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Spectral representation

Isometry between random variables and functions

X (τ ) – a weakly stationary stationary process
τ ∈ R – time variable,
τ = (x , y , t) ∈ R3 – spatio-temporal fields

Covariance function 7→ Bochner theorem 7→ Spectral measure

R(τ ) = Cov(X (τ ),X (0)) =

∫
Rd

exp(iλTτ ) dσ(λ)

X (τ)
isometry←→ exp(iλTτ )

Y – random variable defined through X (τ ), E|Y |2 <∞
f – function on Rd ,

∫
|f |2dσ <∞

Y
isometry←→ f
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Spectral representation

Spectral theorem

Take f = 1A and Y = ζ(A) be corresponding random variable

Y =

∫
1A(λ)dζ(λ)

isometry←→ 1A

ζ(λ)
def
= ζ(−∞,λ].

ζ(λ) – complex, zero mean, orthogonal (uncorrelated) increments,

E(|ζ(λ)|2) = σ(−∞,λ]

ζ(A) = ζ(−A)

Spectral representation

X (τ ) =

∫
Rd

exp(iλTτ ) dζ(λ)
isometry←→ exp(iλTτ )
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Krzysztof Podgórski, Lund University Spectral theorem and ergodicity for LMA process 4 / 27



Spectral representation

Spectral theorem

Take f = 1A and Y = ζ(A) be corresponding random variable

Y =

∫
1A(λ)dζ(λ)

isometry←→ 1A

ζ(λ)
def
= ζ(−∞,λ].

ζ(λ) – complex, zero mean, orthogonal (uncorrelated) increments,

E(|ζ(λ)|2) = σ(−∞,λ]

ζ(A) = ζ(−A)

Spectral representation

X (τ ) =

∫
Rd

exp(iλTτ ) dζ(λ)
isometry←→ exp(iλTτ )
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Spectral representation

Spectral theorem through discretization – simulation

X (τ ) =
∑

λj∈Λ+

√
2σ(λj)Rj cos(λT

j τ + εj),

σ2(λj) is proportional to the increments of the spectral measure σ
over the grid cell ∆λj corresponding to λj ,
Rj is a zero mean random variable uncorrelated with other Ri ’s,

Rj = σ(∆λj)/
√

Var(σ(∆λj)).

If Rj ’s are easy to obtain it can serve as a convenient method of
simulation over the entire Rd .
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Krzysztof Podgórski, Lund University Spectral theorem and ergodicity for LMA process 5 / 27



Spectral representation

Spectral theorem through discretization – simulation

X (τ ) =
∑

λj∈Λ+

√
2σ(λj)Rj cos(λT

j τ + εj),

σ2(λj) is proportional to the increments of the spectral measure σ
over the grid cell ∆λj corresponding to λj ,

Rj is a zero mean random variable uncorrelated with other Ri ’s,

Rj = σ(∆λj)/
√

Var(σ(∆λj)).

If Rj ’s are easy to obtain it can serve as a convenient method of
simulation over the entire Rd .
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Strictly stationary processes

Outline

1 Spectral representation

2 Strictly stationary processes

3 The case of asymetric Laplace distribution

4 Spectral theorem for LMA – Open problem No. 1

5 Ergodic theorem for Laplace process – Open problem No. 2
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Strictly stationary processes

Strictly stationary second order process

Our interest is in the strictly stationary processes, i.e. for each k ∈ N,
Aj ⊂ R, tj ,s ∈ Rd :

P(X (t1) ∈ A1, . . . ,X (tk ) ∈ Ak ) = P(X (t1 + s) ∈ A1, . . . ,X (tk + s) ∈ Ak )

We are still interested in the second order processes so the covariance
function is well defined.
Are there any interesting processes of this sort?
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Krzysztof Podgórski, Lund University Spectral theorem and ergodicity for LMA process 7 / 27



Strictly stationary processes

Strictly stationary second order process

Our interest is in the strictly stationary processes, i.e. for each k ∈ N,
Aj ⊂ R, tj ,s ∈ Rd :

P(X (t1) ∈ A1, . . . ,X (tk ) ∈ Ak ) = P(X (t1 + s) ∈ A1, . . . ,X (tk + s) ∈ Ak )

We are still interested in the second order processes so the covariance
function is well defined.
Are there any interesting processes of this sort?
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Strictly stationary processes

Building using stochastic integration

Let ζ be a stochastic measure build upon some infinitely divisible
distribution with finite second moments.

Harmonizable processes

X (τ ) =

∫
Rd

exp(iλTτ ) dζ(λ),

By a proper choice of ζ one can get ‘any’ covariance.
Moving average processes

X (τ ) =

∫
Rd

f (τ − λ) dζ(λ).

By a proper choice of the kernel f one can get ‘any’ covariance.

Krzysztof Podgórski, Lund University Spectral theorem and ergodicity for LMA process 8 / 27



Strictly stationary processes

Building using stochastic integration

Let ζ be a stochastic measure build upon some infinitely divisible
distribution with finite second moments.

Harmonizable processes

X (τ ) =

∫
Rd

exp(iλTτ ) dζ(λ),

By a proper choice of ζ one can get ‘any’ covariance.
Moving average processes

X (τ ) =

∫
Rd

f (τ − λ) dζ(λ).

