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Abstract

Finite Element Methods for Microelectromechanical
Systems

Yang Zeng

The stationary Joule heating problem is a crucial multiphysical problem for many
microelectromechanical (MEMS) applications. In our paper, we derive a finite element
method for this problem and introduce iterative solution-techniques to compute the
numerical simulation. Further we construct an adaptive algorithm for mesh
refinement based on a posteriori error estimation.
Finally, we present two numerical tests: convergences analysis of different iterative
methods for distinct materials which are classified by electrical conductivities, and a
test of the new adaptive refinement algorithm. All the numerical implementations
have been done in MATLAB. 
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Chapter 1

Introduction

Partial differential equations are used to model physical phenomena. In

many important applications, several different physical processes are active

at the same time. One such example is the design of microelectromechanical

systems (MEMS).

MEMS are e.g. used to build sensors on micrometer scale. Here electric

potential, heat transfer and mechanical stresses are coupled in a system

of non-linear elliptic partial differential equations. The stationary Joule

heating problem is a model problem for this application. A voltage is applied

at the boundary of a device. A current that flows through the device is

produced, which leads to heating of the material. The equations describing

electrostatical potential and the temperature are coupled. The heat equation

is driven by the electrical current and the electric conductivity depends on

the temperature, which means we get coupling in both directions.

Many industrial codes are optimized for solving single physics problems,

such as the two individuals equations in the Joule heating application. In

order to take advantage of this infrastructure, engineers typically couple to-

gether such optimized single physics solvers when solving coupled problems.

One approach is to iterate between two problems in a Jacobi or Gauss-Seidel

fashion with a given initial guess. However, it is hard to predict whether

the iteration will converge or not.

In this paper, we will study numerical simulation of the Joule heating
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problem using the Finite Element Method, then construct an adaptive al-

gorithm for mesh refinement based on a posteriori error estimates as well as

analyze convergence of different iterative methods for distinct materials in

MEMS devices.
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Chapter 2

Physical Background

2.1 Single Physics Problems

2.1.1 Heat equation

The heat equation is an important partial differential equation which de-

scribes the distribution of heat (or variation in temperature) in a given

region over time. The stationary heat equation reads

−∇ · k∇u = f (2.1)

where k is the thermal conductivity, u is the temperature and f is a given

heat source.

2.1.2 Potential equation

Electrostatic phenomena arises from the forces that electric charges exert

on each other. One of the cornerstones of electrostatics is the posing and

solving of problems described by the Poisson equation

−∇ · σ(u)∇φ = g (2.2)

where σ(u) is the electrical conductivity, which is strongly dependent on

temperature, φ is the electric potential and g is a given function.
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2.2 Multiphysics Problems

Joule heating is generated by the resistance of materials to electric cur-

rent and presents in any electric conductor. Therefore it is crucial in many

MEMS applications. Let u be the absolute temperature and φ be the elec-

tric potential in a solid electric conductor represented by a bounded domain

Ω. Under steady conditions, the stationary Joule heating problem consists

of the following nonlinear elliptic system

−∇ · k∇u = σ(u) · |∇φ|2, in Ω (2.3)

−∇ · σ(u)∇φ = f, in Ω (2.4)

with some suitable boundary conditions, where k and σ(u) are the ther-

mal and electrical conductivities respectively which we suppose to be given

positive functions.

A number of different materials can be used in MEMS technology. Silicon

is the material used to create most integrated circuits used in consumer elec-

tronic in the modern world. Because of availabilities of cheap high-quanlity

and incorporating electronics functionality, silicon has been exploited for

a wide variety of MEMS applications. Metals can also be used to create

MEMS elements because of their high reliability. The devices based on so

called high-temperature superconductivity have been paid more and more

attention in past two decades. These different materials exhibit distinct

physical properties, but we are more interested in their electrical conductiv-

ities in our paper.

2.3 Electrical Conductivities

2.3.1 Common definition

When an electrical potential difference is placed across a conductor, its mov-

able charges flow, giving rise to an electrical current. The conductivity σ is

defined as the ratio of the current density J to the electrical field strength
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E

J = σE. (2.5)

Conductivity is the reciprocal of electrical resistivity ρ, and has SI unit of

siemens per meter S ·m−1

σ =
1
ρ
. (2.6)

2.3.2 Classifications

According to the electrical conductivity, materials can be classified into the

following categories:

• A conductor such as metal has high conductivity and a low resistivity;

• An insulator like glass or a vacuum has low conductivity and a high

resistivity;

• The conductivity of a semiconductor is generally intermediate, but

varies widely under different conditions, such as exposure of the ma-

terial to electric fields or specific frequencies of light and, most impor-

tant, with temperature and composition of the semiconductor mate-

rial;

• Superconductivity occurs at extremely low temperature (not far from

absolute zero), and materials have been found to exhibit very high

electrical conductivity in this phenomenon.

Based on this classifications, we will test convergences of iterative solution-

techniques when we are solving the Joule heating problem for three sorts of

materials: metals, semiconductors and superconductors.

2.3.3 Temperature dependency

Electrical conductivity is strongly dependent on temperature. This depen-

dence is often expressed using a conductivity-vs-temperature graph. Let us

define σ′ to be the electrical conductivity at a standard temperature u′ and
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α to be the temperature compensation slope. Based on the physical prop-

erty of metals such that electrical conductivity decreases with the increasing

temperature, we can describe this kind of conductivity-vs-temperature graph

as

σ(u) =

 σ′ u ≤ u′

σ′

1+α(u−u′) u > u′
(2.7)

where σ(u) is electrical conductivity at temperature u.

In semiconductors, electrical conductivity increases as temperature is

increasing, hence its dependence can be written as

σ(u) =

 σ′ u ≤ u′

σ′
(
1 + α(u− u′)

)
u > u′

(2.8)

where σ(u), σ′, α and u′ have the same explanations as equation (2.7).

Finally let us consider superconductors. As we know, one of the most

important physical properties is that when temperature is decreased to a

very low value (not far from absolute zero), the electrical resistance of a

superconductor lowers to exact zero. Electrical conductivity is the inverse

of electrical resistivity, i.e. it will be extremely large in such situation. Based

on this property, we can define the conductivity-vs-temperature graph for

superconductors as

σ(u) =

 ∞ u < u′

σ′

α(u−u′) u ≥ u′
(2.9)

where σ(u), σ′, α and u′ are the same as equations (2.7) and (2.8).
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Chapter 3

Mathematical Model and

FEM

3.1 Preliminaries

First of all, let us settle some definitions and notations that will be frequently

used in the paper. The scalar product (·, ·) is the ordinary L2 = L2(Ω)

product and ‖ · ‖ is the corresponding norm. A triangulation, or mesh, K

of Ω is a set {K} of triangles K such that Ω =
⋃
K∈KK and intersection of

two triangles is either a triangle edge, a triangle corner, or empty. A closed

polyline ∂K of ∂Ω is a set {E} of edges E such that ∂Ω =
⋃
E∈∂KE. In

other words, {E} is a set of sides of triangles which are on the boundary.

