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EXISTENCE AND SMOOTHNESS OF THE
NAVIER-STOKES EQUATION

CHARLES L. FEFFERMAN

The Euler and Navier-Stokes equations describe the motion of a fluid in R"™
(n = 2 or 3). These equations are to be solved for an unknown velocity vector
u(z,t) = (ui(z,t))1<i<n € R™ and pressure p(z,t) € R, defined for position z € R
and time ¢ > 0. We restrict attention here to incompressible fluids filling all of R™.
The Navier-Stokes equations are then given by

o 2

e Ou; dp
—-+§ i — = vAu; — — + fi(zx, R%# >
tuz 2 U 8zj vAu,; o fl(af,t) (:c € > 0)7

(2) divu = Z gul = (x e R™,t>0)
Tq

with initial conditions
(3) u(z,0) = u’(z) (z e R").

Here, u°(z) is a given, C*° divergence-free vector field on R™, f;(x,t) are the com-

ponents of a given, externally applied force (e.g. gravity), v is a positive coefficient
n

0
(the viscosity), and A = ZW is the Laplacian in the space variables. The Fuler
. Ty

=1
equations are equations (1), (2), (3) with v set equal to zero.
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(A) Existence and smoothness of Navier—Stokes solutions on R?.
(B) Existence and smoothness of Navier—Stokes solutions in R?/Z3.
(C) Breakdown of Navier—Stokes solutions on R?.

(D) Breakdown of Navier—Stokes Solutions on R3/Z3.

Fluids are important and hard to understand. There are many fascinating prob-
lems and conjectures about the behavior of solutions of the Euler and Navier—Stokes
equations. (See, for instance, Bertozzi-Majda [1] or Constantin [3].) Since we don’t
even know whether these solutions exist, our understanding is at a very primitive
level. Standard methods from PDE appear inadequate to settle the problem. In-
stead, we probably need some deep, new ideas.
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Equations of motion

Conservation of momentum

e Fluids:
Navier-Stokes equation

dv
L _VUp— pVO T
'Odt Vp—pVO+V
e Solid bodies:
Newton's second law
dv F
m— =

dt

Note:

e all thermodynamic processes excluded
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Shallow Water Approximation

W:—hV'Vh,

where

height of surface
vp, horizontal velocity
w vertical velocity
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Shallow Water Equations

@——a—h—u@—v@—kfv
ot g@x Ox dy
ov Oh ov ov

ov_ g2 Y g
at %oy Yax  Vay M

oh  9(hu)  O(hv)
ot Ox dy

e Used to model: Tsunamis, flows in rivers, internal waves,
Jupiter's Atmopshere
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Reprinted from Tellus, Vol. 2, 1950, pp 237-254

Numerical Integration of the Barotropic Vorticity Equation

By J. G. CHARNEY, R. JORTOFTY, ]. von NEUMANN

The Institute for Advanced Study, Princeton, New Jersey?

the Eniac. Tt may be of interest to remark that
the computation time for a 24-hour forecast
was about 24 hours, that is, we were just able
to keep pace with the weather. However, much

jw@maths.lIth.se



Gl Goomftfds Swdofs Gnite e |

Linear Shallow Water Equations

After linearization and reduction to one dimension.
e PDE with constant coefficients:

du du  Oh
ot - _uoax _gax
oh oh  Ou
ot~ Wk Mgy

where u denotes horizontal velocity (positive towards East), h
surface elevation, ug, hg, g constants.
One wave equation in u.
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Deterministic

Theoretical Solution

e Solution in u:

u(x,t) = j:A\/hEOcos(k(x —ct)),

where A denotes amplitude, k wave number and ¢ phase velocity:

CZU():i:\/ghg.

\/

Figure: Positive (negative) veIocmes denote wavefronts travelling to the
right (left). Notice: constant velocities along the characteristic lines
X:X0+(U0:|: gho)t.
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Numerical Solution

Consider a(iA, nAt) & af on a tempo-spatial grid. Finite

difference approximation of

e spatial derivatives

n __ .n

Oa "Nai+% ai—% def (5 .\

o). S a5
1

e temporal derivative
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Numerical Solution

Finite difference formulation of SWE
uril = uf ) - 20t (uo(m),.g% v g(axh),."+%)
bt = et — 28t (wo(xh)7 s + ho(dxu)fss )

Consistency, accuracy and stability can be determined.
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1-dim SWE simulation

particleWave.mpeg
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Deterministic

Outline

deterministic velocities:
numerical solution of
SWEs
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Deterministic

