
Numerical Simulation of Mechanical
Properties of Fiber Network Models
Master’s thesis in Applied Mathematics

ANDREA BERTL

DEPARTMENT OF MATHEMATICAL SCIENCES

UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021
www.gu.se

www.gu.se

Master’s thesis 2021

Numerical Simulation of Mechanical Properties of
Fiber Network Models

ANDREA BERTL

Department of Mathematical Sciences
Division of Applied Mathematics
University of Gothenburg

Gothenburg, Sweden 2021

Numerical Simulation of Mechanical Properties of Fiber Network Models
ANDREA BERTL

© ANDREA BERTL, 2021.

Supervisor I: Axel Målqvist, Chalmers University of Technology, University of
Gothenburg, Fraunhofer Chalmers Centre

Supervisor II: Gustav Kettil, Fraunhofer Chalmers Centre
Examiner: Anders Logg, Chalmers University of Technology, University of

Gothenburg, Fraunhofer Chalmers Centre

Master’s thesis 2021
Department of Mathematical Sciences
Division of Applied Mathematics
University of Gothenburg
SE-405 30 Gothenburg
Telephone +46 31 786 0000

Cover: Deformation of regular quadratic grid constructed in Matlab showing the
original and displaced network.

Typeset in LATEX, template by Magnus Gustaver
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

iv

Numerical Simulation of Mechanical Properties of Fiber Network Models
ANDREA BERTL
Department of Mathematical Sciences
University of Gothenburg

Abstract
In this thesis six models, q1, q2, t1, t2, h1 and h2, of discrete fiber networks are pre-
sented. They consist of regular rectangles, triangles and hexagons, whereby each
shape is arranged in two different orientations.
Investigations on stiffness of networks for different choices of junction volume Vijl,
bending parameter κijl, and material are carried out. Considering steel fibers, a
constant glue parameter as junction volume, and grids of 20 to 40 meters of rod
per square meter it is revealed that quadratic networks have the highest and lowest
stiffness values, depending on their orientation. The stiffness of the hexagonal grids
exceeds those of the triangular meshes.
By varying Vijl and κijl it is shown that hexagonal grids and the quadratic mesh
without parallel lines to the axes, called q2, are most affected by inner forces arising
due to angular deviation. Therefore, it is concluded that angles change most within
those networks.
Moreover, it is shown, that Poisson’s ratio of the meshes increases with decreasing
stiffness and vice versa.
Numerical evidence is provided to demonstrate that the grids, with exception of
q2, are less stiff subject to randomised node displacement. Without exception the
stiffness values for all meshes decrease approximately linear if some arbitrary edges
are removed.

Keywords: discrete fiber network model, linear elasticity, beam theory, stiffness,
Poisson effect, Poisson’s ratio.

v

Acknowledgements
I wish to express my gratitude to my supervisors Axel Målqvist and Gustav Kettil for
their guidance during this project. Thank you both for your explanations, feedback,
patience and endless ideas for alternatives whenever something did not work as
intended.
I would also like to thank Malin and Rainer, not only for proofreading but also for
your friendship, which I highly appreciate. Thanks to Elsa, Eric, Marvin and Jonas
for the inspiring exchanges and pool nights.
Finally, my thanks go to my parents Rosa Maria and Helmut for your unconditional
support and to you, Bernhard, for accompanying me in every situation, catching me
and believing in me.

Andrea Bertl,
Gothenburg, August 2021

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Basic Model . 1
1.2 Outline . 2

2 Background 3
2.1 Mechanical Definitions . 3

2.1.1 Stress and Strain . 3
2.1.2 Hooke’s Law . 4
2.1.3 Poisson’s Ratio . 5
2.1.4 Density and Stiffness . 5
2.1.5 Beam Theory . 6
2.1.6 Junction Volume . 10

2.2 Elasticity Matrix Assembly . 11
2.2.1 Single Unconnected Rods . 12
2.2.2 Connected Networks . 12

2.2.2.1 Edge Extension . 13
2.2.2.2 Angular Deviation 14
2.2.2.3 Poisson Effect . 15

2.2.3 Computation of the Stiffness of a Network 15

3 Fiber Networks 17
3.1 Network Patterns . 17

3.1.1 Quadratic Grids . 17
3.1.2 Triangular Grids . 18
3.1.3 Hexagonal Grids . 19

3.2 Base Unit Calculations . 20
3.2.1 One Quadratic Grid . 20
3.2.2 The Triangular Grids . 21

3.2.2.1 Triangular Shape t1 22
3.2.2.2 Triangular Shape t2 23

3.2.3 Results . 24
3.3 Choice of Parameters . 25

ix

Contents

4 Results 29
4.1 Density-Stiffness Analysis . 29

4.1.1 Variation of Junction Volume Vijl 33
4.1.2 Variation of Bending Parameter κ 35
4.1.3 Variation of Material: Carbon and Paper 36

4.2 Poisson’s Ratio . 37
4.3 Random Manipulation of Regular Grids 38

4.3.1 Node Displacement . 39
4.3.2 Edge Removal . 41

5 Conclusion & Outlook 45

A Source Code for Matrix Assembly I

B Source Code to Generate Grids V

C Source Code to Compute Mechanical Entities XVII

D Executive Programs XXI

x

List of Figures

1.1 Basic setup of a discrete fiber network 2
1.2 Deformed fiber network with respect to tensile load 2

2.1 Deviation of curvature . 7
2.2 Element of a beam . 10
2.3 Discretised cantilever beam . 11
2.4 Edge extension and resulting force . 13
2.5 Angular deviation and resulting force 14
2.6 Poisson effect and resulting force . 15

3.1 q1 with 4 columns and 3 rows . 18
3.2 q2 with 4 columns and 3 rows . 18
3.3 t1 with 4 columns and 3 rows . 18
3.4 t2 with 4 columns and 3 rows . 18
3.5 h1 with 4 columns and 3 rows . 19
3.6 h2 with 4 columns and 3 rows . 19
3.7 Base unit of q1 . 20
3.8 Base unit of t1 . 22
3.9 Base unit of t2 . 23
3.10 Stiffness of base units compared to srods 24
3.11 Stiffness of grids in terms of r and c 26

4.1 Steel networks subject to ux = 0.5L0 30
4.2 Steel networks subject to ux = 0.1L0 31
4.3 Density-stiffness analysis for V1 . 32
4.4 cond(KBC) of steel networks . 33
4.5 Steel networks subject to ux = 0.5L0 with Vijl = V2 34
4.6 Density-stiffness analysis for V2 . 35
4.7 Density-stiffness analysis with κ = 0.1k 36
4.8 Stiffness development at d = 25 for varying κ 36
4.9 Poisson’s ratio for steel networks, with V1 37
4.10 Poisson’s ratio for steel networks, with V2 37
4.11 Poisson’s ratio at d = 25 for varying κ 38
4.12 Examples of random node displacement in q1 39
4.13 Average stiffness with increasing random nodal displacement 40
4.14 Deformed networks q1 and q2 with randomly displaced nodes 41
4.15 Examples of random edge removal in q1, t1 and h1 42

xi

List of Figures

4.16 Examples of deformed network h2 with randomly removed edges . . . 42
4.17 Evolving error with increasing random node displacement 43
4.18 Evolving error with increasing random edge removal 44

xii

List of Tables

3.1 Material specific parameters of steel, carbon and paper 25
3.2 Densities corresponding to realistic edge lengths for all patterns . . . 27

4.1 Minimum and maximum a for steel networks 33
4.2 Minimum and maximum values of V2 33

xiii

List of Tables

xiv

1
Introduction

This thesis aims to numerically model and compare mechanical properties of discrete
fiber networks. Those consist of edges and nodes, representing fibers and bonds
between them, respectively. Mass-spring models, where each edge has the properties
of a spring, developing resistance forces when subjected to tensile or compression
load, are a simple version [5]. Such models are an alternative to the finite element
method to simulate elastic, continuous materials. They qualify to mimic actual
lattices of connected fibers, such as truss systems in engineering. On a much smaller
scale, lattice models can be used to represent matter on an atomic basis, where they
originally come from [10]. Moreover, fiber network models are frequently used in
graphic simulations and virtual reality applications to represent elastic objects [8].
Additionally, the models here are defined to develop spring-like forces counteracting
angular changes. The theoretical foundations to create the discrete numerical model
are introduced below. Thereafter the outline of the thesis is presented.

1.1 Basic Model
The general model consists of a two-dimensional discrete fiber network (N , E ,P),
where N is the set of nodes, E the set of edges and P the set of edge pairs. In Fig-
ure 1.1 the network is illustrated as a grey rectangle. A tensile test with one clamped
end of the object is modeled. Therefore, the nodes on the left hand side of the net-
work are considered fixed, whereas the nodes of the right hand side, i ∈ NRHS, are
displaced in x-direction and fixed in y-direction, those are marked dark and light
blue in Figure 1.1, respectively. The displacement is defined by a vector u ∈ R2N

where N is the number of nodes. All nodes are designated with natural numbers
i ∈ {1, . . . N}. For every node i ∈ N , its displacement δi = (uix , uiy) ∈ R2 equals
u(2i− 1, 2i) and describes the node’s shift in x- and y-direction, respectively.

In the beginning, the x-displacement ux for the nodes in NRHS is set. Furthermore,
the elasticity properties of the single fibers (i, j) ∈ E , between nodes i and j, and
pairs of fibers (i, j, l) ∈ P , that are connected at one point j, are given. These
features correspond to the material the fiber consists of. To ensure constant char-
acteristics throughout the network, fibers are considered as cylindrical bars of a
homogeneous, isotropic and linearly elastic material. This is used to construct the
elasticity matrix K ∈ R2N×2N . Due to the equilibrium between external forces and
internal resistance forces of the network it holds that:

F −Ku = 0.

1

1. Introduction

Where F ∈ R2N is the force vector necessary to obtain the given displacement. Util-
ising this relationship allows for computing F . Similar to the displacement vector,
the entries F (2i−1, 2i) correspond to the force in x- and y-direction applied at node
i. F is depicted with red arrows in Figure 1.1. The displaced and deformed network
is illustrated in Figure 1.2, with a maximal contraction of uy parallel to the y-axis.

F

L0

h0

Figure 1.1: Basic setup of a discrete
fiber network, with boundary condi-
tions on the nodes at the left and right
and side.

ux

uy

Figure 1.2: Deformed fiber network
with respect to tensile load F acting
on the right hand side and a fixed left
hand side.