The boundary of a triangle K is denoted by ∂K. If an edge is shared by two

triangles, we call it an interior edge, otherwise it will be on the boundary of

Ω, i.e. ∂K ∪ ∂Ω = E ∈ ∂K. We denote the longest edge of triangle K by

hK and the length of edge E by hE .

Let K be a triangle with nodes at the corners N1 = (x1
1, x

1
2), N2 =

(x2
1, x

2
2), and N3 = (x3

1, x
3
2) and let P1(K) denote the vector space of linear

polynomials defined on K

P1(K) = {v : v(x1, x2) = c0 + c1x1 + c2x2, c0, c1, c2 ∈ R}. (3.1)
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Let Vh be the vector space of all continuous piecewise linear polynomials

Vh = {v : v ∈ C(Ω), v|K ∈ P1(K) ∀K ∈ K} (3.2)

where C(Ω) denotes the space of all continuous functions on Ω and P1(K)

is the space of linear polynomials on K as defined by (3.1). We denote the

basis functions ϕj(Ni) ⊂ Vh, such that

ϕj(Ni) =

 0 i = j

1 i 6= j

for i, j = 1, 2, . . . , N . Using these basis functions, all v ∈ Vh can be written

as

v(x1, x2) =
N∑
i=1

αiϕi(x1, x2) (3.3)

where the coefficients αi are the nodal values of the function v, that is

αi = v(Ni), i = 1, 2, . . . , N. (3.4)

Given a continuous function f ∈ C(K) on a triangle K with nodes at

Ni = (xi1, x
i
2), i = 1, 2, 3, we define the interpolant πf ∈ P1(K) of f as

πf =
3∑
i=1

f(Ni)ϕi.

We let Df and D2f be defined by

Df = (|∂f
∂x
|2 + |∂f

∂y
|2)1/2,

D2f = (|∂
2f

∂x2
|2 + 2| ∂

2f

∂x∂y
|2 + |∂

2f

∂y2
|2)1/2.

Using these notations, the following proposition for the interpolation error

estimates has been shown, i.e. in [2].

Proposition 3.1. The following estimates hold∑
K

‖f − πf‖2L2(K) ≤ C
∑
K

h2
K‖Df‖2L2(K)∑

K

‖D(f − πf)‖2L2(K) ≤ C
∑
K

‖Df‖2L2(K)

where C is a constant.
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3.2 The Model Problem

Let us define a model problem for the stationary Joule heating problem with

mixed boundary conditions. It can be written as

−∇ · k∇u = σ(u) · |∇φ|2 in Ω (3.5)

n · k∇u = κ1(g1 − u) on ∂Ω (3.6)

−∇ · σ(u)∇φ = f in Ω (3.7)

φ = g2 on ΓD (3.8)

n · σ(u)∇φ = κ2(g3 − φ) on ΓN (3.9)

where g1, g2, g3 and f are given functions, Ω is a two-dimensional domain

with the boundary ∂Ω, ∂Ω = ΓD ∪ ΓN , and n is the outward normal of ∂Ω,

as shown in Figure 3.1. Next we will derive a finite element method for this

Figure 3.1: A domain Ω and boundary ∂Ω, ∂Ω = ΓD ∪ ΓN .

model.
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3.3 Finite Element Method

3.3.1 Heat equation

In this section, we consider the stationary heat equation (3.5) – (3.6). We

assume for now that the right hand side of (3.5) is a given function. To

distinguish between u and φ in the left hand sides of (3.5) and (3.7), we

denote it by σ(u∗) · |∇φ∗|2.

Let us introduce a space

V = {v : ‖v‖+ ‖∇v‖ <∞}. (3.10)

Multiplying (3.5) by a test function v ∈ V , and integrating on both sides,

then using Green’s formula, we get

−
∫

Ω
(∇ · k∇u) · vdx =

∫
Ω
k∇u · ∇vdx−

∫
∂Ω

n · k∇u · vds

=
∫

Ω
k∇u · ∇vdx+

∫
∂Ω
κ1(u− g1) · vds

=
∫

Ω
σ(u∗) · |∇φ∗|2 · vdx

since n·k∇u = κ1(g1−u) on ∂Ω. Thus we obtain the variational formulation

for the problem (3.5) – (3.6): Find u ∈ V such that∫
Ω
k∇u · ∇vdx +

∫
∂Ω
κ1u · vds (3.11)

=
∫

Ω
σ(u∗) · |∇φ∗|2 · vdx+

∫
∂Ω
κ1g1 · vds, ∀v ∈ V.

Based on this form, we define a finite element method: Find U ∈ Vh ⊂ V ,

such that∫
Ω
k∇U · ∇vdx +

∫
∂Ω
κ1U · vds (3.12)

=
∫

Ω
σ(u∗) · |∇φ∗|2 · vdx+

∫
∂Ω
κ1g1 · vds, ∀v ∈ Vh

From the variational formulation and the finite element method, we get

the following theorem:
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Theorem 3.2. For the problem (3.5) – (3.6) with a given exact right hand

side of (3.5) which has been denoted as σ(u∗)·|∇φ∗|2, the following Galerkin

orthogonality property holds∫
Ω
k∇e · ∇vdx+

∫
∂Ω
κ1evds = 0, ∀v ∈ Vh (3.13)

where e = u−U is the error between the exact and the finite element solution.

Proof. Subtracting two equations (3.11) and (3.12), then using the fact that

Vh ⊂ V immediately proves this claim.

3.3.2 Potential equation

Let us seek a solution to the potential problem which consisting of (3.7) –

(3.9). Assume σ(u) is a given function which is the same as in the right

hand side of heat equation (3.5), hence we can rewrite it as σ(u∗).

Let us introduce a space

Vg2,D = {v : ‖v‖+ ‖∇v‖ <∞, v|ΓD
= g2}. (3.14)

Multiplying (3.7) by a test function v ∈ V0,D, and integrating on both sides,

then using Green’s formula, we get

−
∫

Ω
(∇ · σ(u∗)∇φ) · vdx =

∫
Ω
σ(u∗)∇φ · ∇vdx−

∫
∂Ω

n · σ(u∗)∇φ · vds

=
∫

Ω
σ(u∗)∇φ · ∇vdx+

∫
ΓN

κ2(φ− g3) · vds

=
∫

Ω
f · vdx

since n ·σ(u∗)∇φ = κ2(g3−φ) on ΓN and v = 0 on ΓD. Thus the variational

problem reads as follows: Find φ ∈ Vg2,D such that∫
Ω
σ(u∗)∇φ · ∇vdx+

∫
ΓN

κ2φ · vds =
∫

Ω
f · vdx+

∫
ΓN

κ2g3 · vds, ∀v ∈ V0,D.

