Weighting of microarrays to improve quality of inference

-an empirical Bayes approach

Anders Sjögren, Erik Kristiansson, Mats Rudemo, Olle Nerman. Department of Mathematical Statistic, Chalmers University of Technology, Sweden.

Overview (1/2)

Microarray experiments explained

Quality of different steps in microarray experiments varies between arrays

Currently - outlier or non-outlier array

We propose modelling of array specific variance components

Overview (2/2)

Gene specific variance components with prior distribution, empirical Bayes

A statistic is produced with known distribution

Performance is evaluated on simulated data

Biological question

What genes are differentially expressed between two (paired) conditions?

Differentially expressed?

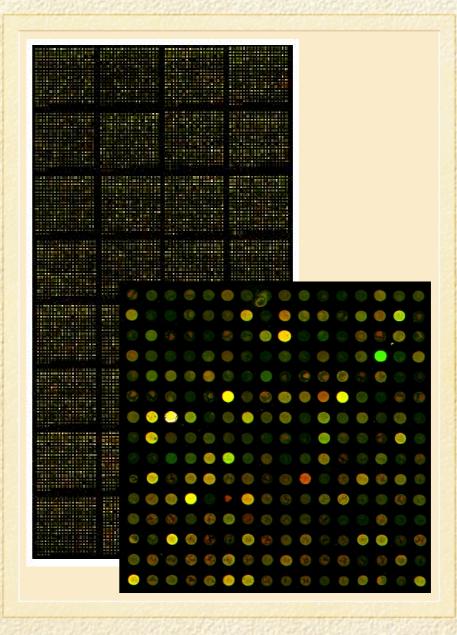
- Central dogma of molecular biology: DNA – RNA – Protein
- Microarrays measure RNA levels.
- Two main subtechnologies: Two-color spotted cDNA microarrays Oligonucleotide microarrays (Affymetrix)

Two-color spotted cDNA microarrays

Manufacturing – cDNA probes from reverse-transcribed mRNA

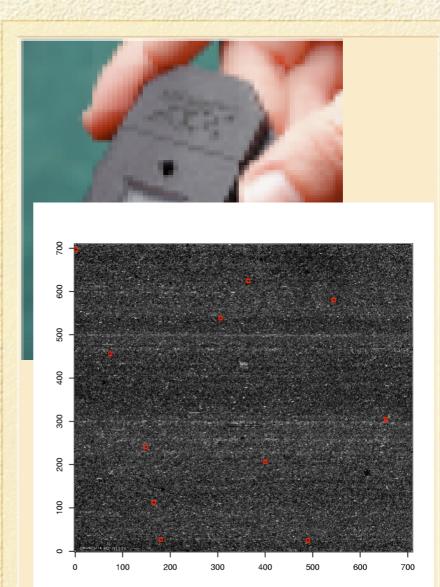
Two colors (red and green) for different samples

Comparative analysis



Oligonucleotide microarrays (Affymetrix)

- Manufacturing Litographic process
- One color per array
- Direct analysis
- Every gene
 represented by several
 (11-20) probes