The sum of the forces applied on i ∈ NRHS towards the x-direction is denoted fx.
This is used to compute the network’s stiffness

s =
fx

h0
ux

L0

,

together with the initial height h0 ∈ R and length L0 ∈ R of the network.

1.2 Outline
The following chapter deals with all necessary definitions and theorems from me-
chanics that are required to model the networks. Furthermore, the derivation of the
elasticity matrix is explained. Thereafter follows a detailed description of the differ-
ent network structures investigated and compared. Chapter 4 presents the numerical
experiments of density-stiffness analyses, Poisson’s ratio and random manipulations
on grids, as well as their results. Finally, a conclusion is drawn and an outlook on
possible future research is presented.

2

2
Background

The material and the structure of single fibers and pairs of connected fibers are
crucial to determine the relationship of deformations and forces in a fiber network.
Techniques to compute stress and strain of various members such as beams or springs
are adduced in the field of mechanics of materials. In this chapter the basic mechani-
cal definitions are presented. It is discussed, which cases are used in the experiments
later on. The assembly of the elasticity matrix for a full network of structural mem-
bers is described.

2.1 Mechanical Definitions
This section mainly traces back to Gere and Goodno [2].

2.1.1 Stress and Strain
The foundation of all carried out mechanical experiments is formed by external load
applied to a structure. Such loads induce inner forces, i.e. stress, and measurable
deformations or strain.

Definition 2.1.1. Stress, denoted by σ, is the force acting on a body to
resist distorting external load. It equals the force F per unit area A.

σ = F

A
(2.1)

In the presented models it is assumed, that stress is uniformly distributed. The bars
subject to stress are considered prismatic, which means that they have a unit cross
section and a straight longitudinal axis in the neutral state, before any displacement.
With these assumptions, stress can also be expressed as the force per cross sectional
area Ac perpendicular to the external load:

σ = F

Ac
. (2.2)

Among the so-called normal stresses, i.e. stress acting perpendicular to the cut
area, one differs between tensile stress, when the body is stretched and compressing
stress, when it is squeezed. As explained in Chapter 1, the focus lies on the first
and therefore also on tensile strains as a counterpart:

3

2. Background

Definition 2.1.2. The strain ε is the degree of displacement evoked by ex-
ternal forces.

For normal stress the strain can alternatively be defined by the elongation δ per unit
length L:

ε = δ

L
. (2.3)

Definitions 2.1.1 and 2.1.2 hold for all kinds of materials as long as the following
assumptions are fulfilled:

1. The deformation of the structure is uniform throughout its volume.
2. The structure is prismatic.
3. The loads act through the centroid of the cross sectional area.
4. The structure consists of homogeneous material, i.e. the mechanical properties

are the same all over the structure.
If points 1. through 4. hold and stress as well as strain are normal, one speaks of
uniaxial stress and strain.

The here presented models are not only restricted to uniaxial stress and strain but
also to a special set of materials that are linearly elastic:

Definition 2.1.3. Elastic materials are not to permanently deformed until
a certain external load has been reached. If furthermore the strain is linear
proportional to the stress such materials are called linearly elastic.

2.1.2 Hooke’s Law
The limitations described in the previous section allow to deduce a special, linear
case of the law of elasticity. It describes the correlation of stress and strain in a
body:

Hooke’s Law

Theorem 2.1.4. Axial stress and strain of linearly elastic materials are pro-
portional to each other and are determined by the material’s modulus of elas-
ticity E in the following manner:

σ = Eε. (2.4)

The material-specific modulus of elasticity is also called Young’s modulus. It is mea-
sured in Pascal and is high for stiff materials, e.g. steel. The modulus can slightly
differ with regards to tension and compression.
Equation (2.4) only holds for uniaxial or longitudinal stress such as tension or com-
pression of bars. Yet, this is enough for the numerical stretching models of fiber
networks described in Section 2.2.2.1.

4

2. Background

2.1.3 Poisson’s Ratio
Naturally, if a bar is stretched or compressed by axial strain ε, the change of shape
also implies lateral contraction or expansion ε.

Definition 2.1.5. The negative of the ratio of transverse strain to axial strain
is called Poisson’s ratio γ. For a bar subject to uniaxial stress it equals:

γ = − ε
ε
.

Poisson’s ratio is the measure of the so called Poisson effect.

Within the linear elastic range of linearly elastic materials, Poisson’s ratio is a con-
stant. For most materials it lies within 0.25 and 0.35. If the loads get high enough
for a material to enter the state of plastic deformation, γ can change drastically.
Despite the proportionality of lateral and axial strain in a prismatic bar, further as-
sumptions are needed to ensure that the lateral strain remains the same throughout
the structural member under a fixed load:

1. The material has to be homogeneous.
2. The material has to be isotropic, i.e. it must have the same properties in all

directions.
In Section 4.2 experiments are carried out to compare Poisson’s ratio of several
networks as a whole, not only for single fibers.

2.1.4 Density and Stiffness
After describing the assumptions for the materials, some definitions for the structure
of the networks still remain open. As mentioned in Chapter 1, the edges of discrete
networks are considered to be cylindrical bars, defined by their endpoints. The
mechanical behaviour of fiber grids depends on the sizing, which in turn is derived
from their density:

Definition 2.1.6. The density d of a fiber network is defined as the total
edge length per unit area.

Let Lij be the length of edge (i, j) ∈ E , L the length of the network and h its height.
Then the density is computed as:

d =
 ∑

(i,j)∈E
Lij

 1
Lh

. (2.5)

For a unit edge length a = Lij for all edges (i, j) ∈ E and a fixed number of edges
m = |E| the formula can be simplified to

d = am

Lh
. (2.6)

Furthermore, the grids are considered to be adjusted mass-spring models. Hereby,
the fibers are interpreted as springs, which are mechanical objects storing energy.

5

2. Background

The force used for displacement is a mass acting on the network of springs. Later on
there will be set a fixed displacement for the right hand side of the grids. Therefore,
the correlation of the actual elongation of springs and the required force to obtain
the desired deformation matters:

Definition 2.1.7. The stiffness s of a structure is the resistance to defor-
mations such as bending, twisting or stretching.

The choice of a linearly elastic material for the fibers entails linear proportionality
between the deformation δ and the applied force F . This is determined by the
stiffness value s:

F = sδ. (2.7)

Using Definitions 2.1.1 and 2.1.2 in Theorem 2.4 leads to the following formula:

δ = FL

EAc
. (2.8)

Here the denominator EAc is called the axial rigidity of the body. From Equa-
tion (2.8) follows that the stiffness for a single spring is obtained by

s = F

δ
= EAc

L
. (2.9)

When considering several spring-like fibers composed into a network (N , E ,P), the
force F in Equation (2.9) is replaced by the total force acting on the displaced
boundary f divided by the initial height h0 of the structure. Instead of the simple
displacement δ, the strain of the displacement is used, i.e. the total elongation ∆L
over the initial length L0:

s =
f
h0
∆L
L0

= fL0

h0∆L. (2.10)

In the following model, explained in Chapter 3, ∆L will be a fixed displacement ux
of all nodes on the right hand side of the network parallel to the x-axis. The force
applied on the nodes i ∈ NRHS will only be nonzero in x-direction, such that f is
the sum of x-entries only, denoted by fx. It can be derived through the formulas,
that the stiffness for a spring of a homogeneous material and fixed dimensions is
constant.

2.1.5 Beam Theory
Due to the connections between springs and the orientations of the fibers within the
grid, the loads applied are not always parallel to the longitudinal axis of the bars.
This will cause bending of the edges and vertical displacements of the nodes in the
network model. If the structural member is subjected to inclined or declined load,
this can be resolved into lateral and axial load. The latter was discussed previously.

6

2. Background

To deal with the lateral load, i.e. load perpendicular to the axis of the fiber, beams
are introduced.

Definition 2.1.8. Beams are structural components subject to lateral load.

A beam of length L with one fixed support and one free end is studied to explain the
bending of beams as result of transverse load. Such beams are also called cantilever
beams. It is assumed that the bar is initially symmetric about the xy-plane. If
moreover all load vectors act on the same plane, the deflection of the beam is also
limited to this plane, which is called the plane of bending. The deflection of a point x
along the beam towards the lateral direction is denoted by v(x).

Definition 2.1.9. The deflection curve is the curve the original longitudinal
axis of the beam forms subject to lateral load.

The stresses and strains that result from beam deflection depend on the curvature
of the deflection curve. To explain this concept a beam subject to pure bending is
considered. In other words, it is assumed that no shear forces are acting on the
beam. Therefore, the bending moment is constant.

x

y

∂x

∂θ

ρ

O′

∂s

F

v v + ∂v

m1
m2

Figure 2.1: Geometrical deviation of the bending curvature κ of a cantilever beam,
[2, p. 680].

As illustrated in Figure 2.1, two points m1 and m2 on the deflection curve with a
small distance ∂s are chosen. The normals drawn to the tangent at m1 and m2 to

7

2. Background

the deflection curve intersect at the center of curvature O′. Whereas ∂θ describes
the infinitesimal angle between the normals, the radius of curvature ρ is the distance
from m1 to the center of curvature.

Definition 2.1.10. The curvature κ of a deflection specifies how strong a
beam is bent. It is the reciprocal of the radius of curvature:

κ = 1
ρ
. (2.11)

Under some assumptions, a beam’s deflection and the applied load are related ac-
cording to the following theorem:

Euler-Bernoulli Beam Equation

Theorem 2.1.11. Considering a prismatic, homogeneous, linearly elastic
beam the distributed load q can be expressed as

EI
d4v(x)
dx4 = −q (2.12)

Where I is the moment of inertia and EI is the flexural rigidity.

The formula of the moment of inertia of a prismatic beam with cross sectional area
Ac reads [2, p. 363]:

I =
∫
Ac

y2∂Ac. (2.13)

To proof the Euler-Bernoulli Beam Equation prior the bending moment and its
behaviour towards curvature is introduced:

Definition 2.1.12. [13, p. 92, p. 167] The moment that results about the
neutral axis at any section of a beam, caused by deflection forces, is called the
bending moment M .

It is related to κ by the Moment-Curvature-Equation. A more detailed derivation
of the formulas below can be found in [2, pp. 361]:

8

2. Background

Moment-Curvature-Equation

Theorem 2.1.13. According to the second equation of statics, the bending
moment M equals the moment resultants of the normal stresses σx acting
over the cross sectional area Ac,

∂M = −σxy∂Ac.