(3.15)

We assume g2 to be piecewise polynomial and continuous on the boundary

ΓD. That means, there is a function Φg2 ∈ Vh,D such that Φg2 = g2 on ΓD.
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We introduce the affine subspace Vh,g2,D = {v ∈ Vh : v|ΓD
= g2}, then the

finite element method reads: Find Φ ∈ Vh,g2,D, such that∫
Ω
σ(u∗)∇Φ · ∇vdx+

∫
ΓN

κ2Φ · vds =
∫

Ω
f · vdx+

∫
ΓN

κ2g3 · vds, ∀v ∈ Vh,0,D.

(3.16)

From the variational formulation and the finite element method, we ob-

tain the following theorem:

Theorem 3.3. For the problem defined by (3.7) – (3.9) with a given function

σ(u∗), the following Galerkin orthogonality property holds∫
Ω
σ(u∗)∇e · ∇vdx+

∫
ΓN

κ2evds = 0, ∀v ∈ Vh,0,D (3.17)

where e = φ−Φ is the error between the exact and the finite element solution.

Proof. Subtracting two equations (3.15) and (3.16), then using the fact that

Vh,0,D ⊂ V0,D immediately proves this claim.

To derive an equation for Φ, we will use a technique presented in [1]. We

write Φ in the form

Φ = Φ0 + Φg2 (3.18)

where Φg2 is any fixed function in Vh,g2,D and Φ0 = 0 on ΓD and thus

Φ0 ∈ Vh,0,D. This construction of Φ will satisfy the boundary conditions

because of Φg2 = g2 on ΓD. Since Φg2 is known it remains to determine Φ0,

we get the equation: Find Φ0 ∈ Vh,0,D, such that∫
Ω
σ(u∗)∇Φ0 · ∇vdx+

∫
ΓN

κ2Φ0 · vds

=
∫

Ω
f · vdx+

∫
ΓN

κ2g3 · vds−
∫

Ω
σ(u∗)∇Φg2 · ∇vdx−

∫
ΓN

κ2Φg2 · vds

(3.19)

for ∀v ∈ Vh,0,D. This is a problem of the same kind as above but with a

modified right hand side. One can prove that the solution Φ = Φ0 + Φg2 is

independent of the particular choice of the function Φg2 . In practice Φg2 is

often chosen to be zero at all interior nodes plus all the nodes on ΓN . And

more details about this technique will be illustrated in the later section.
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Next, let us derive linear systems resulting from these two finite element

problems. However, we need to introduce quadrature rules which will be

utilized in this paper.

3.4 Gauss Quadrature Rule

In numerical analysis, a quadrature rule is an approximation of the definite

integral of a function, usually has the form of a weighted sum of function

values at specified points within the domain of integration. Assume f is a

given function, a general quadrature rule on a triangle K or a edge E takes

the form ∫
K
fdx ≈

∑
j

wjf(qj)

or ∫
E
fds ≈

∑
j

wjf(qj)

where qj is the set of quadrature points within K or on E.

3.4.1 Area coordinates

To explain the interpolation functions with higher degree, we will introduce

the definition so-call area coordinates in [5].

Definition 3.4 (Area coordinates). For triangular elements, it is possible

to construct three non-dimensional coordinates Li(i = 1, 2, 3), which vary in

a direction normal to the sides directly opposite each node. The coordinates

are defined such that

Li =
Ai
A

i = 1, 2, 3 (3.20)

A =
3∑
i=1

Ai (3.21)

where Ai is the area of the triangle formed by nodes j and k (j, k = 1, 2, 3)

and arbitrary point P in the element, and A is the total area of the element.

13



Figure 3.2: The example of area coordinates

For example, assume A1 is the area of the triangle which is formed by

nodes N2 and N3 and point P , as showed in Figure 3.2. The point P is at

a distance of s from the side connecting nodes N2 and N3. We have

A1 =
b · s

2

A =
b · h

2

where h is the distance from the node 1 to the side connecting nodes N2

and N3 and b is the length of this side. Hence,

L1 =
A1

A
=
s

h
.

Clearly, L1 is zero on side N2 − N3 (hence, zero at nodes N2 and N3) and

has a value of unity at node N1. In other words, L1 is the finite element

basis function associated with node N1. Similarly, L2 and L3 are the basis

functions associated with nodes N2 and N3.

14



3.4.2 Gauss quadrature rule on triangles

On an arbitrary triangle, using the Gauss quadrature rule, we can obtain

the following approximation

∫
K
f(x)dx ≈ |K| ·

N∑
i=1

wif(Gi)

where N is the number of the Gaussian points; Gi is the ith Gaussian point;

wi is the weight of ith Gaussian point; |K| is the area of the triangle. Assume

this triangle is defined by three nodes (x1
1, x

1
2), (x2

1, x
2
2) and (x3

1, x
3
2), then Gi

can be calculated by the formula

Gi =

 x1
1 x1

2 x1
3

x2
1 x2

2 x2
3

 ·

Li1

Li2

Li3


where Li1, Li2 and Li3 are the area coordinates of point Gi in the reference

triangle. They can be can be found in Table A.1 in Appendix.

3.4.3 Gauss quadrature rule on edges

On the boundary, it is possible to construct two non-dimensional coordinates

L1 and L2. If the edge E lies between two boundary nodes (x1
1, x

1
2) and

(x2
1, x

2
2), then we use the Gauss quadrature rule to obtain the following

approximation ∫
E
f(x)dx ≈ |hE | ·

N∑
i=1

wif(Gi)

where N is the number of the Gaussian points; Gi is the ith Gaussian point;

wi is the weight of ith Gaussian point; |hE | is the length of the edge. Further,

Gi is defined by

Gi =

 x1
1 x1

2

x2
1 x2

2

 ·
 Li1

Li2


where Li1 and Li2 are the area coordinates of point Gi on the reference edge.

They can be given in Table A.2 in Appendix.
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3.5 Implementation Details

3.5.1 Derivation of the linear system for the heat equation

Let {ϕi}Ni=1 be basis functions of Vh which are defined on the mesh K. Then

we write U as a linear combination of the basis functions

U =
N∑
j=1

ζjϕj (3.22)

with unknown coefficients ζj where j = 1, 2, . . . , N . Inserting (3.22) into

(3.12), we get

∫
Ω
k(∇

N∑
j=1

ζjϕj) · ∇ϕidx +
∫
∂Ω
κ1(

N∑
j=1

ζjϕj)ϕids (3.23)

