Stochastic Fields with Shallow Water Flow Dynamics

Jörg Wegener

Mathematical Statistics, Lund University, Sweden

Smögen, 20th August 2010

jw@maths.lth.se

Outline

- Deterministic Model
 - Physical motivation
 - Deterministic flow
- Stochastic Model
 - Covariance structures
 - 'Static' flow
- Stochastic-Deterministic Model
 - Embedding deterministic flow
 - Dynamic flow

Outline

'static' stochastic flow: Covariance structures in space & time

dynamic flow: stochastic fields with subordinated SWE dynamics

EXISTENCE AND SMOOTHNESS OF THE NAVIER-STOKES EQUATION

CHARLES L. FEFFERMAN

The Euler and Navier–Stokes equations describe the motion of a fluid in \mathbb{R}^n (n=2 or 3). These equations are to be solved for an unknown velocity vector $u(x,t)=(u_i(x,t))_{1\leq i\leq n}\in\mathbb{R}^n$ and pressure $p(x,t)\in\mathbb{R}$, defined for position $x\in\mathbb{R}^n$ and time $t\geq 0$. We restrict attention here to incompressible fluids filling all of \mathbb{R}^n . The Navier–Stokes equations are then given by

(1)
$$\frac{\partial}{\partial t}u_i + \sum_{i=1}^n u_j \frac{\partial u_i}{\partial x_j} = \nu \Delta u_i - \frac{\partial p}{\partial x_i} + f_i(x, t) \qquad (x \in \mathbb{R}^n, t \ge 0),$$

(2)
$$\operatorname{div} u = \sum_{i=1}^{n} \frac{\partial u_i}{\partial x_i} = 0 \qquad (x \in \mathbb{R}^n, t \ge 0)$$

with initial conditions

(3)
$$u(x,0) = u^{\circ}(x) \qquad (x \in \mathbb{R}^n).$$

Here, $u^{\circ}(x)$ is a given, C^{∞} divergence-free vector field on \mathbb{R}^n , $f_i(x,t)$ are the components of a given, externally applied force (e.g. gravity), ν is a positive coefficient

(the viscosity), and $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ is the Laplacian in the space variables. The Euler

equations are equations (1), (2), (3) with ν set equal to zero.

- (A) Existence and smoothness of Navier–Stokes solutions on \mathbb{R}^3 .
- (B) Existence and smoothness of Navier–Stokes solutions in $\mathbb{R}^3/\mathbb{Z}^3$.
- (C) Breakdown of Navier–Stokes solutions on \mathbb{R}^3 .
- (D) Breakdown of Navier–Stokes Solutions on $\mathbb{R}^3/\mathbb{Z}^3$.

Fluids are important and hard to understand. There are many fascinating problems and conjectures about the behavior of solutions of the Euler and Navier–Stokes equations. (See, for instance, Bertozzi–Majda [1] or Constantin [3].) Since we don't even know whether these solutions exist, our understanding is at a very primitive level. Standard methods from PDE appear inadequate to settle the problem. Instead, we probably need some deep, new ideas.

Equations of motion

Conservation of momentum

Fluids:

Navier-Stokes equation

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla p - \rho \nabla \Phi + \nabla \cdot \mathbb{T}$$

Solid bodies:

Newton's second law

$$m\frac{d\mathbf{v}}{dt} = \mathbf{F}$$

Note:

all thermodynamic processes excluded

Shallow Water Approximation

$$w = -h\nabla \cdot \mathbf{v}_h$$
,

where

height of surface v_h horizontal velocity w vertical velocity

Shallow Water Equations

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} - u \frac{\partial u}{\partial x} - v \frac{\partial u}{\partial y} + fv$$

$$\frac{\partial v}{\partial t} = -g \frac{\partial h}{\partial y} - u \frac{\partial v}{\partial x} - v \frac{\partial v}{\partial y} - fu$$

$$\frac{\partial h}{\partial t} = -\frac{\partial (hu)}{\partial x} - \frac{\partial (hv)}{\partial y}$$

 Used to model: Tsunamis, flows in rivers, internal waves, Jupiter's Atmopshere Reprinted from Tellus, Vol. 2, 1950, pp 237-254

Numerical Integration of the Barotropic Vorticity Equation

By J. G. CHARNEY, R. FJÖRTOFT¹, J. von NEUMANN The Institute for Advanced Study, Princeton, New Jersev²

the Eniac. It may be of interest to remark that the computation time for a 24-hour forecast was about 24 hours, that is, we were just able to keep pace with the weather. However, much

Linear Shallow Water Equations

After linearization and reduction to one dimension.

