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Stability

Definition
A random vector ξ (generally, a random element on a convex cone) is
called strictly α-stable (notation: StαS) if for any t ∈ [0, 1]

t1/αξ′ + (1− t)1/αξ′′
D
= ξ, (1)

where ξ′ and ξ′′ are independent copies of ξ.

Stability and CLT

Only StαS vectors ξ can appear as a weak limit
n−1/α(ζ1 + · · ·+ ζn) =⇒ ξ.
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DαS point processes

Definition

A point process Φ (or its probability distribution) is called discrete
α-stable or α-stable with respect to thinning (notation DαS), if for any
0 ≤ t ≤ 1

t1/α ◦ Φ′ + (1− t)1/α ◦ Φ′′
D
= Φ ,

where Φ′ and Φ′′ are independent copies of Φ and t ◦ Φ is
independent thinning of its points with retention probability t.
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Discrete stability and limit theorems

Let Ψ1,Ψ2, . . . be a sequence of i. i. d. point processes and
Sn =

∑n
i=1 Ψi. If there exists a PP Φ such that for some α we have

n−1/α ◦ Sn =⇒ Φ as n→∞

then Φ is DαS.

CLT
When intensity measure of Ψ is σ-finite, then α = 1 and Φ is a
Poisson processes. Otherwise, Φ has infinite intensity measure –
bursty
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DαS point processes and StαS random measures

Cox process

Let ξ be a random measure on the space X. A point process Φ on X
is a Cox process directed by ξ, when, conditional on ξ, realisations of
Φ are those of a Poisson process with intensity measure ξ.
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Characterisation of DαS PP

Theorem
A PP Φ is a (regular) DαS iff it is a Cox process Πξ with a StαS
intensity measure ξ, i.e. a random measure satisfying

t1/αξ′ + (1− t)1/αξ′′
D
= ξ .

Its p.g.fl. is given by

GΦ[u] = E
∏
xi∈Φ

u(xi) = exp
{
−
∫
M1

〈1− u, µ〉ασ(dµ)
}
, 1− u ∈ BM

for some locally finite spectral measure σ on the set M1 of probability
measures.

DαS PPs exist only for 0 < α ≤ 1 and for α = 1 these are Poisson.
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Sibuya point processes

Definition

A r.v. γ has Sibuya distribution, Sib(α), if

gγ(s) = 1− (1− s)α, α ∈ (0, 1) .

It corresponds to the number of trials to get the first success in a
series of Bernoulli trials with probability of success in the kth trial
being α/k.

Sibuya point processes

Let µ be a probability measure on X. The point process Υ on X is
called the Sibuya point process with exponent α and parameter
measure µ if Υ(X) ∼ Sib(α) and each point is µ-distributed
independently of the other points. Its distribution is denoted by
Sib(α, µ).
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Examples of Sibuya point processes

Figure : Sibuya processes: α = 0.4, µ ∼ N (0, 0.32I)
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DαS point processes as cluster processes

Theorem Davydov, Molchanov & Z’11

Let M1 be the set of all probability measures on X. A regular DαS
point process Φ can be represented as a cluster process with

Poisson centre process on M1 driven by intensity measure σ;
Component processes being Sibuya processes Sib(α, µ),
µ ∈M1.
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Statistical Inference for DαS processes

We assume the observed realisation comes from a stationary and
ergodic DαS process without multiple points.

Such processes are characterised by:
λ – the Poisson parameter: mean number of clusters per unit
volume
α – the stability parameter

A probability distribution σ0(dµ) on M1 (the distribution of the
Sibuya parameter measure)
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Construction

1 Generate a homogeneous Poisson PP
∑

i δyi of centres of
intensity λ;

2 For each yi generate independently a probability measure µi

from distribution σ0;
3 Take the union of independent Sibuya clusters Sib(α, µi( • − yi)).
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Example of DαS point process

Figure : λ = 0.4, α = 0.6, σ0 = δµ, where µ ∼ N (0, 0.32I)
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Estimation of µ
Estimation of λ and α

Parameters to estimate

Consider the case when all the clusters have the same distribution,
so that σ0 = δµ for some µ ∈M1.

We always need to estimate λ and α, often also µ.

We consider three possible cases for µ:
µ is already known
µ is unknown but lies in a parametric class (e.g. µ ∼ N (0, σ2I) or
µ ∼ U(Br(0)))
µ is totally unknown
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Estimation of µ
Estimation of λ and α

Estimation of µ

Idea
Identifying a big cluster in the dataset and using it to estimate µ.

How to distinguish clusters in the configuration? How to identify at
least the biggest clusters?