=
∫

Ω
σ(u∗) · |∇φ∗|2ϕidx+

∫
∂Ω
κ1g1ϕids

for i = 1, 2, . . . , N . Introducing the notations

a1
i,j =

∫
Ω
k∇ϕi · ∇ϕjdx, (3.24)

m1
i,j =

∫
∂Ω
κ1ϕiϕjds, (3.25)

b1i =
∫

Ω
σ(u∗) · |∇φ∗|2ϕidx, (3.26)

r1
i =

∫
∂Ω
κ1g1ϕids, (3.27)

for i, j = 1, 2, . . . , N . Then we get

N∑
j=1

(a1
i,j +m1

i,j)ζj = b1i + r1
i (3.28)

for i = 1, 2, . . . , N , which is a linear system for the coefficients ζj . In the

matrix form we write as

(A1 +M1)ζ = b1 + r1 (3.29)

with N × N matrices A1 and M1, N × 1 vectors b1, r1 are defined above

respectively.
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3.5.2 Derivation of the linear system for the potential equa-

tion

Let {ϕi}Ni=1 be basis functions of Vh which are defined on the mesh K as

well. Then we write Φ as a linear combination of the basis functions

Φ =
N∑
j=1

ξjϕj (3.30)

with unknown coefficients ξj where j = 1, 2, . . . , N . Inserting (3.30) into

equation (3.16), we get∫
Ω
σ(u∗)(∇

N∑
j=1

ξjϕj) · ∇ϕidx +
∫

ΓN

κ2(
N∑
j=1

ξjϕj)ϕids (3.31)

=
∫

Ω
fϕidx+

∫
ΓN

κg3ϕids

for i = 1, 2, . . . , N . Introducing the notations

a2
i,j =

∫
Ω
σ(u∗)∇ϕi · ∇ϕjdx, (3.32)

m2
i,j =

∫
ΓN

κ2ϕiϕjds, (3.33)

b2i =
∫

Ω
fϕidx, (3.34)

r2
i =

∫
ΓN

κ2g3ϕids, (3.35)

for i, j = 1, 2, . . . , N . Then we get

N∑
j=1

(a2
i,j +m2

i,j)ξj = b2i + r2
i (3.36)

for i = 1, 2, . . . , N , which is a linear systems for the coefficients ξj . In the

matrix form we write as

(A2 +M2)ξ = b2 + r2 (3.37)

with N ×N matrixes A2 and M2, N ×1 vectors b2 and r2 are defined above

respectively.

Based on (3.18) and (3.19), let us assume that the first S nodes are

interior nodes including the nodes on ΓN , while the last N − S nodes are
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boundary nodes on ΓD for the linear system of the potential equation (3.37).

These boundary nodes are fixed since the nodal values of Φ should be g2.

Using these nodes numbering, we can partition the linear system (A2 +

M2)ξ = b2 + r2 into the following form A2
0,0 +M2

0,0 A2
0,g2

+M2
0,g2

A2
g2,0

+M2
g2,0

A2
g2,g2 +M2

g2,g2

 ·
 ξ0

ξg2

 =

 b20 + r2
0

b2g2 + r2
g2


where A2

0,0 and M2
0,0 are the upper left S × S block of A2 and M2, while

A2
g2,g2 and M2

g2,g2 are the lower right (N −S)× (N −S) block of A2 and M2.

Rearranging the first S equations of this linear system, we have the S × S

linear system

(A2
0,0 +M2

0,0)ξ0 = (b20 + r2
0)− (A2

0,g2 +M2
0,g2)ξg2 (3.38)

from which the unknown interior nodal values as well as the nodal values

on ΓN of Φ can be determined.

3.5.3 Assembling of the stiffness matrices

Recall the notations (3.24) and (3.32), the local 3× 3 stiffness matrices are

given by

A1,K
i,j =

∫
K
k∇ϕi∇ϕjdx,

A2,K
i,j =

∫
K
σ(u∗)∇ϕi∇ϕjdx,

for i, j = 1, 2, 3.

Consider a triangle K with the nodes (x1
1, x

1
2), (x2

1, x
2
2) and (x3

1, x
3
2). To

each node Ni (i = 1, 2, 3), there is a hat function ϕi associated, which takes

on the value 1 at node Ni and 0 at other nodes. Each hat function is a linear

function on K so it takes the form

ϕi = ai + bixi + cix2, i = 1, 2, 3

where the coefficients ai, bi and ci are determined by the following linear

18



systems


1 x1

1 x1
2

1 x2
1 x2

2

1 x3
1 x3

2

 ·

a1

b1

c1

 =


1

0

0

 = e1,


1 x1

1 x1
2

1 x2
1 x2

2

1 x3
1 x3

2

 ·

a2

b2

c2

 =


0

1

0

 = e2,


1 x1

1 x1
2

1 x2
1 x2

2

1 x3
1 x3

2

 ·

a3

b3

c3

 =


0

0

1

 = e3.

The gradient of ϕi is just the constant vector ∇ϕi = [bi ci]. Then using the

Gauss quadrature rule, we get

A1,K
i,j =

∫
K
k∇ϕi∇ϕjdx

= (bibj + cicj)
∫
K
kdx

≈ (bibj + cicj) · |K| ·
Q∑
l=1

(wl · k(Gl)),

A2,K
i,j =

∫
K
σ(u∗)∇ϕi∇ϕjdx

≈ (bibj + cicj) · |K| ·
Q∑
l=1

(wl · σ(u∗l ))

where i, j = 1, 2, 3; Gl is the lth Gaussian point; wl is the weight of lth

Gaussian point; Lli is the ith area coordinate of the lth Gaussian point defined

by (3.20); σ(u∗l ) is the value of σ(u∗) on the lth Gauss point; Q is the number

of Gaussian points.
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3.5.4 Assembling of the load vectors

Recall the notations (3.26) and (3.34), on each element K, we get local 3×1

element vectors b1K and b2K with entries

b1,Ki =
∫
K
σ(u∗) · |∇φ∗|2ϕidx,

b2,Ki =
∫
K
fϕidx

for i = 1, 2, 3. Using the Gauss quadrature rule to compute these integrals,

we obtain

b1,Ki ≈ |K| ·
Q∑
l=1

(wl · σ(u∗l ) · |∇φ∗l |2 · Lli)

b2,Ki ≈ |K| ·
Q∑
l=1

(wl · f(Gl) · Lli),

where i, j = 1, 2, 3; Gl is the lth Gaussian point; wl is the weight of lth

Gaussian point; Lli is the ith area coordinate of the lth Gaussian point defined

by (3.20); σ(u∗l ) is the value of σ(u∗) on the lth Gauss point; |∇φ∗l |2 is the

value of |∇φ∗|2 on the lth Gauss point; Q is the number of the Gaussian

points.

3.5.5 Assembling of the boundary contributions

Two nodes of a triangle K lie along the domain ∂Ω, then the edge between

them will contribute to matrices entries M1
i,j , M

2
i,j and vectors entries r1

i , r
2
i

M1,E
i,j =

∫
E
κ1ϕiϕjds ≈ κ1|hE | ·

Q∑
l=1

(wl · Lli · Llj)

r1,E
i =

∫
E
κ1g1ϕids ≈ κ1|hE | ·

Q∑
l=1

(wl · g1(Gl) · Lli)

M2,E
i,j =

∫
E
κ2ϕiϕjds ≈ κ2|hE | ·

Q∑
l=1

(wl · Lli · Llj)

r2,E
i =

∫
E
κ2g3ϕids ≈ κ2|hE | ·

Q∑
l=1

(wl · g3(Gl) · Lli)
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where i, j = 1, 2, 3; Gl is the lth Gaussian point; wl is the weight of lth

Gaussian point; Lli is the ith area coordinate of the lth Gaussian point defined

by (3.20); Q is the number of the Gaussian points.