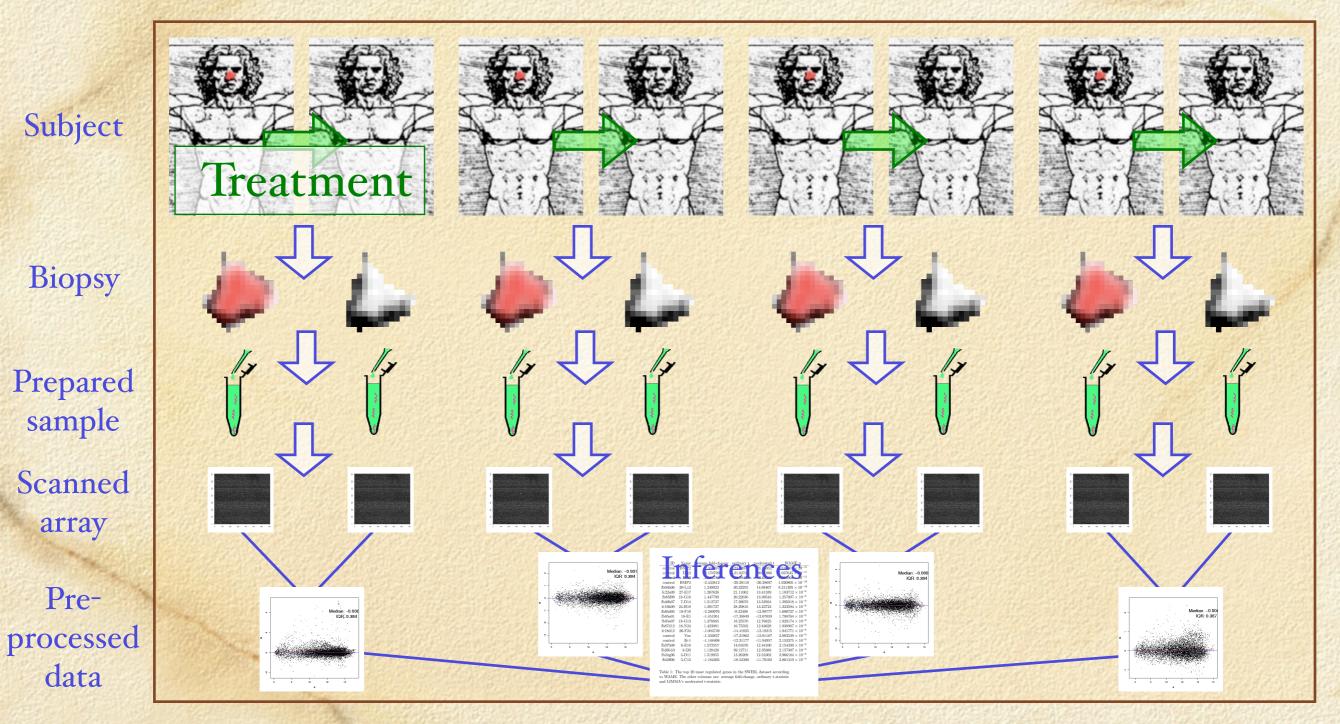


Nature of microarray data

 Many dimensions (genes), typically 5000-44000

Few replicates (arrays), typically 3-100

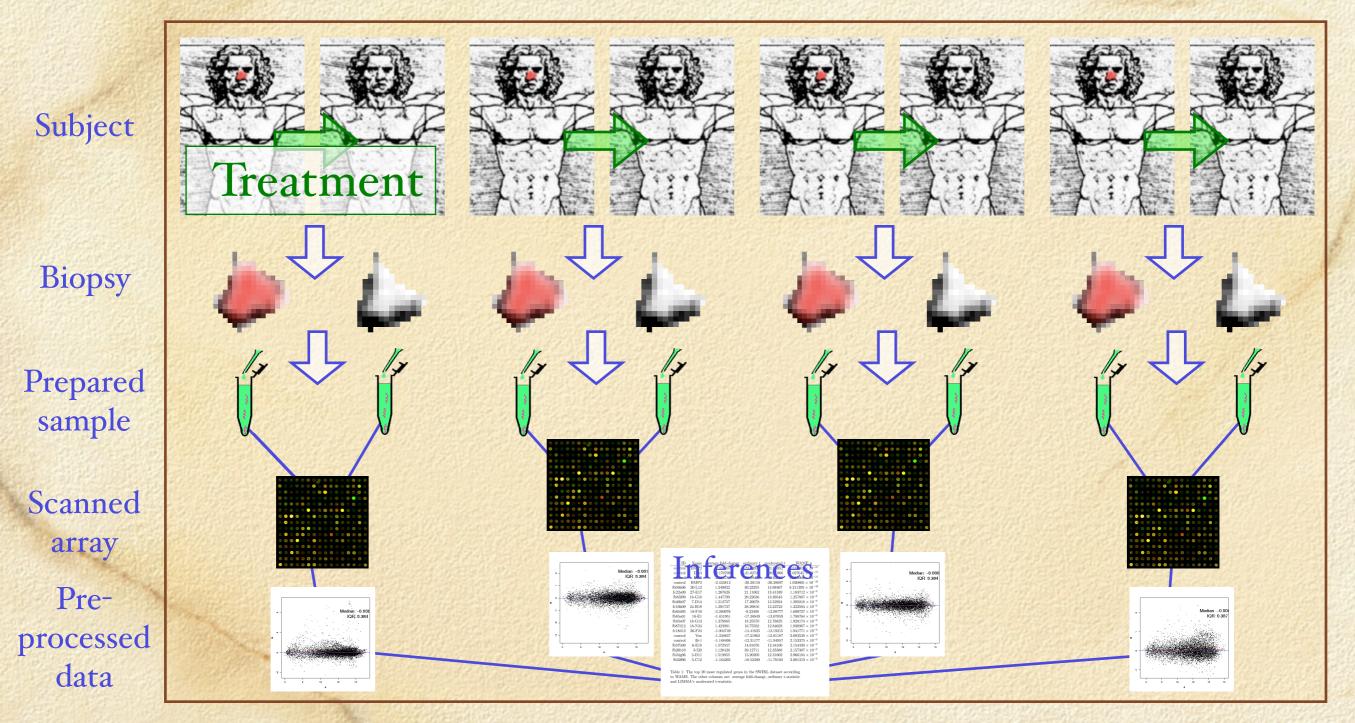
Experiment overview (affy)