By a proper choice of the kernel f one can get ‘any’ covariance.
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Strictly stationary processes

Spatial moving avarges

Let ζ be a stochastic measure build upon some infinitely divisible
distribution with finite second moments.
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Strictly stationary processes

Symmetric spatial models - realizations
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Strictly stationary processes

Asymmetric spatial models
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Strictly stationary processes

Tilting of trajectories
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Strictly stationary processes

Another way of tilting

derivative at down/upcrossing
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Strictly stationary processes

Sampling distributions

The sampling distribution compared with the marginal
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The case of asymetric Laplace distribution

Asymmetric Laplace distribution

An interesting class of processes is obtained by considering an
infinitely divisible distribution of

σ
√

WZ + µW + δ,

where W is a standard exponential independent of a standard
normal Z (can be multidimensional).
Complete infinitely divisible convolution group of distributions is
obtained by taking for W a gamma random variable.
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The case of asymetric Laplace distribution

Examples of the densities
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Spectral theorem for LMA – Open problem No. 1
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Spectral theorem for LMA – Open problem No. 1

Laplace moving average

By the means of stochastic integral we define

X (τ ) =

∫
Rd

f (τ − x)dΛ(x).

Λ(A) has the generalized asymmetric Laplace distribution

φ(t) =
1(

1− iµt + σ2

2 t2
)λ(A)

,

where λ is the Lebesgue measure in Rd .
If d = 1, then Λ(−∞, x ] = B(Γ(x)), where B is a Brownian motion
with drift and Γ is a gamma process.
Conditionally on Γ the process Xt can be viewed as a
non-stationary Gaussian process.
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Spectral theorem for LMA – Open problem No. 1

Spectral representation for LMA

X (τ ) =

∫
Rd

exp(iωTτ ) dζ(ω)

=

∫
Rd

f (τ − x) dΛ(x)

ζ is a stochastic measure with uncorrelated increments
Λ is a stochastic measure with independent increments
Problem: Express ζ in the terms of Λ and f and find its properties
(distribution, dependence structure, etc.)
One possible application is getting efficiently Rj ’s in:

X (τ ) =
∑

λj∈Λ+

√
2σ(λj)Rj cos(λT

j τ + εj),
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Krzysztof Podgórski, Lund University Spectral theorem and ergodicity for LMA process 20 / 27



Spectral theorem for LMA – Open problem No. 1

Spectral representation for LMA

X (τ ) =

∫
Rd

exp(iωTτ ) dζ(ω) =

∫
Rd

f (τ − x) dΛ(x)

ζ is a stochastic measure with uncorrelated increments
Λ is a stochastic measure with independent increments
Problem: Express ζ in the terms of Λ and f and find its properties
(distribution, dependence structure, etc.)
One possible application is getting efficiently Rj ’s in:

X (τ ) =
∑

λj∈Λ+

√
2σ(λj)Rj cos(λT

j τ + εj),
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Spectral theorem for LMA – Open problem No. 1

An uneducated and wild guess

Let φ(ω) be an inverse Fourier transform of f (x).

X (τ) =

∫ ∞
−∞

f (τ − x) dΛ(x) =

∫ ∞
−∞

∫ ∞
−∞

ei(τ−x)ωφ(ω) dω

=

∫ ∞
−∞

e−ixω dΛ(x)φ(ω) dω.

So a good candidate for spectral measure ζ:

ζ(a,b] =

∫ b

a
Y (ω)φ(ω) dω,

where
Y (ω) =

∫ ∞
−∞

e−ixω dΛ(x).

But Y (ω) is not defined in a proper way...
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Ergodic theorem for Laplace process – Open problem No. 2
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Ergodic theorem for Laplace process – Open problem No. 2

Ergodic theorem for strictly stationary processes

It is a classical result of Birkhoff (also Wiener) saying that for each
function f defined on a strictly stationary process X (τ ) such that
Ef (X (τ )) is finite

lim
T→∞

1
T

∫ T

0
f (X (τ + s)) ds = Ef (X (τ )|J ),

where J is the sigma field of shift invariant sets defined on
trajectories of X (τ ).

If J is made of sets of null or full measures, then process is
ergodic, convergence is to the mean, and process is called
ergodic.
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Ergodic theorem for Laplace process – Open problem No. 2

General ergodic properties of infinitely divisible processes

For general infinitely divisible processes, their properties were well
studied, see for example Cambanis, Podgórski, Weron (1995).

Moving averages are ergodic (they are even mixing), in particular
LMA are ergodic:
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Krzysztof Podgórski, Lund University Spectral theorem and ergodicity for LMA process 24 / 27



Ergodic theorem for Laplace process – Open problem No. 2

Invariant sets for harmonizable processes – Open Problem 2

Harmonizable process are not ergodic, in particular Laplace
driven harmonizable processes are not ergodic:
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However due to the ergodic theorem their sample means are
convergent to a random variable (conditional expectation).
Problem: What is the distribution of this random variable or,
equivalenty, what is the σ-field of shift invariant sets?
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Ergodic theorem for Laplace process – Open problem No. 2

An educated but still wild guess

Laplace motion is a pure jump process.
Consider J made of the events on a Laplace motion that are
invariant on the change of order of absolute values of jumps.
This σ-field is shift invariant.
Wright (1976) has shown that

lim
T→∞

1
T

∫ T

0
X 2(τ + s) ds =

∞∑
i=0

J2
i ,

Why to care beyond being interesting mathematical problem?
Ans. Statistical inference based on conditional distribution in
assessing sample to sample variation.
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Ergodic theorem for Laplace process – Open problem No. 2

Why unsolved?

“Theorems are fun especially when you are the prover, but then the
pleasure fades. What keeps us going are the unsolved problems.”
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