3.6 Iterative Methods for non-linear problems

So far we have derived two linear systems of two single physical problems

which are based on an assumption that σ(u∗) · |∇φ∗|2 and σ(u∗) are two

given functions. Let us write the relationship between u∗, φ∗ and U , Φ in

the following way

U = f1(u∗, φ∗), (3.39)

Φ = f2(u∗). (3.40)

However, our model problem is a multiphysical problem involving both heat

and potential equations. Hence u∗ and φ∗ must be the exact solutions u and

φ defined by (3.5) – (3.9). Then as the numerical solutions of u and φ in

the model problem, (3.39) and (3.40) can be represented as

U = f1(U,Φ), (3.41)

Φ = f2(U). (3.42)

To solve these linear systems, we need to introduce iterative methods in our

model.

An iterative method attempts to solve a problem by finding successive

approximations to the solution starting from an initial guess. If an equation

can be put into the form F (X) = X (here, X could be a vector and contains

several elements), a solution X is an attractive fixed point of the function

F , then one may begin with a point X(1) in the basin of attraction of X.

Let X(i+1) = F (Xi) for i ≥ 1, and the sequence {X(i)}i≥1 will converge to

the solution X.

Examples of iterative methods are Jacobi method, Gauss-Seidel (GS)

method and Successive Over-relaxation (SOR) method.
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• Jacobi method: is an iterative technique that solves present values X

by using previous values X in the right hand side. This method can

be written as X(i+1) = F (X(i));

• GS method: the computation of x(i+1)
j uses the elements of X(i+1) that

have already been computed (denoted as X(i+1)
∗ ) and the elements of

X(i) that have to be advanced to iteration i + 1 (denoted as X(i)
∗∗ ).

This method can be written as X(i+1) = F (X(i+1)
∗ , X

(i)
∗∗ );

• SOR method: is a variant of the GS method, resulting in faster con-

vergence. It introduces a relaxation factor ω, which is a constant and

greater than 0. This method can be written as X(i+1) = (1−ω)X(i) +

ωF (X(i+1)
∗ , X

(i)
∗∗ ). When ω = 1, it is the GS method. Since the similar

method can be used for any slowly converging iterative process, we can

use it to improve Jacobi method as well.

In this paper, assume we start from two guessing values U0 and Φ0, then

these iterative methods would be implemented between heat and potential

equations as:

• Jacobi method : {U (i),Φ(i)} = {f1(U (i−1),Φ(i−1)), f2(U (i−1))};

• GS method : {U (i),Φ(i)} = {f1(U (i−1),Φ(i−1)), f2(U (i))};

• SOR method : {U (i),Φ(i)} = {(1−ω)U (i−1) +ωf1(U (i−1),Φ(i−1)), (1−

ω)Φ(i−1) + ωf2(U (i))}

where i ≥ 1 and all procedures stop when a certain tolerance is reaching.
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Chapter 4

Adaptive Finite Element

Method

4.1 A Posteriori Error Estimates

Let us revisit the model problem

−∇ · k∇u = σ(u) · |∇φ|2 in Ω, (4.1)

n · k∇u = κ1(g1 − u) on ∂Ω, (4.2)

−∇ · σ(u)∇φ = f in Ω, (4.3)

φ = g2 on ΓD, (4.4)

n · σ(u)∇φ = κ2(g3 − φ) on ΓN . (4.5)

For the heat equation defined by (4.1) – (4.2), we have a posteriori estimate:

Theorem 4.1. For the finite element approximation U of the exact solution

u to (4.1) and (4.2) with a given right hand side of (4.1), σ(u∗) · |∇φ∗|2,

the following a posteriori error estimate holds

‖∇(u− U)‖2L2(Ω) + ‖u− U‖2L2(∂Ω) ≤ C
( ∑
K∈K

ρ2
K(U, u∗, φ∗) +

∑
E∈∂K

ρ2
E(U)

)
(4.6)

where C is a constant, the element residual in the interior domain ρK(U, u∗, φ∗)
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is defined by

ρK(U, u∗, φ∗) = hK‖σ(u∗) · |∇φ∗|2 +∇ · k∇U‖L2(K)

+
1
2
h

1/2
K ‖[n · k∇U ]‖L2(∂K\∂Ω) (4.7)

and the element residual on the boundary ρE(U) is defined by

ρE(U) = h
1/2
K ‖κ1(g1 − U)− n · k∇U‖L2(E∩∂Ω). (4.8)

Here [n · k∇U ] denotes the jump in the k times normal derivative of U

at an interior edge ∂K1 ∩ ∂K2, i.e.

[n · k∇U ]|∂K1∩∂K2 = n1 · k∇U1 + n2 · k∇U2 (4.9)

with Ui = U |Ki and ni is the exterior unit normal of Ki.

Proof. Let e = u− U be the error. If k, κ1 ≥ α > 0, we have

α ·
(
‖∇e‖2L2(Ω) + ‖e‖2L2(∂Ω)

)
≤

∫
Ω
k∇e · ∇edx+

∫
∂Ω
κ1e · eds

=
∫

Ω
k∇e · ∇(e− πe)dx+

∫
∂Ω
κ1e · (e− πe)ds

where we have used the Galerkin orthogonality (see Theorem 3.2) to subtract

the interpolant πe. Splitting this into a sum over the elements and using

the Green’s formula, or integration by parts, we further have

α ·
(
‖∇e‖2L2(Ω) + ‖e‖2L2(∂Ω)

)
≤

∑
K∈K

∫
K
k∇e · ∇(e− πe)dx+

∑
E∈∂K

∫
E
κ1e · (e− πe)ds

=
∑
K∈K

(−
∫
K
∇ · k∇e · (e− πe)dx+

∫
∂K

n · k∇e · (e− πe)ds)

+
∑
E∈∂K

∫
E
κ1e · (e− πe)ds.

First of all, let us consider the element residuals in the interior domain.

24



According to the equation (4.1), we obtain

∑
K∈K
−
∫
K
∇ · k∇e · (e− πe)dx

=
∑
K∈K
−
∫
K
∇ · k∇(u− U) · (e− πe)dx

=
∑
K∈K

∫
K

(σ(u∗) · |∇φ∗|2 +∇ · k∇U)(e− πe)dx.

Then using the Cauchy-Schwartz inequality and an interpolation error esti-

mate (see Proposition 3.1), we can get

∑
K∈K
−
∫
K
∇ · k∇e · (e− πe)dx

≤
∑
K∈K
‖σ(u∗) · |∇φ∗|2 +∇ · k∇U‖K‖e− πe‖K

≤
∑
K∈K
‖σ(u∗) · |∇φ∗|2 +∇ · k∇U‖KChK‖De‖K (4.10)

where C is a constant.

