properties (distribution, dependence structure, etc.)
- One possible application is getting efficiently *R_i*'s in:

$$X(au) = \sum_{oldsymbol{\lambda}_j \in \Lambda_+} \sqrt{2\sigma(oldsymbol{\lambda}_j)} R_j \cos(oldsymbol{\lambda}_j^{ au} au + \epsilon_j),$$

Krzysztof Podgórski, Lund University

• Let $\phi(\omega)$ be an inverse Fourier transform of f(x).

$$\begin{aligned} X(\tau) &= \int_{-\infty}^{\infty} f(\tau - x) \ d\Lambda(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(\tau - x)\omega} \phi(\omega) \ d\omega \\ &= \int_{-\infty}^{\infty} e^{-ix\omega} \ d\Lambda(x) \phi(\omega) \ d\omega. \end{aligned}$$

• Let $\phi(\omega)$ be an inverse Fourier transform of f(x).

$$\begin{split} X(\tau) &= \int_{-\infty}^{\infty} f(\tau - x) \ d\Lambda(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(\tau - x)\omega} \phi(\omega) \ d\omega \\ &= \int_{-\infty}^{\infty} e^{-ix\omega} \ d\Lambda(x) \phi(\omega) \ d\omega. \end{split}$$

• So a good candidate for spectral measure ζ :

$$\zeta(a,b] = \int_a^b Y(\omega)\phi(\omega) \ d\omega,$$

where

$$Y(\omega) = \int_{-\infty}^{\infty} e^{-ix\omega} d\Lambda(x).$$

• Let $\phi(\omega)$ be an inverse Fourier transform of f(x).

$$\begin{split} X(\tau) &= \int_{-\infty}^{\infty} f(\tau - x) \ d\Lambda(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(\tau - x)\omega} \phi(\omega) \ d\omega \\ &= \int_{-\infty}^{\infty} e^{-ix\omega} \ d\Lambda(x) \phi(\omega) \ d\omega. \end{split}$$

• So a good candidate for spectral measure ζ :

$$\zeta(\boldsymbol{a},\boldsymbol{b}] = \int_{\boldsymbol{a}}^{\boldsymbol{b}} \boldsymbol{Y}(\omega) \phi(\omega) \, \boldsymbol{d}\omega,$$

where

$$Y(\omega) = \int_{-\infty}^{\infty} e^{-ix\omega} d\Lambda(x).$$

But Y(ω) is not defined in a proper way...

Outline

- Spectral representation
- 2 Strictly stationary processes
- 3 The case of asymetric Laplace distribution
- 4 Spectral theorem for LMA Open problem No. 1
- 5 Ergodic theorem for Laplace process Open problem No. 2

Ergodic theorem for strictly stationary processes

 It is a classical result of Birkhoff (also Wiener) saying that for each function *f* defined on a strictly stationary process *X*(*τ*) such that *Ef*(*X*(*τ*)) is finite

$$\lim_{T o\infty}rac{1}{T}\int_0^T f(X(au+s)) \; ds = \mathbb{E}f(X(au)|\mathcal{J}),$$

where \mathcal{J} is the sigma field of shift invariant sets defined on trajectories of $X(\tau)$.

Ergodic theorem for strictly stationary processes

 It is a classical result of Birkhoff (also Wiener) saying that for each function *f* defined on a strictly stationary process *X*(*τ*) such that *Ef*(*X*(*τ*)) is finite

$$\lim_{T o\infty}rac{1}{T}\int_0^T f(X(au+s)) \; ds = \mathbb{E}f(X(au)|\mathcal{J}),$$

where \mathcal{J} is the sigma field of shift invariant sets defined on trajectories of $X(\tau)$.

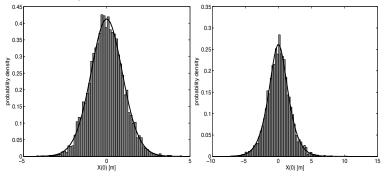
 If *J* is made of sets of null or full measures, then process is ergodic, convergence is to the mean, and process is called ergodic.

General ergodic properties of infinitely divisible processes

• For general infinitely divisible processes, their properties were well studied, see for example Cambanis, Podgórski, Weron (1995).

General ergodic properties of infinitely divisible processes

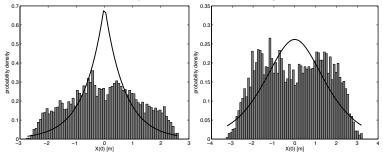
- For general infinitely divisible processes, their properties were well studied, see for example Cambanis, Podgórski, Weron (1995).
- Moving averages are ergodic (they are even mixing), in particular LMA are ergodic:



 Harmonizable process are not ergodic, in particular Laplace driven harmonizable processes are not ergodic:

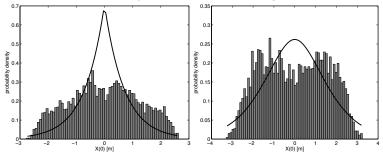


• Harmonizable process are not ergodic, in particular Laplace driven harmonizable processes are not ergodic:



• However due to the ergodic theorem their sample means are convergent to a random variable (conditional expectation).

• Harmonizable process are not ergodic, in particular Laplace driven harmonizable processes are not ergodic:



- However due to the ergodic theorem their sample means are convergent to a random variable (conditional expectation).
- Problem: What is the distribution of this random variable or, equivalenty, what is the *σ*-field of shift invariant sets?

• Laplace motion is a pure jump process.

- Laplace motion is a pure jump process.
- Consider \mathcal{J} made of the events on a Laplace motion that are invariant on the change of order of absolute values of jumps.

- Laplace motion is a pure jump process.
- Consider \mathcal{J} made of the events on a Laplace motion that are invariant on the change of order of absolute values of jumps.
- This σ-field is shift invariant.

- Laplace motion is a pure jump process.
- Consider \mathcal{J} made of the events on a Laplace motion that are invariant on the change of order of absolute values of jumps.
- This σ -field is shift invariant.
- Wright (1976) has shown that

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T X^2(\tau+s)\ ds=\sum_{i=0}^\infty J_i^2,$$

- Laplace motion is a pure jump process.
- Consider \mathcal{J} made of the events on a Laplace motion that are invariant on the change of order of absolute values of jumps.
- This σ-field is shift invariant.
- Wright (1976) has shown that

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T X^2(\tau+s)\ ds=\sum_{i=0}^\infty J_i^2,$$

• Why to care beyond being interesting mathematical problem?

- Laplace motion is a pure jump process.
- Consider \mathcal{J} made of the events on a Laplace motion that are invariant on the change of order of absolute values of jumps.
- This σ-field is shift invariant.
- Wright (1976) has shown that

$$\lim_{T
ightarrow\infty}rac{1}{T}\int_0^T X^2(au+s)\;ds=\sum_{i=0}^\infty J_i^2,$$

 Why to care beyond being interesting mathematical problem? Ans. Statistical inference based on conditional distribution in assessing sample to sample variation.

Why unsolved?

Krzysztof Podgórski, Lund University

Why unsolved?

"Theorems are fun especially when you are the prover, but then the pleasure fades. What keeps us going are the unsolved problems."