Outline
'static’ stochastic flow: deterministic velocities:
Covariance structures in numerical solution of

space & time SWEs
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Stochastic Model

e 'Static’ Gaussian field:
t
X(x,t) = / F(t — 5)0(x; ds)

e Temporal dependence
Ornstein-Uhlenbeck kernel function:

f(s) x e)‘sl(_oop](s)

e Spatial dependence

Correlation function:

x2

ro(x) = e 202
e Space-time stationary covariance

rx(x, t) = e x*/20% g=Alt|
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Stochastic

Discrete version

e Autoregressive formulation of X*

AX =(p—1)X+1/2(1 - pP)r 0,

where
AX = X(x, t + At) — X(x, t)
p = exp(—AAt)
X = X(x,t)

X2
® = &,(x) innovations with re(x) = e 202

*Baxevani, A. and Podgérski, K. and Rychlik, I. (2010), Dynamically
evolving Gaussian spatial fields, Extremes.
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Stochastic

o ®(x) is generated through its ‘spectral representation’

N
d(x) = Vidw Z vV S(Jdw)Rj cos(xjdw + ¢;) ,

j==N

where

S(jdw) is the discretized spectrum, corresponding to re(x)
R;j ~ Rayleigh(1), iid, and independent of
¢;j ~ U0, 2], iid
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‘Static’ Fields |
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Figure: Spatio-temporal fields X(x, t) for fixed o and A\ = .25,.5,1 (left).
Respective tempo-spatial covariance functions (right).
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'Static’ Fields Il
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Figure: Spatio-temporal fields X(x, t) for fixed A and 02 = .5,1, 3 (left).
Respective tempo-spatial covariance functions (right).
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Stochastic Velocities

e Velocity on random surfaces*:

oX(x,
Sty = Jebet) P o
’ Xe(x,t) — X0t T gt

where
v ~ Cauchy(-,")

*Baxevani, A. and Podgérski, K. and Rychlik, 1. (2003).
Velocities for moving random surfaces. Probabilistic Engineering Mechanics.
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Stochastic

Stochastic Velocities

Figure: Spatio-temporal fields X(x, t) (/eft). Respective velocities v(x, t)
(right). Velocities are truncated at 15% and 85% quantiles.

'No organized motion.’
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Stochastic

Outline

'static’ stochastic flow: deterministic velocities:
Covariance structures in numerical solution of
space & time SWEs

N 4
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Stochastic

Outline

'static’ stochastic flow: deterministic velocities:
Covariance structures in numerical solution of
space & time SWEs

N e

dynamic flow:
stochastic fields with
subordinated SWE
dynamics
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Stochastic-Deterministic Model

Embedding dynamic SWE-flow into random field X(x, t)
e Static field:

t
X(x,t) = / F(t — 5)0(x: ds)
e Deterministic flow z:
t+h
zep(x) = x + / u(zes—t(x),s)ds
t

e Dynamic field:

Y(x, ) = /_ "t — $)0(rso(x); d5)

e}
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Stochastic-Deterministic Model

e Discretized dynamic field:
Y(x,t +At) = pY(zr_ne(x), t) +1/2(1 = p?)A Sp(x, t)

‘Static fields are transported according to flow z.’
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Deterministic Flow

o Approximate trajectory ¢ s_¢(x):
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Figure: Approximate deterministic particle trajectories are given in black.
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Stochastic-Dynamic Fields

Figure: Stochastic fields for the static case (left) and with subordinated
shallow water dynamics (right). Parameters are chosen to 02 = 5 and
A=1
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Stochastic-Dynamic Velocities

Figure: Corresponding stochastic velocities. Note that dynamic velocities
accumulate along the characteristic curves x = xo + (uo & /gho)t,
whereas the static case lacks any ordered structure. Velocities are
truncated.
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Comparison of velocities

o Center of random velocity*, vc(x, t):

x%y B (%)

0
[ [wtsntae - 2 g (2,00 - o) 25

x2 5 ()

0
/ X3 (%) (x2 p(x) — 02) 2 207 dh
—00

*Baxevani, A. and Podgérski, K. and Rychlik, I. (2010), Dynamically
evolving Gaussian spatial fields, Extremes.

jw@maths.Ith.se



Combined

Theorem

Assume a spatio-temporal stochastic model with the presented
dependece structures. Then, the distribution of random velocity has
its center at the deterministic flow velocity.
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Figure: Comparison of stochastically destorted flow (/eft) to deterministic
shallow water flow (right).
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Fazit

Remarks
e different covariance structures
e higher dimensions
e non-linear dynamics
Purposes
e prediction, inference

e simple, reducing numerical burden
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Figure: Ensemble prediction of wind (magnitude).
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