For each interior edge ∂K1 ∩ ∂K2, there are two contributions, one from

triangle K1 and the other one from triangle K2. Summing these contribu-

tions, we get

∫
∂K1∩∂K2

(n1 · k∇e1(e1 − πe1) + n2 · k∇e2(e2 − πe2))ds,

where ei = e|Ki and ni is the exterior unit normal of Ki for i = 1, 2. Using

the fact that the exact solution has a continuous normal derivative and that

the error and its interpolant are continuous, we get

∑
K∈K

∫
∂K\∂Ω

n · k∇e(e− πe)ds =
∑
K∈K

∫
∂K\∂Ω

([n · k∇U ]/2)(e− πe)ds.

since all interior edges are considered twice. Then using the Cauchy-Schwartz

inequality again and the so-called trace inequality in [1] followed an interpo-
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lation error estimate in Proposition 3.1, we can get

∑
K∈K

∫
∂K\∂Ω

([n · k∇U ]/2)(e− πe)ds

≤
∑
K∈K
‖[n · k∇U ]/2‖∂K‖e− πe‖∂K

≤
∑
K∈K
‖[n · k∇U ]/2‖∂KC(h−1

K ‖e− πe‖
2
K + hK‖D(e− πe)‖2K)1/2

≤
∑
K∈K
‖[n · k∇U ]/2‖∂KCh

1/2
K ‖De‖K (4.11)

where C is a constant.

Now let us consider edges of a triangle which are not shared by others.

They also have contributions to the element residuals but only on the bound-

ary. Hence for each ∂K ∈ ∂K, using the Cauchy-Schwartz inequality, the

boundary condition (4.2) and trace inequality in [1] followed an interpolation

error estimate in Proposition 3.1, we can get

∑
E∈∂K

∫
E

(n · k∇e+ κ1e)(e− πe)ds

≤
∑
E∈∂K

‖κ1(g1 − U)− n · k∇U‖E‖e− πe‖E

≤
∑
E∈∂K

‖κ1(g1 − U)− n · k∇U‖E‖e− πe‖∂K

≤
∑
E∈∂K

‖κ1(g1 − U)− n · k∇U‖EC
(
h−1
K ‖e− πe‖

2
K + hK‖D(e− πe)‖2K

)1/2
≤

∑
E∈∂K

‖κ1(g1 − U)− n · k∇U‖ECh1/2
E ‖De‖K (4.12)
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Based on inequalities (4.10), (4.11) and (4.12), we can get

α ·
(
‖∇e‖2L2(Ω) + ‖e‖2L2(∂Ω)

)
≤

∑
K∈K

(
‖σ(u∗) · |∇φ∗|2 +∇ · k∇U‖KChK‖De‖K

+‖[n · k∇U ]/2‖∂KCh
1/2
K ‖De‖K

)
+
∑
E∈∂K

‖κ1(g1 − U)− n · k∇U‖ECh1/2
E ‖De‖K

≤ C
(( ∑

K∈K
h2
K‖σ(u∗) · |∇φ∗|2 +∇ · k∇U‖2K

+hK‖[n · k∇U ]/2‖2∂K
)1/2( ∑

K∈K
‖De‖2K

)1/2
+
( ∑
E∈∂K

hE‖κ1(g1 − U)− n · k∇U‖2E
)1/2( ∑

K∈K
‖De‖2K

)1/2)
≤ C

(( ∑
K∈K

h2
K‖σ(u∗) · |∇φ∗|2 +∇ · k∇U‖2K

+hK‖[n · k∇U ]/2‖2∂K
)1/2 · ‖De‖L2(Ω)

+
( ∑
E∈∂K

hE‖κ1(g1 − U)− n · k∇U‖2E
)1/2 · ‖De‖L2(Ω)

)
≤ C

(( ∑
K∈K

h2
K‖σ(u∗) · |∇φ∗|2 +∇ · k∇U‖2K + hK‖[n · k∇U/2]‖2∂K

)1/2
+
( ∑
E∈∂K

hE‖κ1(g1 − U)− n · k∇U‖2E
)1/2) · (‖∇e‖L2(Ω) + ‖e‖L2(∂Ω)

)
where C is a constant.

By dividing ‖∇e‖L2(Ω) +‖e‖L2(∂Ω) and taking squares on both sides, the

inequality (4.6) can be proved directly.

Next, we consider the potential problem defined by (4.3) – (4.5). We

have a posteriori estimate:

Theorem 4.2. For the finite element approximation Φ of the exact solution

φ to (4.3), (4.4) and (4.5) with a given function σ(u∗), the following a

posteriori error estimate holds

‖∇(φ− Φ)‖2L2(Ω) + ‖φ− Φ‖2L2(∂Ω) ≤ C
( ∑
K∈K

η2
K(Φ, u∗) +

∑
E∈∂K

η2
E(Φ, u∗)

)
(4.13)
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where C is a constant, the element residual in the interior domain ηK(Φ, u∗)

is defined by

ηK(Φ, u∗) = hK‖f +∇ · σ(u∗)∇Φ‖L2(K) +
1
2
h

1/2
K ‖[n · σ(u∗)∇Φ]‖L2(∂K\∂Ω)

(4.14)

and the element residual on the boundary ρE(U) is defined by

ηE(Φ, u∗) = h
1/2
E ‖κ2(g3 − Φ)− n · σ(u∗)∇Φ‖L2(E∩∂Ω). (4.15)

Proof. Let e = φ−Φ be the error. Assume σ(u∗), κ2 ≥ β > 0, then we have

β ·
(
‖∇e‖2L2(Ω) + ‖e‖2L2(∂Ω)

)
≤

∫
Ω
σ(u∗)∇e · ∇edx+

∫
ΓN

κ2e · eds

=
∫

Ω
σ(u∗)∇e · ∇(e− πe)dx+

∫
ΓN

κ2e · (e− πe)ds

where we have used the Gelerkin orthogonality ( see Theorem 3.2) to sub-

tract the interpolant πe. The rest procedure of this proof is similar to

Theorem 4.1.

In both Theorem 4.1 and 4.2, we have assumed that u∗ and φ∗ are known.

In this paper, the model problem is a multiphysical problem which is con-

structed by both heat and potential equations. That means u∗ and φ∗ are

the exact solution of the model problem. Hence, in the numerical method of

this multiphysical problem, u∗ and φ∗ are replaced by their numerical solu-

tion U and Φ. It makes us to derive a posteriori estimation more difficultly.

However, we can state a conjecture encouraged by Proposition 2.1 in [3].