PDE with constant coefficients:

$$\frac{\partial u}{\partial t} = -u_0 \frac{\partial u}{\partial x} - g \frac{\partial h}{\partial x}$$
$$\frac{\partial h}{\partial t} = -u_0 \frac{\partial h}{\partial x} - h_0 \frac{\partial u}{\partial x} ,$$

where u denotes horizontal velocity (positive towards East), h surface elevation, u_0, h_0, g constants.

One wave equation in u.

Theoretical Solution

Solution in u:

$$u(x,t) = \pm A \sqrt{\frac{g}{h_0}} \cos(k(x-ct)),$$

where A denotes amplitude, k wave number and c phase velocity:

$$c = u_0 \pm \sqrt{gh_0}$$
.

Figure: Positive (negative) velocities denote wavefronts travelling to the right (left). Notice: constant velocities along the characteristic lines $x = x_0 + (u_0 \pm \sqrt{gh_0})t$.

Numerical Solution

Consider $\alpha(i\Delta, n\Delta t) \stackrel{def}{=} \alpha_i^n$ on a tempo-spatial grid. Finite difference approximation of

spatial derivatives

$$\left(\frac{\partial \alpha}{\partial x}\right)_{i}^{n} \approx \frac{\alpha_{i+\frac{1}{2}}^{n} - \alpha_{i-\frac{1}{2}}^{n}}{\Delta x} \stackrel{\text{def}}{=} (\delta_{x}\alpha)_{i}^{n}$$

temporal derivative

$$\left(\frac{\partial \alpha}{\partial t}\right)_{i}^{n} \approx \frac{\alpha_{i}^{n+1} - \alpha_{i}^{n-1}}{2\Delta t}$$

Numerical Solution

Finite difference formulation of SWE

$$u_{i+\frac{1}{2}}^{n+1} = u_{i+\frac{1}{2}}^{n-1} - 2\Delta t \left(u_0 (\overline{\delta_x u})_{i+\frac{1}{2}}^n + g(\delta_x h)_{i+\frac{1}{2}}^n \right) h_{i+1}^{n+1} = h_{i+1}^{n-1} - 2\Delta t \left(u_0 (\overline{\delta_x h})_{i+1}^n + h_0 (\delta_x u)_{i+1}^n \right)$$

Consistency, accuracy and stability can be determined.

1-dim SWE simulation

particleWave mpeg

Outline

'static' stochastic flow: Covariance structures in space & time

dynamic flow: stochastic fields with subordinated SWE dynamics

Outline

Stochastic Model

• 'Static' Gaussian field:

$$X(x,t) = \int_{-\infty}^{t} f(t-s)\Phi(x;ds)$$

Temporal dependence
 Ornstein-Uhlenbeck kernel function:

$$f(s) \propto e^{\lambda s} 1_{(-\infty,0]}(s)$$

 Spatial dependence Correlation function:

$$r_{\Phi}(x) = e^{-\frac{x^2}{2\sigma^2}}$$

• Space-time stationary covariance

$$r_X(x,t) = e^{-x^2/2\sigma^2} e^{-\lambda|t|}$$

Discrete version

Autoregressive formulation of X*

$$\Delta X = (\rho - 1)X + \sqrt{2(1 - \rho^2)\lambda} \Phi,$$

where

$$\Delta X = X(x, t + \Delta t) - X(x, t)$$

 $\rho = \exp(-\lambda \Delta t)$
 $X = X(x, t)$
 $\Phi = \Phi_t(x)$ innovations with $r_{\Phi}(x) = e^{-\frac{x^2}{2\sigma^2}}$

^{*}Baxevani, A. and Podgórski, K. and Rychlik, I. (2010), Dynamically evolving Gaussian spatial fields, *Extremes*.

• $\Phi_t(x)$ is generated through its 'spectral representation'

$$\Phi(x) = \sqrt{d\omega} \sum_{j=-N}^{N} \sqrt{S(jd\omega)} R_j \cos(xjd\omega + \phi_j) ,$$

where

$$S(jd\omega)$$
 is the discretized spectrum, corresponding to $r_{\Phi}(x)$ $R_{j} \sim Rayleigh(1)$, iid, and independent of $\phi_{j} \sim U[0,2\pi]$, iid

'Static' Fields I

Figure: Spatio-temporal fields X(x, t) for fixed σ and $\lambda = .25, .5, 1$ (*left*). Respective tempo-spatial covariance functions (*right*).