Integrating over all elemental moments and formula (2.13) lead to the follow-
ing expression of the curvature in terms of the bending moment:

κ = 1
ρ

= M

EI
. (2.14)

Now Theorem (2.1.11) can be proven, referring to Figure 2.1:

Proof (Euler-Bernoulli Beam Equation). Triangular geometry from the triangle O′,
m1,m2 yields the relation

ρ∂θ = ∂s.

If the bending effect is rather small and hence the deflection curve relatively flat,
∂s equals approximately the distance of its horizontal projection ∂x. Those obser-
vations lead to an alternative expression for κ:

κ = 1
ρ

= ∂θ

∂s
≈ ∂θ

∂x
.

Furthermore, assuming a small size of the angle θ between a horizontal line and the
tangent at the deflection curve at m1 it holds:

θ ≈ tan θ = ∂v(x)
∂x

.

Differentiation of θ towards x gives:

κ = ∂θ

∂x
= ∂2v(x)

∂x2 .

Making use of (2.14) it is also known:

κ = M

EI
= ∂2v(x)

∂x2 .

Next, an element of a beam under distributed load is investigated, as shown in
Figure 2.2. Utilising the equilibrium of vertical forces acting on the sides of the
beam element, the distributed load q can be expressed in terms of the shear forces,
here denoted by τ :

9

2. Background

τ

τ + ∂τ∂x

q

M M + dM

Figure 2.2: Element of a beam
under distributed load q with
shear forces τ and bending mo-
ments M acting on the sides, [2].

∂τ

∂x
= −q.

Similarly by the moment equilibrium it
follows:

∂M

∂x
= τ.

These relations can be found in further de-
tail in [2, pp. 320].

Under the assumption of a prismatic bar that has a unitary cross section, the flexural
rigidity, EI is constant. With the equilibrium formulas above, it can finally be
derived that:

∂2

∂x2

(
EI

∂2v

∂x2

)
= EI

∂4v

∂x4 = −q.

2.1.6 Junction Volume
Bending fibers, theoretically explored in the previous section will lead to angular
changes between two connected edges. Section 2.2.2.2 deals with the resulting stress
and strain relationship in the network. The junction volume, Vijl, defines the joint
mass at the common node of two edges. It adds resistance to displacement due to
angular deviation considering an edge pair (i, j, l) ∈ P .

Throughout the experiments shown in Chapter 4 it is discovered that the computa-
tions for some networks are highly sensitive to the definition of the junction volume.
Two ideas to define Vijl are considered:

1. A constant glue parameter V1 or
2. the comparison of the equation for angular deviation (Section 2.2.2.2) with

the Euler-Bernoulli Beam Equation (2.12), V2.

To ensure comparability the glue parameter for the first approach was adjusted to
different patterns of grids. Looking at a central node j of the network, let p be
the number of edge pairs in P with j as the connecting node. For regular grids, as
presented in Chapter 3, p will be the same for all central nodes. Let w be the unit
diameter of the fibers. Then the junction volume is chosen as:

V1 = 1
p
w3. (2.15)

To derive V2, Equation (2.12) is reconsidered for a positive load q such that a pos-
itive sign results on the right hand side, according to the sign convention of [2].
A cantilever beam is discretised with a path consisting of five nodes, which allows

10

2. Background

x−2 x−1 x0 x1 x2

x−2 x−1 x0
x1

x2

∂x = a

Figure 2.3: Displacement and edge pairs in a discretised cantilever beam, with its
fixed end on the left hand side and subject to positive load on the right.

to investigate three edge pairs. According to the notation in Figure 2.3, those are
(x−2, x−1, x0), (x−1, x0, x1) and (x0, x1, x2). Now the force F II

x0 arising in x0 due to
the angular change between the edges of the edge pairs is computed as stated later
in Section 2.2.2.2:
F II
x0 = F II

x0 (x−2, x−1, x0) + F II
x0 (x−1, x0, x1) + F II

x0 (x0, x1, x2)
= F II

x0 (x−2, x−1, x0)− F II
x−1(x−1, x0, x1)− F II

x1 (x−1, x0, x1) + F II
x0 (x0, x1, x2)

= κVijl
a2 (v(x−2)− 4v(x−1) + 6v(x0)− 4v(x1) + v(x2)) .

With the load being the distributed force q = F
∂x

it holds that:

EI
∂4v(x0)
∂x4 = q =

F II
x0

∂x

= 1
∂x

κVijl
a2 (v(x−2)− 4v(x−1) + 6v(x0)− 4v(x1) + v(x2))︸ ︷︷ ︸

=:ϕ

. (2.16)

Furthermore, the central finite difference method for v′′′′ = ∂4v(x0)
∂x4 , reads:

v′′′′(x0) = ∂4v(x0)
∂x4 = v(x−2)− 4v(x−1) + 6v(x0)− 4v(x1) + v(x2)

∂x4 +O(∂x3).

The remainder term O(∂x3) is neglected, and it is noted, that the discretisation
distance ∂x equals the edge length a in this model. Hence, by comparing expression
ϕ with v′′′′ Equation (2.16) gets:

EI
1
a4 = κVijl

a3

Equating the bending parameter with the moment of elasticity, κ ≡ E gives the
second approach used for the junction volume, V2 = Vijl:

V2 = I

a
. (2.17)

2.2 Elasticity Matrix Assembly
In Equation (2.10) the force, length-change and dimensions of a network are neces-
sary to determine the desired stiffness. The model presented here deals with fixed
displacements and set dimensions. Still the force, necessary to achieve the desired
displacement has to be determined. This procedure is described below.

11

2. Background

2.2.1 Single Unconnected Rods
First m non-connected horizontal rods, of the same length L, which are fixed on one
side and exploit to a tensile stress at the other side are studied. It is assumed that
these rods are put next to each other such that the total height of the structure is h.
According to Equation (2.5) the density of this arrangement is:

drods = mL

hL
= m

h
. (2.18)

To displace the endpoint i of a single rod according to the displacement vector
ui = (uix , uiy) the necessary force can be computed by Formula (2.7). Here a
force parallel to the x-axis is chosen, such that uiy = 0 for all nodes i ∈ NRHS.
Furthermore the x-displacement is set uniformly such that δ = uix = ux. Moreover,
applying the formula for the stiffness for a single fiber (2.9) yields:

Frod = EAc
L

ux. (2.19)

Since (2.19) applies for all m rods, the total force is:

Frods = mFrod = m
EAc
L

ux.

The elasticity factor EAc

L
is now called K for simplicity’s sake. Moreover, the length

change ∆L equals ux and the stiffness for the whole structure of m rods can be
computed according to (2.10):

srods =
mKux

h
ux

L

= mKL

h
= dAcE. (2.20)

2.2.2 Connected Networks
This part follows the results presented by Gustav Kettil et al. [5, Ch. 5], [4], [3].
The steps discussed in the previous section are now repeated for an actual network
(N , E ,P). This is more complicated, since the displacement vector u only assigns
fixed values to some nodes on the boundaries, whereas all other values have to be
derived. Furthermore, from the connections between the single springs emerges not
only tensional strain but also angular deviations. That gives rise to a second kind
of inner force, counteracting angular change. A third inner force, originating from
a Poisson effect is described at the end of this section, albeit it is neglected in the
model later on. Moreover, Young’s modulus is replaced by a more general stiffness
parameter kij assigning stiffness properties to every edge (i, j) ∈ E . The elasticity
factor K in the case of a connected network is an elasticity matrix of dimension
2N × 2N where N is again the number of nodes, |N |. K is created by subtracting
up to three different matrices KI , KII and KIII . Each of them, in turn, results from
the assembly of local matrices, describing the occurring inner forces on edge pairs
or single edges.

12

2. Background

2.2.2.1 Edge Extension

The first of these matrices, KI , is used to express the force that acts on edges and
aims to restore the original edge length after deformation. As an external force is
applied on the network and nodes are eventually moved, single fibers are extended or
compressed. Due to the elasticity properties of the material an inner force emerges
to restore the initial proportions as illustrated in Figure 2.4.

F I
i (i, j) F I

j (i, j)

i j

(xi, yi) + δ(i) (xj , yj) + δ(j)

Figure 2.4: Illustration of edge extension and resulting force [5, p. 61].

For each edge (i, j) in the set of edges E , connecting the nodes i and j of length Lij
a local matrix is computed. Here the stiffness parameter kij for a single edge is
required. Let ∆Lij describe the change of length of the edge under consideration,
wij it’s width, zij it’s depth and daij the direction vector in the direction of a ∈ {i, j},

daij =

(
xb
yb

)
−
(
xa
ya

)
∣∣∣∣∣
(
xb
yb

)
−
(
xa
ya

)∣∣∣∣∣
∈ R2.

Here xa and ya are the coordinates of node a and xb, yb of node b ∈ {i, j}, where
b 6= a. The force vector F I

a (i, j) can be computed, according to the classical spring
force model as it was seen before.

F I
a (i, j) = kij

wijzij
Lij

∆Lijdaij. (2.21)

For studies of cylindrical fibers of diameter wij the formula for the cross sectional
area wijzij may be exchanged for the cylindrical area

Ac =
(
wij
2

)2
π.

The local matrix for edge (i, j), KI
ij is then obtained by:

F I
a (i, j) = KI

ij ({2a− 1, 2a}, {1, . . . , N})u,

for a ∈ {i, j}. Next, the assembly over all edges leads to KI :

KI = −
∑

(i,j)∈E
KI
ij.

13

2. Background

2.2.2.2 Angular Deviation

The second matrix, KII , describes the force appearing to recover the original angle
between two displaced edges. In Figure 2.5 the original edges are drawn grey, while
the displaced edges that stem from moving nodes i by its displacement vector δ(i)
and node l by δ(l) are marked blue. Once again KII is obtained by assembly of local
matrices. These are now defined on edge pairs (i, j, l) in the set of all edge pairs P .
Since parallel edges could be considered single long rods, they are neglected in the
models throughout the thesis. P therefore consists of all triplets of nodes (i, j, l)
such that (i, j) ∈ E and (j, l) ∈ E , where not all x-positions nor all y-positions are
equal. The central node describes the one node both edges of the edge pair have
in common. Moreover, the network graph is considered undirected so that the edge
pair (i, j, l) is equal to (l, j, i).

F II
i (i, j, l)

F II
l (i, j, l)

ij

l

(xi, yi) + δ(i)

(xl, yl) + δ(l)

δθjl

δθji

Figure 2.5: Illustration of angular deviation and resulting force [5, p. 62].