Conjecture 4.3. For the finite element approximation U and Φ of the exact

solution u and φ to the multiphysical problem defined by (4.1) – (4.5), the

following a posteriori error estimate holds

‖∇(u− U)‖2L2(Ω) + ‖∇(φ− Φ)‖2L2(Ω) + ‖u− U‖2L2(∂Ω) + ‖φ− Φ‖2L2(∂Ω)

≤ C
( ∑
K∈K

µ2
K(U,Φ) +

∑
E∈∂K

µ2
E(U,Φ)

)
(4.16)
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where C is a constant and the element residuals in the interior domain

µK(U,Φ) is defined by

µK(U,Φ) = hK‖σ(U) · |∇Φ|2 +∇ · k∇U‖L2(K) +
1
2
h

1/2
K ‖[n · k∇U ]‖L2(∂K\∂Ω)

+hK‖f +∇ · σ(U)∇Φ‖L2(K) +
1
2
h

1/2
K ‖[n · σ(U)∇Φ]‖L2(∂K\∂Ω)

(4.17)

and the element residuals on the boundary µE(U,Φ) is defined by

µE(U,Φ) = h
1/2
E ‖κ1(g1 − U)− n · k∇U‖L2(E∩∂Ω)

+h1/2
E ‖κ2(g3 − Φ)− n · σ(U)∇Φ‖L2(E∩∂Ω) (4.18)

4.2 Adaptive Mesh Refinement

When constructing a refinement algorithm, two important issues need to be

considered:

• Invalid triangles (e.g with hanging nodes): are not allowed and we

wish to refine as few elements as possible which are not in the list of

elements to be refined;

• Minimal angle: is kept as large as possible.

Here we will introduce two methods: Regular refinement and Rivara refine-

ment. See Figures 4.1. The first method consists of splitting each triangle

into four smaller ones. In the second method a triangle is always refined by

inserting a new edge from the midpoint of the longest edge to the opposite

corner.

In MATLAB, a geometry of a given domain can be created by a mesh

generator included in PDE toolbox. We call it geom. A mesh or triangu-

lation on the domain geom is stored by three matrices: the point matrix

p, the connectivity matrix t and the edge matrix e which contains the node

numbers of the triangle edges making up the boundary of the mesh. The

command refinemesh refines the mesh with a list of triangles to be re-

fined. The refinement method is either Rivara or Regular refinement. The
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Original Mesh 

Regular Refinement 

Rivara Refinement 

Figure 4.1: Refinement algorithms: Rivara and Regular

command pdejmps calculates the error indicators R(K) of the differential

equation −∇· (c∇u) +au = f for each triangle on a given mesh by equation

R(K) = α‖hm(f − aU)‖K + β(
1
2

∑
τ∈∂K

h2m
τ [nτ · c∇U ]2)1/2

where nτ is the unit normal of the edge τ and the braced term is the jump

on an interior edge, α and β are weight indices and m is an order parameter.

In our code, we calculate indicators
(
as defined by (4.17)

)
on the mesh

by pdejmps with a = 0. And error residuals on the boundary defined by

equations (4.18) is computed by a function called ResidualOnBoundary.

Finally a pseudocode of this new refinement algorithm based on a posteriori

error estimate defined in the previous section can be written as:
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Algorithm 4.2.1: AdaptiveMeshRefinement(geom, p, e, t)

while size(t, 2) < maximum degrees of freedom

do



Compute U and Φ with iterative method;

comment: Calculate the element residual on mesh

RH ← pdejmps(p, e, t, k(x), 0, σ(U) · |∇Φ|2, U, 1, 1, 1);

RP ← pdejmps(p, e, t, σ(U), 0, f,Φ, 1, 1, 1);

comment: Calculate the element residual on boundary

RB ← ResidualOnBoundary(p, e, t, U,Φ);

R← RH +RP +RB;

Find elements that have to be refined;

[p, e, t]← refinemesh(geom, p, e, t, elements);

return (p, e, t)
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Chapter 5

Numerical Examples

5.1 The Model Description

An example for the Joule heating problem reads as

−∇ · k∇u = σ(u) · |∇φ|2 in Ω,

n · k∇u = κ1(g1 − u) on ∂Ω,

−∇ · σ(u)∇φ = f in Ω,

φ = g2 on Γ1,

φ = g3 on Γ2,

n · σ(u)∇φ = κ2(g4 − φ) on Γ3.

The domain Ω is a U-shape. See in Figure 5.1. Its boundary ∂Ω contains

three parts (i.e. ∂Ω = Γ1∪Γ2∪Γ3) : Γ1 and Γ2 are showed in the picture with

bold lines, and the rest of boundary is called Γ3 . Then we let f = 0, k =

1, κ1 = 1, κ2 = 0, g1 = g3 = g4 = 0, g2 = 1, and choose α = 1, β = 1,m = 1

in pdejmps.

In the following, there are two kinds of numerical implementations: one

is about the convergences of different iterative methods, and the other one

is about adaptive finite elements.
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Figure 5.1: U-shape

5.2 Convergences of Iterative Solution-techniques

for Different Materials

In the section 2.3, we have introduced three types of materials used in MEMS

applications based on the different physical properties of electrical conduc-

tivities. Hence, there are three different choices of σ(u) in the example

problem. On the other hand, when we analyzed the numerical method of

the multiphysical problem, we described four iterative techniques: Jacobi,

GS, SOR and Jacobi with a relaxation factor. In this numerical implemen-

tation, we are interested in which iterative method will converge fast for

these three materials.

According to (2.7), (2.8) and (2.9), let the electrical conductivity of a

metal be defined by

σ1(u) =

 100 u ≤ 0
100
1+u u > 0
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and σ(u) of a semiconductor is given by

σ2(u) =

 10 u ≤ 0

10 (1 + u) u > 0.

For a superconductor, we can not implement σ = ∞ as u < u′ directly in

our code. Hence we need to use a large value instead. In order to keep the

function continuous, we introduce a factor ε. Then we get

σ3(u) =

 σ′

ε u ≤ u′ + ε

σ′

u−u′ u > u′ + ε

where 0 < ε < 1. In our code, ε = 0.1, u′ = 1 and σ′ = 105 for exam-

ple. Figures 5.2, 5.3 and 5.4 present the variations of σ1, σ2 and σ3 as the

temperature changes from 0 to 50.

Figure 5.2: Electrical conductivity of a metal

Since we use a relaxation factor ω for both Jacobi and GS methods, we

present results in two groups: one is Jacobi methods with variable choices of

ω and the other group is GS methods with different ω. Figure 5.5 and 5.6

illuminate numbers of iterations for different iterative procedures for metal
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Figure 5.3: Electrical conductivity of a semiconductor

and semiconductor. For the metal, the most fast process uses 18 iterations

as ω = 0.9 with GS method. And it is 9 iterations for the semiconductor at

best with GS method (here, ω = 1). Figure 5.7 shows the result of the super

conductor with the factor ε = 0.1. It takes at least 69 iterations to converge

when ω = 0.8 with GS method. However, we are also interested in how the

different ε influences the convergence of the iterative procedures. Table 5.1

presents numbers of iterations of GS methods with different ω on the semi-

conductor with variable ε. The numbers of iterations depend very weakly on

ε. However when ε becomes smaller, we see a slight increase in the numbers

of iterations. And they always converge most quickly when ω = 0.8. When

we use Jacobi methods with different ε, it shows the same result. Compar-

ing three materials, we can conclude that the electrical conductivity of a

superconductor has a higher cost of convergence and its behavior makes our

numerical methods more sensitive and we need to choose iterative methods

more carefully, since there is only a small range of ω to be valid.