Interpreting data as a mixture model
Expectation-Maximisation algorithm
Bayesian Information Criterion
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Estimation of µ
Estimation of λ and α

Example: gaussian spherical clusters, 2D case

(a) Original process (b) Clustered process

Figure : DαS process with Gaussian clusters: λ = 0.5, α = 0.6, covariance
matrix 0.12I. mclust R-procedure with Poisson noise.
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Estimation of µ
Estimation of λ and α

Estimation of µ

After we single out one big cluster:

we estimate µ using kernel density or we just use the sample
measure

if µ is in a parametric class we estimate the parameters
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Estimation of µ
Estimation of λ and α

Overlaping clusters - heavy thinning approach

Figure : λ = 0.4, α = 0.6, µx ∼ N (x, 0.52I)
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Estimation of µ
Estimation of λ and α

Estimation of λ and α

When µ is known or have already been estimated, we suggest these

Estimation methods for λ and α
1 via void probabilities

2 via the p.g.f. of the counts distribution
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Void probabilities for DαS point processes

The void probabilities (which characterise the distribution of a simple
point process) are given by

P{Φ(B) = 0} = exp
{
− λ

∫
A
µ(B)α dx

}
.
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Estimation of µ
Estimation of λ and α

Estimation of void probabilities

Unbiased estimator for the void probability function

Let {xi}n
i=1 ⊆ A a sequence of test points and ri = dist(xi, supp Φ), then

Ĝ(r) =
1
n

n∑
i=1

1I{ri>r}

is an unbiased estimator for P{Φ(Br(0)) = 0}.

Then α and λ are estimated by the best fit to this curve.
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Estimation of µ
Estimation of λ and α

Example: uniformly distributed clusters, 1D case

Figure : λ = 0.3, α = 0.7, µ ∼ U(B1(0)), |A| = 3000

Estimated values: λ̂ = 0.29, α̂ = 0.68. Requires big
data!
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Estimation of µ
Estimation of λ and α

Void probabilities for thinned processes

p.g.fl. of DαS processes

GΦ[h] = exp
{
−
∫
S〈1− h, µ〉ασ(dµ)

}
, 1− h ∈ BM(X).

p.g.fl. of a p-thinned point process

Gp◦Φ[h] = exp
{
−pα

∫
S〈1−h, µ〉ασ(dµ)

}
, p ∈ [0, 1], 1−h ∈ BM(X).

σ({µ(· − x), x ∈ B}) = λ · |B| =⇒ αnew = α, λnew = λ · pα.
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Estimation of µ
Estimation of λ and α

Estimation via thinned process
There is no need to simulate p-thinning!
Let rk be the distance from 0 to the k-th closest point in the
configuration.

r1

r30
r2
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Estimation of µ
Estimation of λ and α

Estimation via thinned process

P{(p ◦ Φ)(Br(0)) = 0}

=

Φ∑
k=1

P{“the closest survived point is the k-th”}P{rk > r}

=

Φ∑
k=1

p(1− p)k−1P{rk > r}

Unbiased estimator for the void probability function

Let {xi}n
i=1 ⊆ A a sequence of test points and ri,k be the distance from

xi to its k-closest point of supp Φ. Then

Ĝ(r) =
1
n

n∑
i=1

∑
k=0

p(1− p)k−1 1I{ri,k>r}

is an unbiased estimator for P{Φ(Br(0)) = 0}.
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Estimation of µ
Estimation of λ and α

Example: uniform clusters, 1D case

Figure : Estimation of v.p. of the thinned process for a process generated
with λ = 0.3, α = 0.7, µ ∼ U(B1(0)), |A| = 1000

Estimated values: λ̂ = 0.29, α̂ = 0.72
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Counts distribution

Putting u(x) = 1− (1− s) 1IB(x) with s ∈ [0, 1], in the p.g.fl. expression,
we get the p.g.f. of the counts Φ(B) for any set B:

ψΦ(B)(s) := E[sΦ(B)] = exp
{
− (1− s)α

∫
S
µ(B)ασ(dµ)

}
. (2)

It is a heavy-tailed distribution with P{Φ(B) > x} = L(x) x−α, where L
is slowly-varying.
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Estimation via counts distribution

The empirical p.g.f. is then

ψ̂n
Φ(B)(s) :=

1
n

n∑
i=1

sΦ(Bi) ∀s ∈ [0, 1],

where Bi, i = 1, . . . , n, are translates of a fixed referece set B and it is
an unbiased estimator of ψΦ(B). It is then fitted to (2) for a range of s
estimating λ and α.
We also tried the Hill plot from extremal distributions inference to
estimate α, but the results were poor!
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Conclusions

Simulation studies looked at the bias and variance in the extimation of
α, λ in different situations:

Big sample – moderate sample
Overlapping clusters (large λ) – separate clusters (small λ)
Heavy clusters (small α) – moderate clusters (α close to 1)
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Best methods

The simplest void probabilities method is prefered for large
datasets or for moderate datasets with separated clusters. It best
estimates α, but in the latter case λ is best estimated by counts
p.g.f. fitting.

λ is best estimated by void probabilities with thinning method
which produces best estimates in all the situations apart from
moderate separated clusters. But it is also more computationally
expensive.
As common in modern Statistics, all methods should be tried and
consistency in estimated values gives more trust to the model.
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Estimation of µ
Estimation of λ and α

Fête de la Musique data

Figure : Estimated α̂ = 0.17− 0.28 depending on the way base stations
records are extrapolated to spatial positions of callers
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Generalisations

For the Paris data we observed a bad fit of cluster size to Sibuya
distribution. Possible cure:

F-stable point processes when thinning is replaced by more general
subcritical branching operation. Multiple points are now also allowed.
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Thank you!

Questions?
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