To compute the forces of angular deviation, the bending parameter κijl and the
junction volume Vijl are necessary. These two parameters describe the resistance to
bending an edge pair. Moreover, let njja = djja × ẑ denote the edge normal of the
edge (j, a) where a ∈ {i, l} and ẑ = [0, 0, 1]>. The angular change ∆θijl under the
assumption of small angular changes is obtained by:

∆θijl = δθji + δθjl

≈ tan δθji + tan δθjl

=
(δi − δj)njji

Lji
+

(δl − δj)njjl
Ljl

.

As before, the force vector F II
a (i, j, l) for a ∈ {i, l} can be computed:

F II
a (i, j, l) = −κijlVijl∆θijl

Lja
njja.

Those results yield the force vector for the central node F II
j (i, j, l):

F II
j (i, j, l) = −F II

i (i, j, l)− F II
l (i, j, l).

14

2. Background

Once again, this allows to derive the local matrix KII
ijl:

F II
a (i, j, l) = KII

ijl ({2a− 1, 2a}, {1, . . . , N})u, (2.22)

for a ∈ {i, j, l}. As a last step KII is assembled:

KII = −
∑

(i,j,l)∈P
KII
ijl. (2.23)

2.2.2.3 Poisson Effect

The third and last force considered corresponds to the Poisson effect. It describes
the counteraction to compensate the total length change within an edge pair. As for
the angular deviation, a local matrixKIII

ijl is computed for each edge pair (i, j, l) ∈ P .
If one of the edges is stretched or compressed, its width changes according to Pois-
son’s ratio γijl which is explained in Section 2.1.3. This causes inner forces in the
second edge of the pair and vice versa. Figure 2.6 shows an edge pair (i, j, l) where
only the blue edge is stretched but forces arise at both end nodes i and l.

F III
l (i, j, l)

F III
i (i, j, l)

i

j j
l

i

(xl, yl) + δ(l)

Figure 2.6: Illustration of the Poisson effect and its resulting force [5, p. 64].

Similarly to kij in the computation of KI a stiffness parameter is required. Here
however, it describes the stiffness for the whole edge pair and is denoted by ηijl.
This enables the calculation the force vectors corresponding to nodes i, j and l.

F III
a (i, j, l) = −ηijl

wajzaj
Laj

(
∆Laj + γijl

wbj∆Lbj
2Lbj

∣∣∣njaj · djbj∣∣∣
)
djaj

F III
j (i, j, l) = −F III

i (i, j, l)− F III
l (i, j, l).

The last steps to obtain KIII are, mutatis mutandis, equivalent to (2.22) and (2.23).

2.2.3 Computation of the Stiffness of a Network
With the previous results the elasticity matrix K for the network can now be as-
sembled:

K = KI +KII +KIII . (2.24)

However, as it was mentioned before, in the following experiments KIII is neglected,
since the correlation between the stiffness of single edges and edge pairs is not clear.
Therefore, K in the following chapters stems from the formula

K = KI +KII . (2.25)

15

2. Background

In the next step the obtained elasticity matrix is adjusted to meet the boundary
conditions, by replacing the columns corresponding to the nodes at the boundaries
by the identity matrix. The new matrix is calledKBC . Moreover, a preliminary force
vector F̂ is created by setting all entries to 0 except the entries corresponding to the
known displacement at the non-fixed side of the boundary. Now the displacement
vector u for all nodes can be computed by solving the linear system of equations:

KBC · u = F̂ . (2.26)

This allows to compute the actual force vector

F = Ku. (2.27)

Now all entities needed to compute the stiffness according to (2.10) are known with
ux = ∆L being the maximal entry of u corresponding to x-displacement. It is to be
noted, that the force, used in the formula (2.10) is not equal to F from (2.27) but
obtained by summing up all relevant entries. When displacing the right hand side
of the network towards the x-direction, i.e. all nodes i ∈ NRHS that is:

fx =
∑

i∈NRHS

F (2i− 1). (2.28)

16

3
Fiber Networks

To model and compare grids with different patterns, a set of parameters has to
be chosen. Starting with the quadratic structures, referred to as q1 and q2, the
chapter then continues with explanations of the triangular and hexagonal meshes,
called t1, t2, h1 and h2, respectively. Secondly, the definitions of base units for some
of the grids are described, aiming to verify first results of the stiffness computa-
tions. Thereafter, the selection of units required for the analysis of stiffness values
is explained.

3.1 Network Patterns
For each of the patterns two orientations of the basic form were chosen to simulate
deformations caused by uniaxial forces in different directions. Dependant on the
orientation care is taken to ensure that the networks are symmetrical regarding the
x-axis. This is to avoid irregular displacements in y-direction when applying force
in x-direction. However, the second triangular grid t2 is non-symmetric for an odd
number of rows, whereas the second hexagonal grid h2 is non-symmetric for an even
number of rows. The choice of 30 rows is motivated in Section 3.3 and solves the
problem for t2. In the same section it is clarified how the symmetry is obtained for
h2. All patterns are chosen to be regular, with a unit edge length a.

Boundary conditions are set at the left and right hand side. The left nodes, marked
dark blue in Figures 3.1 through 3.6 are fixed, i.e. these nodes are not displaced.
The rightmost nodes, marked light blue, are exposed to a horizontal force vector
F , parallel to the x-axis and strong enough to displace those nodes according to a
displacement vector u.

Edge pairs, necessary to compute the resulting elasticity behaviour from angular
changes, were defined between any two adjacent, non-parallel edges. In the following
Figures 3.1 through 3.6 edge pairs are marked with green arcs between the two
paired fibers. Those arcs are of 90◦, 60◦ and 120◦ for the quadratic, triangular and
hexagonal patterns, respectively.

3.1.1 Quadratic Grids
Figures 3.1 and 3.2 display the two implemented quadratic setups. The first con-
sists of rods, parallel to the x- and y-axis, the second of squares rotated by 45◦.

17

3. Fiber Networks

Figure 3.1: The network q1 with
4 columns and 3 rows.

Figure 3.2: The network q2 with
4 columns and 3 rows.

Knowing the number of columns c and rows r, the number of edgesm can be derived.
Furthermore, if the density d is given, the edge length a results from Formula (2.5).
Finally, utilising the geometries of the grids, their respective heights h0 and lengths
L0 are obtained. Those results allow the computation of the stiffness applied in
Chapter 4.

Formulas q1

m = 2cr + c+ r

a = m

dcr
h0 = ar

L0 = ac.

Formulas q2

m = 4cr

a = m

2d
(
c− 1

2

) (
r − 1

2

)
h0 =

√
2a
(
r − 1

2

)
L0 =

√
2a
(
c− 1

2

)
.

3.1.2 Triangular Grids
The first triangular fiber composition consists of equilateral triangles with one edge
parallel to the y-axis, the second of triangles rotated by 90◦, with one edge parallel
to the x-axis. Examples for both cases are shown in Figures 3.3 and 3.4.

Figure 3.3: The network t1 with
4 columns and 3 rows.

Figure 3.4: The network t2 with
4 columns and 3 rows.

18

3. Fiber Networks

Similarly to the quadratic grids the network specific parameters are derived from its
geometries. The number of edges for both triangular setups depends on an even or
odd number of columns or rows. This is resolved by using ceiling and floor functions
in the formulas for m.

Formulas t1

m = 3cr + r − c− 1 +
⌈
c+ 1

2

⌉
a = 2m

d
√

3
(
cr − c

2

)
h0 = ar − a

2

L0 =
√

3
2 ac.

Formulas t2

m = 2cr + c
⌈
r + 1

2

⌉
+ (c− 1)

⌊
r + 1

2

⌋
a = 2m

d
√

3
(
cr − r

2

)
h0 =

√
3

2 ar

L0 = ac− a

2 .

3.1.3 Hexagonal Grids

Last but not least, examples for both regular hexagonal networks are shown in Fig-
ures 3.5 and 3.6.

Figure 3.5: The network h1 with
4 columns and 3 rows.

Figure 3.6: The network h2 with
4 columns and 3 rows.

Once again the number of edges, the unit edge length, the height and the length of
the networks can be obtained using the number of columns and rows as well as the
density and the given geometries. As for the triangular meshes, the amount of edges
changes with an odd or even number of columns or rows. Therefore ceiling and floor
functions are included. To simplify the notation auxiliary variables m̂1 and m̂2 are
introduced first.

19

3. Fiber Networks

Formulas h1

m̂1 = (5r + 1)
⌈
c

2

⌉
+ r

⌊
c

2

⌋

m =

m̂1, if c odd
m̂1 + 2(r − 1), otherwise

a = 4m
d
√

3 (6cr − 3c)

h0 = a
√

3
(
r − 1

2

)
L0 = 3

2ac.

Formulas h2

m̂2 = (5c+ 1)
⌈
r

2

⌉
+ c

⌊
r

2

⌋

m =

m̂2, if r odd
m̂2 + 2(c− 1), otherwise

a = 4m
d
√

3 (6cr − 3r)

h0 = 3
2ar

L0 = a
√

3
(
c− 1

2

)
.

3.2 Base Unit Calculations
For sake of verifying the implemented grids and formulas, some patterns, namely q1,
t1 and t2 are investigated more closely. A repetitive part of the basic form, which
is referred to as a base unit, is extracted. Then the stiffness of a grid of base units
is computed, taking only the edge extension into account, i.e. setting the elasticity
matrix to be K = −KI , such that the resulting stiffness values would be comparable
to single stretched rods, described in Section 2.2.1.

3.2.1 One Quadratic Grid
The base unit for q1 consists of two edges and three nodes. If it is mirrored on the
axis y = x, the original shape of a square results. The left nodes of the base unit
are fixed, while the right node, marked as node 3 in Figure 3.7 is subjected to a
force parallel to the x-axis. The edge (2, 3), marked blue, therefore gets stretched
and node 3 is displaced by (x, 0).

1

2 3 F

1

2 3

· · ·

· · ·

· · ·

...

1

2

...

r

1 2 · · · c

Figure 3.7: Quadratic base unit of pattern q1.

20

3. Fiber Networks

The displacement ux(i) of node i ∈ {1, 2, 3} is 0 towards the x-direction, for nodes
1 and 2 and non-zero for node 3, i.e. ux(3) = x. Together with uy(i) = 0 for all
i ∈ {1, 2, 3} the displacement vector u can be assembled for a single base unit as:

ux = [0, 0, x]>
uy = [0, 0, 0]>

}
⇒ u := [0, 0, 0, 0, x, 0]>.