The following table 5.2 summaries the ranges of ω when Jacobi and GS

methods converge for each material within 500 iterations. Otherwise, for
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Figure 5.4: Electrical conductivity of a superconductor

larger value of ω these methods diverge and for smaller value of ω these

methods do not converge within 500 iterations. From the table, we can con-

clude that GS method with the relaxation factor is a more reliable iterative

method to get convergence for all materials.

5.3 Adaptive Finite Elements

In this section, the adaptive mesh refinement Algorithm 4.2.1 is implemented

on the example problem but only on the metal and the semiconductor with

σ1 and σ2 defined in section 5.2. Because it is more difficult to test our new

algorithm on the superconductor based on the conclusion in the previous

section, we do not consider it in this implementation.

We choose the fastest iterative solution-techniques for two refinement

procedures since we have already measured in last implementation and as-

sume 35% of triangles are worse in each refinement process. For the metal,

Figure 5.8 shows the final refined mesh. Figures 5.9 and 5.10 are the finite

element approximations U and Φ on the final refined mesh.
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Table 5.1: Numbers of Iterations of GS methods with different ω on the

semiconductor with variable ε

ε ω = 0.5 ω = 0.7 ω = 0.8 ω = 0.9

0.1 146 88 69 88

0.01 149 90 70 89

0.001 153 92 72 90

0.0001 156 94 73 91

Table 5.2: Ranges of ω as Jacobi and GS methods converge for each material

Jacobi GS

Metal 0.4 ≤ ω ≤ 0.9 0.2 ≤ ω ≤ 1.2

Semiconductor 0.2 ≤ ω ≤ 1.5 0.2 ≤ ω ≤ 1.3

Superconductor ω = 0.7 0.5 ≤ ω ≤ 0.9

Since the exact solutions are not known we instead compute a reference

solution on a fine mesh in order to evaluate the solutions on coarser meshes.

Computing the energy norm En(i) of the solution Ui and Φi by

En(i) = UTi ·A1
i · Ui + ΦT

i ·A2
i · Φi (5.1)

where Ui and Φi are the finite element approximations on the mesh which

is adapted by ith refinement process; A1
i and A2

i are the stiffness matrices

corresponding to Ui and Φi respectively. Let us call the total times of refine-

ment processes is I. Hence En(I) is the reference solution. Then the relative

error energy norm can be calculated by |(En(i)−En(I))|
En(i) for i = 1, . . . , I − 1.

Figure 5.11 shows these results and values on x-coordiate are numbers of

nodes on the mesh. The results for the semiconductor are illuminated by

Figures 5.12 – 5.15.

From Figures 5.11 and 5.15, we can conclude that the new adaptive

algorithm based on a posteriori error estimate we stated in chapter 4 seems

to give good results for the example problem. The error decreases in each
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Figure 5.5: Numbers of iterations for the metal with different ω in Jacobi

and GS methods

refinement on both examples.
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Figure 5.6: Numbers of iterations for the semiconductor with different ω in

Jacobi and GS methods

Figure 5.7: Numbers of iterations for the semiconductor with different ω in

Jacobi and GS methods
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Figure 5.8: Final refined mesh on the metal

Figure 5.9: Finite element approximation U on the metal
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Figure 5.10: Finite element approximation Φ on the metal

Figure 5.11: Relative error energy norm for the metal
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Figure 5.12: Final refined mesh on the semiconductor

Figure 5.13: Finite element approximation U on the semiconductor
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Figure 5.14: Finite element approximation Φ on the semicondctor

Figure 5.15: Relative error energy norm for the semiconductor
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Chapter 6

Conclusion

We consider the Joule heating problem. In the first two chapters we intro-

duce the problem and the physical background. In the third chapter, we

derive a finite element method for the model problem and describe imple-

mentation details. Since the problem is non-linear we use iterative methods

to solve the problem. In the following chapter, we analyze a posteriori es-

timate for each of single physical problems, then we derive a conjecture for

the model problem. Based on this result we derive a new adaptive mesh

refinement algorithm. Finally, we present two numerical examples. In the

first one we focus on convergences of different iterative methods for different

materials. These methods are Jacobi, GS and SOR. We also use a relax-

ation factor in Jacobi to improve its performance. Three materials have

been tested: metals, semiconductors and superconductors. In the second

example we implement the adaptive algorithm based on the description in

Chapter 4.

Finally we get three conclusions: (1) By adjusting the relaxation factor

ω, iterations procedures can converge for all three materials. Gauss-Seidel

method with the relaxation factor shows a higher reliability. (2) The conver-

gence of iterations for superconductors seems more difficult and sensitive.

(3) The adaptive algorithm produces good results and the error decays at

each refinement.
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Appendix A
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Table A.1: The area coordinates and weights for one-point, three-point,

four-point and six-point Gauss quadrature rules over triangular elements

Area Coordinate
Degree Points

(Li1, Li2, Li3)
Weights

One a 1
3 , 1

3 , 1
3 1

a 1
2 , 1

2 , 0 1
3

Two b 0, 1
2 , 1

2
1
3

c 1
2 , 0, 1

3
1
3

a 1
3 , 1

3 , 1
3 −27

48

b 0.6, 0.2, 0.2 25
48

Three
c 0.2, 0.6, 0.2 25

48

d 0.2, 0.2, 0.6 25
48

a p1, p2, p2 w1

b p2, p2, p1 w1

c p2, p1, p2 w1

Four
d p3, p4, p4 w2

e p4, p4, p3 w2

f p4, p3, p4 w2

p1 = 0.108103018168070

p2 = 0.445948490915965 w1 = 0.223381589678011
where

p3 = 0.816847572980459 w2 = 0.109951743655322

p4 = 0.091576213509771
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Table A.2: The area coordinates and weights for one-point, two-point, three-

point and four-point Gauss quadrature rules on edges

Area Coordinate
Degree Points

(Li1, Li2)
Weights

One a 1
2 , 1

2 1

a 1
2 + 1

2
√

3
, 1

2 −
1

2
√

3
1
2

Three
b 1

2 −
1

2
√

3
, 1

2 + 1
2
√

3
1
2

a
1+
√

3/5

2 , 1−
√

3/5

2
5
18

Five b 1
2 , 1

2
8
18

c
1−
√

3/5

2 , 1+
√

3/5

2
5
18

a 1+p1
2 , 1−p1

2
w1
2

b 1+p2
2 , 1−p2

2
w2
2

Seven
c 1−p2

2 , 1+p2
2

w2
2

d 1−p1
2 , 1+p1

2
w1
2

p1 = 0.861136311594053 w1 = 0.347854845137454
where

p2 = 0.339981043584856 w2 = 1− w1
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