Microarray experiments | Quality variations | Modelling of variance components | Producing a statistic | Evaluating performance

States States

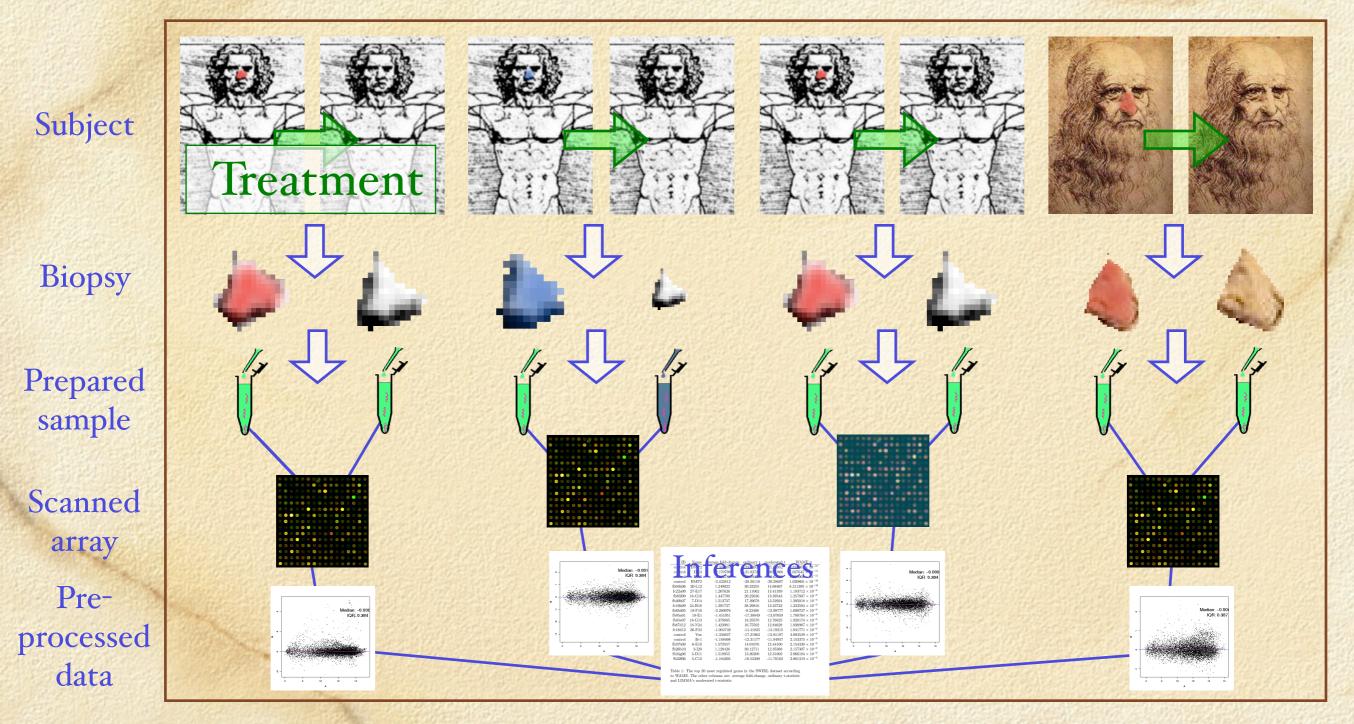
Experiment overview (cDNA)