The only stretched edge is (2, 3) and the resulting force FBU corresponding to one
base unit and considering the edge extension can be computed using Formula (2.21):

FBU = F I
32 = k

Ac
a

∆L23d
3
23 = k

Ac
a

[
x
0

]
.

Considering the network on the right hand side of Figure 3.7 and imagining its
completion, it is clear that the force of the whole network is obtained by multiplying
F I

32 with (r + 1), where r is the number of rows. It suffices to consider the x-entry
of F I

32, denoted by Fx, since the y-displacement equals 0:

F = (r + 1)Fx = (r + 1)kAc
a
x.

The number of edges m of the network is obtained by taking cr times the number
of edges of the base unit, namely two. To get the complete quadratic grid, as shown
in Figure 3.1, c + r edges have to be added. Inserting m, L0 and h0 as denoted in
the box of formulas for q1 into Equation (2.6) for the density yields:

d = (2cr + c+ r)a
cra2 = 2cr + c+ r

cra
(3.1)

For an infinite amount of columns and rows, Equation (3.1) gets the same as it was
for the incomplete network with 2cr edges:

lim
c,r→∞

d = 2
a
. (3.2)

Substituting the previous results into Equation (2.10) and letting the number of
rows rise to infinity again, the stiffness for q1 is obtained. In the final step (3.2) is
used:

s = Fx(r + 1)ca
crax

=
kAc

a
x(r + 1)ca
crax

= kAc
r + 1
ra

lim
r→∞

s = kAc
1
a

= kAcd

2 . (3.3)

3.2.2 The Triangular Grids
The triangular nets are treated quite similar to the square pattern. The only differ-
ence is that the mesh of base units is not completed and the convergence behaviour
is not used. Instead, it is shown in Section 3.2.3 that the stiffness values of the
triangular grids from Section 3.1.2 approach those of the networks defined below.
The latter consist of of base units.

21

3. Fiber Networks

3.2.2.1 Triangular Shape t1

For the first triangular orientation, with one edge parallel to the y-axis, the base
unit consists of two edges and three nodes. Using the x-axis as the mirror axis, the
base form is restored. As for the quadratic grid, only node 3, marked in Figure 3.8,
is displaced and only the blue edge, (2, 3), changes in length by applying force F .

1

2

3 F

1

2

3
· · ·

· · ·

· · ·

...

1 2 · · · c

1

2

...
r

Figure 3.8: Triangular base unit of pattern t1.

The displacement vector for the base unit of t1 is equal to the one for the quadratic
base unit:

ux = [0, 0, x]>
uy = [0, 0, 0]>

}
⇒ u = [0, 0, 0, 0, x, 0]>.

The force vector of the base unit, FBU, results again from the calculation of F I for
the single stretched edge, taking the geometry of the base unit into account:

FBU = F I
32 = k

Ac
a

∆L23d
3
23 = k

Ac
a
x

[
3
4
0

]
.

By neglecting the zero valued y-entries and multiplying FBU with the number of
rows, the force for the network consisting of base units is obtained:

F = rFx = rk
Ac
a
x

3
4 .

The total edge length per base unit is (a+ a
2). This occurs cr times in the network.

Length and height of the base unit are
√

3a
2 and a

2 . For the network’s dimensions
one has to multiply this by the number of columns and rows, respectively. Inserting
those results into the formula of the density gives:

d =
cr
(
a
2 + a

)
Lh

=
3a
2

cra2
√

3
4

= 2
√

3
a
.

22

3. Fiber Networks

Formula (2.10) is used again with all results from above to calculate the stiffness for
the network displayed in Figure 3.8 as a function of the elasticity parameter k, the
cross sectional area Ac and the density d:

s =
rFx(c+ 1)c

√
3

2 a

cr a2x
= rk

Ac
a
x

3
4

√
3
x

= kAcd
3
8 . (3.4)

3.2.2.2 Triangular Shape t2

The last considered base unit corresponds to the rotated triangular pattern. Both,
the base unit and the network it entails are illustrated in Figure 3.9. Again it
consists of two edges and three nodes. The respective mirror axis is the y-axis.

1 2

3 F

F

1

3

2

...

· · ·

· · ·

· · ·

1

2

...

r

1 2 · · · c

Figure 3.9: Triangular base unit of pattern t2.

In this base unit two nodes are located on the right hand side and have a nonzero
x-displacement:

ux = [0, x, x]>
uy = [0, 0, 0]>

}
⇒ u = [0, 0, x, 0, x, 0]>.

Therefore, both edges of the unit get stretched and F I
ij is computed for them by:

F I
12 = k

Ac
a

∆L12d
2
12 = k

Ac
a

2x
[
1
0

]
,

F I
13 = k

Ac
a

∆L13d
3
13 = k

Ac
a
x

[
1
4
3
4

]
.

Once again the zero entries corresponding to the y-displacement are neglected. The
force vector for the base unit is obtained by adding up the local force vectors for
both edges:

Fx = F I
12 + F I

13 = k
Ac
a
x

9
4 .

23

3. Fiber Networks

Multiplying this result by r returns the force vector for the network of r rows of
base units:

F = rFx = rk
Ac
a
x

9
4 .

The length of the base unit corresponds to the height of the base unit of t1 and vice
versa. Again for the network those values have to be taken times c and r. The total
edge length is computed exactly as for t1:

d =
cr
(
a
2 + a

)
Lh

= 2
√

3
a
.

In the final step, the stiffness is computed by using the results from above and
Formula (2.10) once more:

s =
rFxc

a
2

cr
√

3
2 ax

= Fx√
3x

=
kAc

a
x9

4√
3x

= kAc9
a4
√

3
= kAc

3
8

2
√

3
a

= kAcq
3
8 . (3.5)

3.2.3 Results
Figure 3.10 depicts the results of the base unit calculations in comparison to the
stiffness values for the same mechanical parameters. The used elasticity matrix is
K = KI .

Figure 3.10: Comparison of stiffness calculations for the base units of q1, t1 and
t2 with srods. The stiffness of single rods according to Formula (2.10) is drawn
with purple diamonds. The stiffness computed for quadratic grid equals the value
of srods · 0.5 according to (3.3) and marked by purple circles. Also the triangular
networks approach stiffness values very close to srods · 0.375 = 3

8srods from equations
(3.4) and (3.5), depicted as purple circles.

24

3. Fiber Networks

Even though it does not make sense in a realistic setup, for this experiment the
y-displacements for all nodes are set to 0 to avoid singular matrices.

If the networks consisting of the triangular base units are completed as indicated
by the dashed lines in Figures 3.8 and 3.9, resulting grids include edges of length
a
2 and incomplete triangles. To avoid this, the triangular networks were changed to
the networks presented in Figures 3.3 and 3.4. Hereby arises the difference between
the lines for t1, t2 and the stiffness of the triangular base units, srods · 0.375, visible
in Figure 3.10.

3.3 Choice of Parameters

To compute the elasticity matrix K = KI + KII , material-specific parameters kijl
and κijl and reasonable dimensions for the fibers must be chosen. The edge length
depends on the density, according to the formulas listed for all patterns in Section
3.1. Therefore, a scope D of density values has to be determined such that it re-
sults in a realistic value of Lij for the simulated materials, regardless which pattern
is considered. Furthermore, the number of rows and columns must be known to
generate the grids. All parameters are considered constant throughout the whole
networks, such that kij = k, κijl = κ, Lij = a and wij = w for all edges (i, j) ∈ E
and all edge pairs (i, j, l) ∈ P .

The stiffness parameter k basically describes the same as Young’s modulus and is
therefore equated with E. Also the bending parameter κ is defined in terms of E.
If nothing else is stated explicitly, the relation κ = 1 · E = k is assumed. Only in
Section 4.1.1 κ got scaled down. Hence, to determine k and κ it is enough to know
the modulus of elasticity.

This thesis is limited to a choice of three materials, steel, carbon and paper. Young’s
modulus E, Poisson’s ratio γ, a realistic diameter w and edge length a of fibers are
listed in Table 3.1. For some parameters only the value chosen for the experiments
in Chapter 4 is listed in the table, albeit the values can be within the range stated
in the references.

Table 3.1: Material specific parameters of steel, carbon and paper, according to
[2, p. 961], [6, p. 6], [7, p. 1], [9, pp. 39] and [12, p. 117].

Material E in GPa γ w in m a in m
Steel 200 0.27− 0.30 0.01 0.1

Carbon 240 0.26− 0.28 0.007× 10−3 0.04
Paper 10.5 0.10− 0.57 0.018× 10−3 0.002

25

3. Fiber Networks

The number of rows and columns need to be large enough to ensure a stable stiffness
value for any given density. At the same time the computational effort should be
as small as possible to avoid too long run-times. Therefore, the stiffness of all six
networks is plotted for a fixed density value and all materials. In Figure 3.11 the
result for one such investigation is shown. The shapes of the graphs were quite
similar for other choices of density and other materials. Since all curves are rather
flat for values above c = r = 30, this exact amount of rows and columns was chosen
for the experiments following in Chapter 4.

Figure 3.11: Stiffness of all grids in terms of the number of rows r and columns c.

However, as mentioned before, the second hexagonal grid, h2, is not symmetric about
the x-axis for an even amount of rows. As an example a fixed number of 30 columns
and rows, steel parameters and a density of d = 12.0602 is considered, which results
in the realistic edge length of a = 0.1. Hereby the maximal positive y-displacement
of a node is 0.0186, whereas the maximal negative y-displacement is −0.0209. Even
though the difference in the computed stiffness values were not high in comparison
to the other network patterns, the maximal y-displacement matters for Poisson’s
ratio as seen in Section 4.2. Therefore, the number of rows and columns for h2 was
changed to 31, such that the y-displacement is symmetric about the x-axis. Com-
pared to the same network with c = r = 30 this change evokes a different amount
of edges m and hence slightly different values of the height, length and a marginally
distinct edge length a. Since both, the stiffness values and Poisson’s ratio are for-
mulated as functions of the density, comparability to the other patterns remains.

For 30 or, in the case of h2, 31 rows and columns, Table 3.2 lists the density values
required to achieve the respective edge lengths from Table 3.1.

26

3. Fiber Networks

Table 3.2: Densities corresponding to realistic edge lengths for all patterns.

Pattern Steel Carbon Paper
q1 20.6667 51.6667 1.0333× 103

q2 20.6837 51.7093 1.0342× 103

t1 35.4239 88.5597 1.7712× 103

t2 35.4239 88.5597 1.7712× 103

h1 12.0602 30.1505 603.0103
h2 12.0538 30.1346 602.6914

This results in the choice of D = [10 : 40], D = [25 : 90] and D = [590 : 1800] for
steel, carbon and paper fibers, respectively.