'Static' Fields II

Figure: Spatio-temporal fields X(x,t) for fixed λ and $\sigma^2 = .5, 1, 3$ (*left*). Respective tempo-spatial covariance functions (*right*).

Stochastic Velocities

Velocity on random surfaces*:

$$v(x,t) = -\frac{X_t(x,t)}{X_x(x,t)} = -\frac{\frac{\partial X(x,t)}{\partial t}}{\frac{\partial X(x,t)}{\partial x}} \approx \frac{\partial x}{\partial t},$$

where

$$v \sim Cauchy(\cdot, \cdot)$$

^{*}Baxevani, A. and Podgórski, K. and Rychlik, I. (2003). Velocities for moving random surfaces. *Probabilistic Engineering Mechanics*.

Stochastic Velocities

Figure: Spatio-temporal fields X(x,t) (*left*). Respective velocities v(x,t) (*right*). Velocities are truncated at 15% and 85% quantiles.

^{&#}x27;No organized motion.'

Outline

dynamics

Outline

Stochastic-Deterministic Model

Embedding dynamic SWE-flow into random field X(x, t)

Static field:

$$X(x,t) = \int_{-\infty}^{t} f(t-s)\Phi(x;ds)$$

Deterministic flow x:

$$x_{t,h}(x) = x + \int_t^{t+h} u(x_{t,s-t}(x),s) ds$$

• Dynamic field:

$$Y(x,t) = \int_{-\infty}^{t} f(t-s)\Phi(x_{t,s-t}(x);ds)$$

Stochastic-Deterministic Model

• Discretized dynamic field:

$$Y(x, t + \Delta t) \approx \rho Y(x_{t, -\Delta t}(x), t) + \sqrt{2(1 - \rho^2)\lambda} \Phi_{\rho}(x, t)$$

'Static fields are transported according to flow x.'

Deterministic Flow

• Approximate trajectory $x_{t,s-t}(x)$:

Figure: Approximate deterministic particle trajectories are given in black.

Stochastic-Dynamic Fields

Figure: Stochastic fields for the static case (left) and with subordinated shallow water dynamics (right). Parameters are chosen to $\sigma^2 = 5$ and $\lambda = 1$.

Stochastic-Dynamic Velocities

Figure: Corresponding stochastic velocities. Note that dynamic velocities accumulate along the *characteristic curves* $x = x_0 + (u_0 \pm \sqrt{gh_0})t$, whereas the static case lacks any ordered structure. Velocities are truncated.

Comparison of velocities

• Center of random velocity*, $v_c(x, t)$:

$$\int_{-\infty}^{0} \left[u(\mathbf{x}_{t,h}(x), t+h) - \frac{\partial \mathbf{x}_{t,h}(x)}{\partial t} \right] \mathbf{x}'_{t,h}(x) \left(\mathbf{x}_{t,h}^{2}(x) - \sigma^{2} \right) e^{2\lambda h - \frac{\mathbf{x}_{t,h}^{2}(x)}{2\sigma^{2}}} dh$$

$$\int_{-\infty}^{0} \mathbf{x}'_{t,h}^{2}(x) \left(\mathbf{x}_{t,h}^{2}(x) - \sigma^{2} \right) e^{2\lambda h - \frac{\mathbf{x}_{t,h}^{2}(x)}{2\sigma^{2}}} dh$$

where

$$\mathbf{x}'_{t,h}(\mathbf{x}) = \frac{\partial \mathbf{x}_{t,h}}{\partial \mathbf{x}}$$

^{*}Baxevani, A. and Podgórski, K. and Rychlik, I. (2010), Dynamically evolving Gaussian spatial fields, *Extremes*.

Theorem

Assume a spatio-temporal stochastic model with the presented dependece structures. Then, the distribution of random velocity has its center at the deterministic flow velocity.

Figure: Comparison of stochastically destorted flow (*left*) to deterministic shallow water flow (*right*).

Fazit

Remarks

- different covariance structures
- higher dimensions
- non-linear dynamics

Purposes

- prediction, inference
- simple, reducing numerical burden

Figure: Ensemble prediction of wind (magnitude).