Microarray experiments | Quality variations | Modelling of variance components | Producing a statistic | Evaluating performance

States and

Experiment overview - in reality



Microarray experiments | Quality variations | Modelling of variance components | Producing a statistic | Evaluating performance

States States

Nature of microarray data - part II

- Quality of data from arrays differ, technically and biologically (differing variances)
- Many dimensions (genes), typically 5000-44000
- Few replicates (arrays), typically 3-100
- Spurious significants problem (small s)

Established models dealing with spurious significance

Efron, et al (2001): $t_{\text{penalized}}^g = \frac{x_g}{s_{90}+s_g}$, where s_{90} is the 90:th percentile of all s_g .

Lönnstedt & Speed (2002); Smyth(2004): Empirical Bayes:

 $\bar{X}_{g}|\mu_{g},\sigma_{g}^{2} \sim N(\mu_{g},\sigma_{g}^{2}/N_{I}),$ $s_{g}^{2}|\sigma_{g}^{2} \sim \frac{\sigma_{g}^{2}}{N_{I}-1}\chi_{N_{I}-1}^{2} \text{ and } \frac{1}{\sigma_{g}^{2}} \sim \frac{1}{d_{0}s_{0}^{2}}\chi_{d_{0}}^{2}$ Gives: $\tilde{t}_{g} = \frac{\bar{x}_{g}\sqrt{N_{I}}}{\sqrt{\mathbb{E}(\sigma_{g}^{2}|s_{g}^{2})}} = \sqrt{\frac{d_{0}+(N_{I}-1)}{d_{0}s_{o}^{2}+(N_{I}-1)s_{g}^{2}}}\bar{x}_{g}\sqrt{N_{I}}$

The proposed model

 $X_{ig}|c_g, \mu_g, \sigma_i^2 \sim N(\mu_g, c_g \cdot |\sigma_i^2)$ $c_a \sim \Gamma^{-1}(\alpha, \beta)$ Empirical Bayes -estimating parameters from data

 $H_0: \mu_g = 0, \ H_A: \mu_g \neq 0$

Estimation strategy

□ ML estimate σ_i^2 , α , β using the information of all genes. Estimated with high precision.

Build the statistic for μ_g with σ_i^2 , α , β treated as known.

Estimating σ_i^2

Define $Y_j = X_{j+1} - X_1$, then $\mathbb{E}[Y] = 0$ and $\operatorname{Cov}[Y] = c_g \Sigma$, where $\Sigma = \operatorname{diag}(\sigma_2^2, \dots, \sigma_n^2) + \sigma_1^2 \mathbf{1}_{(n-1) \times (n-1)}$. Estimate ratios $r_i = \frac{\sigma_{i+1}^2}{\sigma_1^2}$ through transformation: $v = (\frac{Y_1}{Y_1}, \dots, \frac{Y_{N_I-1}}{Y_1}).$

Numerical maximum likelihood estimation: $l(r_1, \ldots, r_{N_I-1} | \{X_{g,i}\}) =$ $C'' - \frac{N_G}{2} \log\left(|\tilde{\Sigma}|\right) - \frac{N_I-1}{2} \sum_{g=1}^{N_g} \log\left(v'_g \tilde{\Sigma}^{-1} v_g\right), \text{ where}$ $\tilde{\Sigma} = \Sigma / \sigma_1^2 = \text{diag}(r_1, \ldots, r_{N_I-1}) + \mathbf{1}_{(n-1)\times(n-1)}.$