27

3. Fiber Networks

28

4
Results

The formulas and the settings from the previous chapters allow the comparison
of mechanical properties. Since most effects described are best visible using the
parameters of steel fibers, the focus lies on this material. Even though the numerical
values differ, most effects described are similar for other choices of materials. This
chapter starts off by analysing the development of stiffness values of the previously
presented choices of networks. Thereafter, those results are compared to the second
possible choice of the junction volume, mentioned in Section 2.1.6. In a third section
the other two materials, carbon and paper are studied. Then Poisson’s ratio is
presented for the different patterns and finally the effect of random changes to the
grids are shown.

4.1 Density-Stiffness Analysis
One of this project’s objectives is to determine which patterns result in the most
and least stiff networks. Generally, the stiffness of networks increases at a rising
density, as more edges and edge pairs contribute to higher resistance to external
force. Nevertheless, another question is how the relationship between the stiffness
of the meshes would change with increasing density. To answer both, the stiffness
is expressed as a function of density and calculated for all six patterns presented in
Section 3.1. Since the definitions of the different patterns lead to distinct dimensions
at the same density, the displacement ux towards the x-direction at the right hand
side is adjusted to the original length L0 of the grid,

ux = α

100L0,

where α is an arbitrary positive number.

Realistic displacements are relatively small and deformations become less visible.
Therefore, a rather large displacement of α = 50 is chosen for the grids in Figure 4.1
to better illustrate how the networks evolve subject to a load pulling parallel to the
x-axis.

The actual experiment to compare the stiffness of fiber networks is performed for
a value of ux = 0.1L0. All parameters, including the settings for the density, are
chosen for steel as presented in Tables 3.1 and 3.2. A constant glue parameter was
chosen for the junction volume V1, according to Equation (2.15), with p = 4 for the
quadratic, p = 6 for the triangular and p = 3 for the hexagonal setups. This results

29

4. Results

Figure 4.1: Steel networks subject to ux = 0.5L0 at density d = 25, with junction
volume V1.

in values of V1 = 2.5 × 10−7, V1 = 1.6667 × 10−7 and V1 = 3.3333 × 10−7, respec-
tively. For densities of 20, 30 and 40 exemplary grid displacements for all patterns
are shown in Figure 4.2.

The results of the stiffness analysis with respect to increasing density are shown in
Figure 4.3. Network q1 turns out to have the highest stiffness. This is, however,
only due to vertical edges, which make up half of all edges and are not deformed.
As soon as the quadratic pattern is rotated the stiffness decreases significantly. This
can be seen when considering the graph corresponding to q2, which shows the lowest
stiffness values of all grids. For the triangular and hexagonal patterns, both

30

4. Results

Figure 4.2: Steel networks subject to ux = 0.1L0 at densities d = 20, d = 30 and
d = 40 with junction volume V1.

31

4. Results

orientations result in very similar stiffness values. The patterns t1 and h2 which
include vertical edges are slightly stiffer. Surprisingly, the values of the hexagonal
meshes exceed those of the t1 and t2 from a density of approximately d ≈ 19 and
d ≈ 17, respectively. One explanation for this could be the chosen junction volume,
since the gluing parameter for a node in the hexagonal mesh splits into only three
edge pairs in contrast to six edge pairs that meet in the triangular meshes.

Figure 4.3: Density-stiffness analysis of all grids with 30 rows and columns, junc-
tion volume V1 and steel parameters.

It should also be mentioned, that the edge length a gets much shorter for the hexag-
onal networks at higher densities than they do for the triangular grids. Related
to the edge length the condition numbers of KBC , denoted by cond(KBC) are sig-
nificantly higher for h1 and h2 than those of t1 and t2 at all densities. Here KBC

denotes the elasticity matrix adjusted to fulfill the boundary conditions again. The
condition number specifies the stability of the solution for KBC · u = F̂ . The large
values indicate that small input changes can cause huge output differences in the
linear system of equations [1]. Both, the minimum and maximum edge lengths are
listed in Table 4.1. Besides, the increase of the condition numbers for shorter edge
lengths is illustrated in Figure 4.4.

32

4. Results

Table 4.1: Minimum and maxi-
mum values of edge lengths a for
steel networks.

Pattern min(a) max(a)
q1 0.05167 0.2067
q2 0.05171 0.2068
t1 0.08856 0.3542
t2 0.08856 0.3542
h1 0.03015 0.1206
h2 0.0313 0.1205

Figure 4.4: Condition numbers of KBC

of steel networks with junction volume V1.

4.1.1 Variation of Junction Volume Vijl

Formula (2.17) expresses the second approach to the junction volume V2, which
depends on the edge length a. Therefore, it changes with the density of the networks.
The moment of inertia for prismatic bars of a solid circular cross section Ac, as they
are considered here, reads

I = π

4

(
w

2

)4
,

where w is the diameter of the bars. Steel rods with w = 0.01, and densities within
D = [40 : 90] are considered. The resulting scopes for V2 with respect to the pattern
of the grids can be found in Table 4.2. This shows that V2 takes on much smaller
values than V1 overall.

Table 4.2: Minimum and maximum values of V2 for steel networks with densities
ranging from 40 to 90.

Pattern min(V2) max(V2)
q1 0.95008 · 10−8 2.1377 · 10−8

q2 0.94930 · 10−8 2.1359 · 10−8

t1 0.55429 · 10−8 1.2471 · 10−8

t2 0.55429 · 10−8 1.2471 · 10−8

h1 1.6281 · 10−8 3.6632 · 10−8

h2 1.6289 · 10−8 3.6651 · 10−8

It could not be completely clarified how the junction volume influences the stiffness.
However, Figure 4.5 contains the repetition of an extreme displacement of steel
networks this time using V2. All other parameters are kept similar to those from

33

4. Results

Figure 4.1. Comparing both results, it gets clear that V2 evokes a larger lateral
contraction than V1. This effect is further discussed in Section 4.2.

Figure 4.5: Steel networks subject to ux = 0.5L0 at density d = 25, with junction
volume V2.

The stiffness values obtained at the densities within D are depicted in Figure 4.6.
First of all it can be noted, that the magnitudes remain similar to those presented
in Figure 4.3 which correspond to the usage of V1. Yet, clear differences are visible
taking the hexagonal networks into account. In contrary to the results from Sec-
tion 4.1, the stiffness values of h1 and h2 are clearly smaller than the results for the
triangular grids. Also, q2 takes on smaller values and the curves for all three are

34

4. Results

much flatter. In summary the results of q1 remain completely the same for both
junction volumes. Those for t1 and t2 are decreasing by at most 1.67 · 107 and
1.70 · 107, which corresponds approximately 7%. This reduction is relatively small
compared to the difference of more than 97% at d = 10 considering the hexago-
nal networks. Moreover, the numerical loss is larger for the hexagonal meshes and
reaches a maximum of 2.3895 · 108 for h2 at d = 90.

Figure 4.6: Density-stiffness analysis of all grids with 30 rows and columns, junc-
tion volume V2 and steel parameters.

4.1.2 Variation of Bending Parameter κ
Again using the first approach to the junction volume V1, also the bending parame-
ter κ is iterated to investigate its effect on the stiffness development. So far, κ was
equated with k and E, assuming that the angular resistance parameter equals the
one describing the material’s general resistance to stress.

Figure 4.7 shows the repetition of the density-stiffness analysis from Figure 4.3, with
the difference, that the bending parameter is downsized to one tenth of its previous
size, κ = 0.1k. The result looks very similar to Figure 4.6, obtained by exchanging
V1 with V2. In both cases, the effect of the angular deviation gets smaller, because
the factor κijlVijl

Lja
, arising in the computation of the internal force F II shrinks.

35

4. Results

Figure 4.7: Density-stiffness anal-
ysis for steel networks with junction
volume V1 and κ = 0.1k.

Figure 4.8: Stiffness development
for steel networks at density d = 25,
with V1 and κ ∈ [0.1k, k].

In the study presented in Figure 4.8 the bending parameter ranges between 0.1k
and k. The stiffness of steel networks is measured at a density of 25. While the line
representing q1 is constant, those of t1 and t2 increase only slightly and approximately
linear. In contrary, the graphs corresponding to q1, h1 and h2 have roughly the form
of power functions. Figure 4.8 reveals, that the stiffness values of h1 and h2 at d = 25
are overtaken by both triangular meshes for bending parameters of κ = 0.66k or
lower. From this result and the indicated results from the previous section it becomes
clear that the networks h1 and h2 are most sensitive to angular deviation, closely
followed by q2. Whereas the results for the triangular grids remain rather equal and
those of q1 do not change at all. This observation suggests the conclusion that the
angles within the hexagonal networks and q2 change more under uniaxial stress than
the angles within the meshes t1 and t2. Furthermore, there are no angular changes
at all within the network q1.

4.1.3 Variation of Material: Carbon and Paper
Due to the different density values required to obtain realistic fiber dimensions the
comparability of studies carried out regarding different material parameters is lim-
ited. However, taking a look at the density-stiffness analysis for networks consisting
of carbon and paper fibers, still some conclusions can be drawn. The necessary
settings to generate the networks used for the investigations below are set according
to Section 3.3.

First of all the stiffness values are much smaller than those for steel, which seems
natural taking the materials into account. While those of steel range between 0.2·108

and 3.2·108 the scopes for the carbon and paper network’s stiffness are just [0.2 : 439]
and [62 : 2500], respectively. Paper occurs stiffer than carbon, even though it
has a much smaller modulus of elasticity. That origins probably in the thickness
of considered fibers, which have more than twice the diameter of carbon fibers
combined with a shorter edge length. Moreover, the shapes of all stiffness-curves
are approximately linear. Lastly, it stands out that the values of the hexagonal

36

4. Results

grids are clearly below those of triangular networks. For paper and carbon fibers
the values for q2, h1 and h2 have a bigger distance to the stiffer networks q1, t1 and
t2 than is the case for steel.

4.2 Poisson’s Ratio
As a second entity of interest Poisson’s Ratio, γ, is investigated. The theoretical
foundation can be found in Section 2.1.3, where the ratio is defined for a bar that
gets stretched along one axis and therefore contracts in its width. Here the two
dimensional networks are considered as the body of interest. The axial strain ε, is
the ratio of the x-displacement ux and the original length L0. The lateral contraction
ε is computed by the maximal decrease of height uy, i.e. the maximal y-displacement,
divided by the original height h0. To assure that the maximal y-displacement equals
in the positive and negative direction, it was necessary to have symmetric grids
regarding the y-axis, which was resolved according to the description in Section 3.3.
The resulting formula for γ is:

γ = uyL0

h0ux
.

