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What is the fatigue limit ?
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Defects and fatigue strength

Murakami’s experiments on specimens containing

microholes

25 µµµµm 50 µµµµm

Axial loading (bending) torsional loading (biaxial)

Fatigue limit is the ‘non-propagation’ condition

for small cracks emanating from the defects
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a/a0

Murakami’s idea: •defects can be treated as

short cracks;

threshold  ∆K e ∆slim depend on the crack dimension

Short cracks and defects
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Fatigue limit:

C = 1.56 internal  def.

C = 1.43 surface def.
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the fatigue is controlled by the extreme values of the

population of defects not by the average dimension
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analysis of extremes based on extreme value sampling

Extreme defects
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•Methods based on Statistics of Extremes

•new technical recommendations (ESIS e ASTM)

Extreme defects
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Components with defects

Weakest-link model

Application to 3 strips of

‘super-clean’ steels

Comparison with fatigue

experiments

?
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Extremes

Let us consider m defects with distribution function F

the distribution

function of the

maximum defect:
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Extremes ⇒⇒⇒⇒ Weakest-link

 m defects
Log S

Log a

Slim
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Smooth
specimen

Short cracks Long cracks
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Approaches of WL and Extremes are coincident
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Weakest-link model

If we imagine the component divided into n domains:

Ri

tot iR R=∏
 Weakest-link

( )lim,i V iR G a= ( ) 0
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Application

3 series of thin strips of super-clean steels (SANDVIK)

Material Thickness [ ]mm HV [ ]2/mmkgf Rm [ ]MPa

strip A 0.305 539 1705

strip B 0.305 556 1744

strip C 0.381 581 1649

inclusions at fracture origin
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Research of extreme defects

Polished sections

Distribution of maximum defects on So = 400 mm2
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FE analysis of fatigue specimens

• Calculation of failure probability as a function of S;

• determination of fatigue limit distribution function.
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Results

 good fatigue strength

predictions
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Comparison among strips

 strip B has the

best hardness
 why low fatigue strength ?

 extreme defects ?
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Comparison among strips

Maximum stress limit

Dangerous defects

Strip A Strip B Strip C

7 11 11 Critical threshold [ ]mµ
0.606 1.361 0.722 Critical density / 

2400 mm

 ‘density’ of detrimental defects
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Conclusions

•  fatigue limit in presence of defects can be estimated

from the Kitagawa diagram of the material under

examination

•  a Weakest-link model has been proposed in

combination with ‘statistics of extremes’ for estimating

fatigue strength in mechanical components

•  application shows that while for material qualification

the maximum defect is a sufficient information, the

calculation of the failure probability for a component

need also information about defect density