Estimating α, β

Treat σ_i^2 as known. Define $Y_j = X_{j+1} - X_1$. Then $\mathbb{E}[Y] = 0$ and $\operatorname{Cov}[Y] = c_g \Sigma$, where $\Sigma = \operatorname{diag}(\sigma_2^2, \dots, \sigma_n^2) + \sigma_1^2 \mathbf{1}_{(n-1) \times (n-1)}$.

Define $S_g = Y'_g \Sigma^{-1} Y_g$, making $S_g \sim c_g \chi^2_{N_I - 1}$. Now, $S_g | \alpha, \beta \sim \Gamma^{-1}(\alpha, \beta) \cdot \chi^2_{N_I - 1} = \frac{\Gamma((N_I - 1)/2, 1/2)}{\Gamma(\alpha, \beta)} = 2\beta \cdot \beta'(\frac{N_I - 1}{2}, \alpha)$, where β' is the β' -distribution.

Finally, α, β are numerically ML estimated: $l(\alpha, \beta | \{S_g\}) = C - (\alpha + \frac{N_I - 1}{2}) \sum_{g=1}^{N_G} \log(s_g/2 + \beta) + N_G \left[\alpha \log(\beta) + \log \Gamma \left(\alpha + \frac{N_I - 1}{2}\right) - \log \Gamma(\alpha)\right]$

The statistic for μ_g

Treating $\sigma_i^2, \alpha, \beta$ as known, the unbiased statistic with minimal variance given c_g is : $\bar{X}_g^w = (\sum_{j=1}^{N_I} 1/\sigma_j^2)^{-1} \sum_{j=1}^{N_I} \frac{1}{\sigma_j^2} X_{g,j},$ $\bar{X}_g^w | c_g \sim N(\mu_g, \frac{c_g}{\sum_{j=1}^{N_I} \frac{1}{\sigma_j^2}}).$

Conditioning on S_g , $f_{\bar{X}_g^w|S_g}(x|s) = \int f_{\bar{X}_g^w|c_g,S_g}(x|c,s) f_{c_g|S_g}(c|s) dc$, yields: $\bar{X}_g^w|S_g \sim \mu_g + Z_{\alpha+\frac{N_i-1}{2}}^{\operatorname{st}} \cdot \sqrt{\frac{2\beta+s_g}{\sum_{i=1}^{N_I} 1/\sigma_i^2}},$ where Z_a^{st} is the student-Z distribution

with a degrees of freedom.

Evaluation of performance

Simulated data according to model

Public datasets [future]: e.g. swirl (mutated zebra-fish)

 Comparing with established statistics: fold change, ordinary t, penalized t (Efron et al), moderated t (Smyth; LIMMA)

Simulated data (1/3)