It seems natural, that γ develops contrary to the stiffness of the networks. The
stiffer the network the smaller is the maximum y-displacement and therefore Pois-
son’s ratio. The grid q1 is hardly compressed in the y-direction, which results in
infinitesimal values of γ. For all other grids γ decreases with increasing density.

As indicated in Figure 4.9 the biggest Poisson’s ratio using V1 is obtained by network
q2, which matches the lowest stiffness value of q2 in Figure 4.3. The triangular grids
lead to almost constant and linearly decreasing values. The graphs corresponding
to hexagonal grids decrease much steeper. They follow a nonlinear function and
undercut the triangular ratios around density values of 17 and 19. These are the
same densities for which the stiffness of h1 and h2 exceeds that of t1 and t2.

Figure 4.9: Poisson’s ratio for steel
networks, with junction volume V1.

Figure 4.10: Poisson’s ratio for steel
networks, with junction volume V2.

37

4. Results

The overall values of the Poisson’s ratios obtained with V2, displayed in Figure 4.10,
are higher than those using the glue parameter V1. As it was mentioned before,
this is reflected in Figure 4.5 in the more extreme reduction in height. The graphs
corresponding to q1, t1 and t2 are similar to those in Figure 4.9, just the triangle’s
ratio increases slightly by about 0.01 to 0.03. Poisson’s ratio of q2 with respect
to V2 decays almost linear and much slower than the one for V1. At d = 10 it
begins approximately 0.1 above the corresponding entry in Figure 4.9. The curve
ends around 0.5 for a density of 40, which is almost 0.34 more than the value for
V1. Similar to the comparison of the stiffness values for the two different junction
volumes in Figures 4.3 and 4.6, the biggest change is visible in the hexagonal grids.
The corresponding graphs have an opposite curvature and the difference attains up
to 0.5 at densities 28 and 32 for h1 and h2, respectively.

Figure 4.11: Poisson’s ratio for steel
networks at density d = 25, with V1
and κ ∈ [0.1k, k].

Figure 4.11 shows the repetition of
the variation of κ within [0.1k, k], this
time with respect to Poisson’s ratio.
The graphs reflect higher values,
the smaller the bending parameter
gets. One exception is q1, which
shows no difference in the value of its
infinitesimal small Poisson’s ratio. In
general the slopes resemble those of
Figure 4.9, where instead of bending
parameter the density was increased.
Hence, the hexagonal grids are affec-
ted more by the variation of κ than

the triangular grids. The curve of q2 obtains the highest values overall. It descends
non-linearly and quite steeply. Poisson’s ratio of q2, h1 and h2 even approach 0.5 at
small κ. This indicates a plastic deformation of the object according to Section 4.2,
if the resistance to angular change within those networks gets too small.

4.3 Random Manipulation of Regular Grids

Within this section the effect on the stiffness values of the networks subject to ran-
dom irregularities is thematised. The experiments presented below are again carried
out with the material choice of steel, the glue parameter V1 as junction volume, and
a bending parameter equal to the stiffness parameter, κ = k.

The tests are computationally heavy and therefore limited to only one choice for
the density value, namely d = 25. As it is the mean value of the density interval
presented for steel in Section 3.3. Moreover, the displacement ux towards the right
is set to 10% of the original edge length of the non-manipulated grid.

38

4. Results

4.3.1 Node Displacement
The presented regular fiber networks could be used for a discrete model of materials,
that are homogeneous, isotropic and elastic. They also work to simulate actual fab-
rics consisting of a grid of micro-fibers. However, their regular patterns are far from
the realistic fiber arrangements, such as those produced in paper manufacturing. To
simulate more realistic compositions, for example in comparison to the microscopic
structure of paper, the nodes of the networks are slightly displaced. Therefore,
some factor β ranging from 0 to 0.5 is chosen. Then a random displacement vector
δβi = (uβxi

, uβyi
) with values within the interval of [−βa, βa] is determined for every

node i ∈ N . Here a describes again the unit edge length of the grid. Figure 4.12
shows an exemplary effect of this manipulation, based on network q1.

Figure 4.12: Examples of randomly displaced nodes of network q1. The displace-
ment factors from left to right are β = 0.02, β = 0.25 and β = 0.5, respectively.

In order to analyse the effect of nodal displacement for every grid pattern, the dis-
placement range is iterated. Then the stiffness of the resulting network is compared
to the original, non-manipulated mesh. In each iteration step β is increased by 0.02
and 100 networks with displaced nodes are generated. The stiffness values of those
networks are scattered with blue dots in Figure 4.17. The average of them is marked
red, whereas the original stiffness is illustrated by the green line. It is displayed that
the deviations of the stiffness of the manipulated nets from the average value tend to
become larger with increasing β. Among the samples from Figure 4.17, the largest
deviation of 69 · 106 for q1 is reached at β = 0.42, albeit the magnitude of the devi-
ation does not differ significantly between the grids.

For a better comparison the average stiffness of all manipulated meshes are pre-
sented in Figure 4.13. The values at x = 0 display the original stiffness for steel
networks at d = 25 with junction volume V1. Rotation of the quadratic shape in-
fluences the stiffness by almost a factor of two (1.9874), letting q1 appear stiffest
among all shapes. Also the hexagonal shapes appear stiffer as the triangular shapes
and q2.

However, with increasing β, the original patterns get more and more deformed. Fig-
ures 4.13 and 4.17 show, that the stiffness values for all networks decline, except
for q2, which is increasing up to 3.47%. Among the original grids, q2 shows the
lowest stiffness. The growth can be explained by the fact that the edges, which are

39

4. Results

Figure 4.13: Average stiffness with increasing range of random nodal displacement
in steel networks at d = 25 with junction volume V1.

originally at an angle of 45◦ to the y-axis, approach a more vertical position and
are therefore more resistant against tensile force. Yet, for displacements higher than
0.4a the positive effect shrinks again. The decay for all other grids follows approxi-
mately quadratic functions. Compared to the initial stiffness value of 1.9877 ·108 the
decline to an average stiffness value of 1.369 · 108 at a displacement of 0.5a for the
network q1 marks the biggest decay among the networks with approximately 30.26%.
The huge effect results from the fact that half of the original edges were vertically
aligned and therefore not stretched, which they are now. It is noticeable that the
hexagonal grids are effected less than q1 and the triangular meshes. The displaced
triangular meshes show a decline in stiffness of approximately 22%, whereas the loss
for h1 and h2 is only about 13%. The average stiffness values thus fall most steeply
for the hexagonal grids, followed by q1, q2 and lastly the triangular patterns.

To illustrate the described results of node displacement on the stiffness and therefore
on the stretching behaviour of the networks subject to tensile stress, the two extreme
cases of q1 and q2 were picked out. Figure 4.14 shows the networks, set up as
described at the beginning of this section. The only difference is, that the force fx
applied on the nodes at the right hand side was fixed. For β = 0.02a, β = 0.25a and
β = 0.5a the displacement was obtained with the previously computed stiffness. To

40

4. Results

increase the visibility of the effect, a rather extreme value of 2 ·108 was chosen for fx.
It is shown that the displacement of q1 is bigger, the more nodes are displaced. On
the contrary, the displacement of q2 is highest for the smallest displacement and
lowest for a displacement within [−0.25a, 0.25a].

Figure 4.14: Examples of deformed networks q1 and q2 with randomly displaced
nodes. The displacement factors from left to right are β = 0.02, β = 0.25 and
β = 0.5, respectively.

4.3.2 Edge Removal
The second kind of change applied to the grids is the removal of edges. This mea-
sure simulates the occurrence of cracks or cuts in the networks. In order to analyse
the impact of erased edges on the stiffness values up to 3% of the total number of
edges are randomly chosen and erased from the set of edges E . Thereafter the edge
pairs including the chosen edges have to be discharged from P . It is tested if the
networks are still connected, i.e. if every node is still indicent to at least one edge,
otherwise the manipulated network gets dismissed and the manipulation is repeated
with another set of edges. In Figure 4.15 one grid of each shape with 3% of removed
edges are shown as examples.

Figure 4.18 contains the results of the analysis. In each iteration the percentage
of removed edges is raised by 0.1%. Again 100 samples are investigated per step,
whose stiffness values are plotted with blue dots, whereas their average value and
the original stiffness are marked by red dots and by the green line, respectively.

The removal of edges leads to a smaller stiffness for all patterns without exception.
Moreover, the averages of the measured values decay in an approximately linear
manner. According to the experiment’s results, the hexagonal networks are most
sensitive to the erasure of single fibers with a decline of more than 15% for both
orientations. The quadratic meshes follow, since the stiffness of q1 and q2 falls by

41

4. Results

Figure 4.15: Examples of 3% randomly removed edges in q1, t1 and h1 from left
to right, respectively.

approximately 13.25% and 10.43%. Most resistance to cuts is displayed by the tri-
angular grids, whose stiffness falls slightly more than 8%.

Since the highest effect is obtained for network h2, this pattern is chosen to visu-
alise the difference between the increasing displacement effect of 1%, 2% and 3% of
removed edges in Figure 4.16. Equally to the previous procedure the force on the
right hand side is set to 2 × 108. The displacement rises with the percentage from
1.5273 over 1.653 to 1.7118.

Figure 4.16: Examples of deformed network h2 with 1%, 2% and 3% of randomly
removed edges subject to a load of fx = 2 · 108.

42

4. Results

Figure 4.17: Evolving error with increasing range of random nodal displacement
in steel networks of density 25 with junction volume V1.

43

4. Results

Figure 4.18: Evolving error with increasing percentage of randomly removed edges
in steel networks of density 25 with junction volume V1.

