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Overview (1/2)

Microarray experiments explained

Quality of different steps in microarray 
experiments varies between arrays

Currently - outlier or non-outlier array

We propose modelling of array specific 
variance components



Overview (2/2)

Gene specific variance components with prior 
distribution, empirical Bayes

A statistic is produced with known 
distribution

Performance is evaluated on simulated data



Biological question

What genes are differentially expressed 
between two (paired) conditions?
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Differentially expressed?

Central dogma of molecular biology:
DNA – RNA – Protein

Microarrays measure RNA levels.

Two main subtechnologies:
Two-color spotted cDNA microarrays
Oligonucleotide microarrays (Affymetrix)
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Two-color spotted cDNA 
microarrays

Manufacturing – 
cDNA probes from 
reverse-transcribed 
mRNA

Two colors (red and 
green) for different 
samples

Comparative analysis
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Oligonucleotide 
microarrays (Affymetrix)

Manufacturing – 
Litographic process

One color per array

Direct analysis

Every gene 
represented by several 
(11-20) probes
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Nature of microarray data

Many dimensions (genes), 
typically 5000-44000

Few replicates (arrays), typically 3-100
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Experiment overview (affy)
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Experiment overview 
(cDNA)
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Experiment overview
- in reality
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Nature of microarray data
- part II

Quality of data from arrays differ, technically 
and biologically (differing variances)

Many dimensions (genes), 
typically 5000-44000

Few replicates (arrays), typically 3-100

Spurious significants problem (small s)
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Established models dealing 
with spurious significance
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Efron, et al (2001): tgpenalized = x̄g

s90+sg
,

where s90 is the 90:th percentile of all sg.

Lönnstedt & Speed (2002); Smyth(2004):
Empirical Bayes:
X̄g|µg, σ2

g ∼ N(µg, σ2
g/NI),

s2
g|σ2

g ∼ σ2
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The proposed model

Xig|cg, µg, σ2
i ∼ N(µg, cg · σ2

i )
cg ∼ Γ−1(α, β)

H0 : µg = 0, HA : µg "= 0

Empirical Bayes
-estimating parameters from data
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Estimation strategy

ML estimate              using the information of 
all genes. Estimated with high precision.

Build the statistic for     with              treated 
as known.
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σ2
i , α, β

µg σ2
i , α, β



Estimating 
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σ2
i

Define Yj = Xj+1 −X1, then E[Y ] = 0 and Cov[Y ] = cgΣ,
where Σ = diag(σ2

2, . . . ,σ
2
n) + σ2

11(n−1)×(n−1).

Estimate ratios ri =
σ2

i+1

σ2
1

through transformation:

v = (Y1
Y1

, · · · ,
YNI−1

Y1
).

Numerical maximum likelihood estimation:
l(r1, . . . , rNI−1|{Xg,i}) =

C ′′ − NG
2 log

(
|Σ̃|

)
− NI−1

2

∑Ng

g=1 log
(
v′gΣ̃

−1vg

)
, where

Σ̃ = Σ/σ2
1 = diag(r1, . . . , rNI−1) + 1(n−1)×(n−1).



Estimating 
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Treat σ2
i as known. Define Yj = Xj+1 −X1.

Then E[Y ] = 0 and Cov[Y ] = cgΣ, where
Σ = diag(σ2

2, . . . ,σ
2
n) + σ2

11(n−1)×(n−1).

Define Sg = Y ′
gΣ

−1Yg, making Sg ∼ cgχ2
NI−1.

Now, Sg|α, β ∼ Γ−1(α, β) · χ2
NI−1 = Γ((NI−1)/2,1/2)

Γ(α,β) =

2β · β′(NI−1
2 , α), where β′ is the β′-distribution.

Finally, α, β are numerically ML estimated:
l(α, β|{Sg}) = C − (

α + NI−1
2

) ∑NG

g=1 log(sg/2 + β)+

NG

[
α log(β) + log Γ

(
α + NI−1

2

)− log Γ(α)
]

α, β



The statistic for 
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µg

Treating σ2
i , α, β as known, the unbiased statistic

with minimal variance given cg is :
X̄w

g = (
∑NI

j=1 1/σ2
j )
−1

∑NI

j=1
1
σ2

j
Xg,j,

X̄w
g |cg ∼ N(µg,

cgPNI
j=1

1
σ2

j

).

Conditioning on Sg,
fX̄w

g |Sg
(x|s) =

∫
fX̄w

g |cg ,Sg
(x|c, s)fcg |Sg(c|s) dc, yields:

X̄w
g |Sg ∼ µg + Zst

α+
Ni−1

2

·
√

2β+sgPNI
i=1 1/σ2

i

,

where Zst
a is the student-Z distribution

with a degrees of freedom.



Evaluation of performance

Simulated data according to model

Public datasets [future]: e.g. swirl (mutated 
zebra-fish)

Comparing with established statistics:
fold change, ordinary t,
penalized t (Efron et al),
moderated t (Smyth; LIMMA)
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Simulated data (1/3)
5000 genes, 4 arrays, alpha=1.5, beta=0.5
150 regulated genes with expected value ±1

4 different array specific variance situations
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σ2
1 σ2

2 σ2
3 σ2

4 r̂1 r̂2 r̂3

1 1 1 1 1.013(0.050) 1.000(0.050) 1.001(0.051)
5 1 1 1 0.204(0.028) 0.207(0.067) 0.200(0.023)
5 5 1 1 1.004(0.039) 0.199(0.011) 0.200(0.011)
5 5 5 1 1.004(0.044) 1.004(0.042) 0.204(0.018)
5 5 5 5 1.009(0.048) 1.000(0.050) 1.004(0.048)

Table 1: Estimation of the array-specific variance components



Simulated data (2/3)
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Simulated data (3/3)
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Variance Fold-change ord t Efron’s t LIMMA WAME
(1, 1, 1, 1) 0.923 0.885 0.930 0.924 0.924
(1, 5, 1, 1) 0.841 0.820 0.860 0.858 0.900
(1, 5, 1, 5) 0.783 0.770 0.801 0.803 0.870
(1, 5, 5, 5) 0.744 0.731 0.758 0.759 0.818

Table 1: Areas under ROC



Summary

Microarray data have differences in quality.

The proposed method models those 
differences as differences in variance.

Spurious significance must be taken care of.

On simulated data, the proposed method 
performs well.
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Questions?

How to validate biologically?

Alternative ideas for statistic?
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