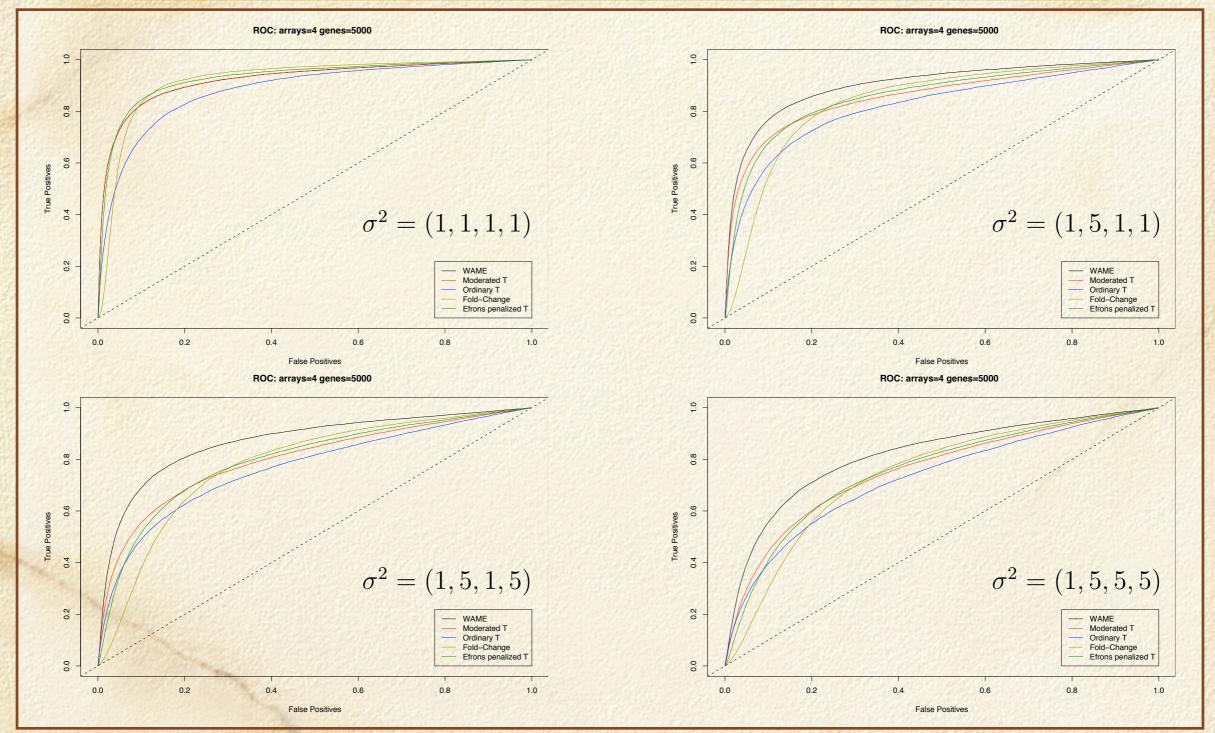
5000 genes, 4 arrays, alpha=1.5, beta=0.5
 150 regulated genes with expected value ±1

4 different array specific variance situations

σ_1^2	σ_2^2	σ_3^2	σ_4^2	\hat{r}_1	\hat{r}_2	\hat{r}_3				
1	1	1	1	1.013(0.050)	1.000(0.050)	1.001(0.051)				
5	1	1	1	0.204(0.028)	0.207(0.067)	0.200(0.023)				
5	5	1	1	1.004(0.039)	0.199(0.011)	0.200(0.011)				
5	5	5	1	1.004(0.044)	1.004(0.042)	0.204(0.018)				
5	5	5	5	1.009(0.048)	1.000(0.050)	1.004(0.048)				
Table 1: Estimation of the array-specific variance components										

Carl Strategy - 2"	
10000	WAME
E CAR	Moderated T
1 tot	Ordinary T
19	Fold-Change
G Vacr	Efrons penalized 1

Simulated data (2/3)



Microarray experiments | Quality variations | Modelling of variance components | Producing a statistic | Evaluating performance

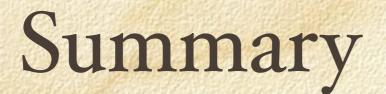
States States

Simulated data (3/3)

Variance	Fold-change	ord t	Efron's t	LIMMA	WAME						
(1, 1, 1, 1)	0.923	0.885	0.930	0.924	0.924						
(1, 5, 1, 1)	0.841	0.820	0.860	0.858	0.900						
(1, 5, 1, 5)	0.783	0.770	0.801	0.803	0.870						
(1, 5, 5, 5)	0.744	0.731	0.758	0.759	0.818						
Table 1: Areas under ROC											

Microarray experiments | Quality variations | Modelling of variance components | Producing a statistic | Evaluating performance

Section 2



Microarray data have differences in quality.

The proposed method models those differences as differences in variance.

Spurious significance must be taken care of.

On simulated data, the proposed method performs well.

How to validate biologically?

Alternative ideas for statistic?

Section Contraction