44

5
Conclusion & Outlook

This thesis dedicated itself to model and compare six different discrete fiber net-
works subject to tensile load. The grids vary in their basic regular shapes and
their orientation. Several settings for the junction volume, the bending parameter
and the materials were investigated. In addition, the previously regular patterns
were disturbed by random changes. Even though the quadratic pattern with pa-
rallel edges to the axes ranks highest in all stiffness-investigations, it becomes clear
that this shape is not the most stable, since the second quadratic setup, rotated
by 45% always comes last. Taking both orientations of the patterns into account,
the hexagonal shapes appear stiffest for mechanical properties of steel, a constant
glue parameter used as junction volume and a bending parameter equal to Young’s
modulus. Moreover, the hexagonal meshes show most resistance towards random
nodal displacement. However, changing the junction volume to one that origins in
beam theory or scaling the bending parameter down adequately to the density, the
triangular networks overtake the hexagonal grids in terms of their stiffness. Also,
the simulation of cuts evoked least effect on the triangular meshes. Among the
two triangular setups the stiffness of the grid with vertical edges outperforms the
other one slightly in all density-stiffness analyses. The comparison of the network’s
Poisson’s ratio revealed an opposite development of the curves with rising density
compared to the stiffness. Networks with higher stiffness showed lower values of
Poisson’s ratio and vice versa.

The presented model of the fiber networks is simplified in many ways. Concluding
the thesis, further steps are discussed, that might improve the accuracy of the so-
lutions. First of all, the third internal force emerging within the fibers due to the
Poisson effect, was completely omitted when running the experiments in Chapter 4.
Therefore, one further step could be to determine the relation of the stiffness param-
eter ηijl for the edge pairs to the stiffness parameter kij for the single edges. That
would allow to adjust the settings for both parameters and to reinforce KIII in the
assembly of the elasticity matrix K.

Secondly, as it was seen in Section 4.1.1, the choice for the junction volume signifi-
cantly influences the stiffness values, at least for some patterns. Compared to using
V1 the election of V2 even changes the order of the investigated patterns regarding
their stiffness. Throughout this work it was not verified, if there is a correct or
incorrect value for Vijl. Also, the ratio between the size of the junction volume and
the results were not determined.

45

5. Conclusion & Outlook

Another possible extension of the model is to add the third spatial dimension. This
would allow to investigate deformations of the networks in further detail. Wood
fibers consists for example of a solid shell around the so-called lumen, that can col-
lapse by stretching the fiber in its length or pressing it during the process of paper
production [6], [11]. Deformations of the whole network out of the plane are imag-
inable especially under compressing stress which could cause creasing of the object.

Moreover, the boundary conditions provide space for possible exploration. The
choice of the nodes on the right- and left hand side is natural for the network q1
and t1. However, for all other patterns just the nodes with the minimum and max-
imum x-values had been chosen. Alternatively, setting boundary conditions on all
nodes at the borders of the network may be tried.

Finally, the positioning of the fibers could be more randomised to achieve a closer
simulation of fibrous materials such as paper. This requires also a new way of
defining the connections of edges and the edge pairs.

46

Bibliography

[1] L. Beilina, E. Karchevskii, and M. Karchevskii. Numerical Linear Algebra:
Theory and Applications. Springer International Publishing, 1 edition, 2017.

[2] J.M. Gere and B.J. Goodno. Mechanics of Materials. Cengage Learning, 7.
edition, 2009.

[3] G. Kettil, A. Målqivst, A. Mark, F. Edelvik, M. Fredlund, and K. Wester.
A multiscale methodology for simulation of mechanical properties of paper.
In Proceeding of the 6th European Conference on Computational Mechanics,
Glasgow, UK, 2018.

[4] G. Kettil, A. Målqvist, A. Mark, M. Fredlund, K. Wester, and F. Edelvik.
Numerical upscaling of discrete network models. BIT Numerical Mathematics,
60:67–92, 2020.

[5] Gustav Kettil. Multiscale methods for simulation of paper making. PhD thesis,
Chalmers University of Technology and University of Gothenburg, 2019. Pages
57-68.

[6] R.W. Koppelaar. Properties of paper. http://mate.tue.nl/mate/pdfs/
10509.pdf, 7 2009. Bachelor’s Thesis, Eindhoven University of Technology.
Accessed: 2021-05-06.

[7] I. Krucinska and T. Stypka. Direct measurement of the axial poisson’s ratio of
single carbon fibres. Composites Science and Technology, 41(1):1–12, 1991.

[8] P. Szymczak M. Kot, H. Nagahashi. Elastic moduli of simple mass spring
models. In The Visual Computer, volume 31 of 10, pages 1339 – 1350. Springer
Nature, 9 2015.

[9] J.-P. Masse and D. Poquillon. Mechanical behavior of entangled materials with
or without cross-linked fibers. Scripta Materialia, 68(1):39–43, 2013. Architec-
tured Materials.

[10] M. Ostoja-Starzewski. Lattice models in micromechanics. Applied Mechanics
Reviews, 55(1):35–60, 1 2002.

[11] M. Soleimani, R. J. Hill, and T. G. M. van de Ven. Elasto-capillary collapse
of circular tubes as a model for cellulosic wood fibres. Journal of Materials
Science, 50:5337–5347, 2015.

[12] W. Szewczyk. Determination of poisson’s ratio in the plane of the paper. Fibres
& Textiles in Eastern Europe, 16(4):117–120, 2008.

[13] F. F. Udoeyo. Structural Analysis. Temple University Press, 2020.

47

http://mate.tue.nl/mate/pdfs/10509.pdf
http://mate.tue.nl/mate/pdfs/10509.pdf

Bibliography

48

A
Source Code for Matrix Assembly

Local matrix KI
ij describing the effect of edge extension on one edge (i, j):

1 %% K_I LOCAL
2 function [LocalKI] = Local_K_I (posXs , posYs , posXt , posYt , k, w)
3 %% Local length and direction vector
4 L_ij = sqrt ((posXs -posXt)^2+(posYs -posYt)^2);
5 ij = [posXt -posXs posYt -posYs]’;
6 d_ij = ij./ norm(ij);
7 %% Assembler edge extension
8 coeff = k*(w*0.5) ^2* pi/L_ij;
9 A = coeff*d_ij (1) ^2;

10 B = coeff*d_ij (1)*d_ij (2);
11 C = coeff*d_ij (2) ^2;
12 LocalKI = [-A -B A B; -B -C B C];
13 end

Assembly of KI for all edges:
1 %% Edge_extension
2 function [K_I] = edge_extension (N, pos , s, t, k, w)
3 m = size(s ,2);
4 K_I = sparse (2*N, 2*N);
5 for e = 1:m
6 x_s = 2*s(e) -1;
7 y_s = 2*s(e);
8 x_t = 2*t(e) -1;
9 y_t = 2*t(e);

10 Loc_K_I = Local_K_I (pos(x_s), pos(y_s), pos(x_t), pos(y_t), ...
11 k, w);
12 K_I ([x_s y_s], [x_s y_s x_t y_t]) = K_I ([x_s y_s], ...
13 [x_s y_s x_t y_t])+ Loc_K_I ;
14 K_I ([x_t y_t], [x_s y_s x_t y_t]) = K_I ([x_t y_t], ...
15 [x_s y_s x_t y_t])-Loc_K_I ;
16 end
17 end

Local matrix KII
ijl describing the effect of angular deviation on one edge pair (i, j, l):

1 %% K_II LOCAL
2 function [LocalKII]= Local_K_II (posXi , posYi , posXj , posYj , posXl ,

posYl , kappa_ijl , V_ijl)
3 %% Local length and direction vector
4 L_ji = sqrt ((posXi -posXj)^2+(posYi -posYj)^2);
5 L_jl = sqrt ((posXl -posXj)^2+(posYl -posYj)^2);

I

A. Source Code for Matrix Assembly

6 ji = [posXi -posXj; posYi -posYj];
7 jl = [posXl -posXj; posYl -posYj];
8 d_ji = ji./ norm(ji);
9 d_jl = jl./ norm(jl);

10 %% Edge normals
11 z = [0; 0; 1];
12 n_ji = cross ([d_ji ;0],z);
13 n_jl = cross ([- d_jl ;0],z);
14 %% Coefficients of force vectors
15 coeff_i = -kappa_ijl *V_ijl/L_ji;
16 coeff_l = -kappa_ijl *V_ijl/L_jl;
17 %% Coefficients of angular change
18 Delta_Theta = [n_ji (1)/L_ji n_ji (2)/L_ji (-n_ji (1)/L_ji -n_jl (1)/

L_jl) (-n_ji (2)/L_ji -n_jl (2)/L_jl) n_jl (1)/L_jl n_jl (2)/L_jl];
19 %% Assembler angular deviation
20 L_i = coeff_i * Delta_Theta .*(n_ji (1:2));
21 L_l = coeff_l * Delta_Theta .*(n_jl (1:2));
22 LocalKII =[L_i;-L_i -L_l;L_l];
23 end

Assembly of KII for all edge pairs:
1 %% Angular_deviation
2 function [K_II] = angular_deviation (N, pos , pairs , kappa , V)
3 p = size(pairs , 1);
4 K_II = sparse (2*N, 2*N);
5 for e = 1:p
6 x_i = 2* pairs(e ,1) -1;
7 y_i = 2* pairs(e ,1);
8 x_j = 2* pairs(e ,2) -1;
9 y_j = 2* pairs(e ,2);

10 x_l = 2* pairs(e ,3) -1;
11 y_l = 2* pairs(e ,3);
12 Loc_K_II = Local_K_II (pos(x_i), pos(y_i), pos(x_j), pos(y_j),

pos(x_l), pos(y_l), kappa , V);
13 K_II ([x_i y_i x_j y_j x_l y_l], [x_i y_i x_j y_j x_l y_l]) =

K_II ([x_i y_i x_j y_j x_l y_l],[x_i y_i x_j y_j x_l y_l])+
Loc_K_II ;

14 end
15 end

Local matrix KIII
ijl describing the effect of the Poisson effect on one edge pair (i, j, l):

1 %% K_III LOCAL
2 function [LocalKIII]= Local_K_III (posXi , posYi , posXj , posYj , posXl ,

posYl , eta_ijl , gamma_ijl , w)
3 %% Local length and direction vector
4 L_ji = sqrt ((posXi -posXj)^2+(posYi -posYj)^2);
5 L_jl = sqrt ((posXl -posXj)^2+(posYl -posYj)^2);
6 ji = [posXi -posXj; posYi -posYj];
7 jl = [posXl -posXj; posYl -posYj];
8 d_ji = ji./ norm(ji);
9 d_jl = jl./ norm(jl);

10 %% Edge normals
11 z_hat = [0 0 1]’;

II

A. Source Code for Matrix Assembly

12 n_ji = cross ([d_ji ;0], z_hat);
13 n_jl = cross ([- d_jl ;0], z_hat);
14 %% Coefficients of force vectors
15 coeff_1_i = -eta_ijl *(w*0.5) ^2* pi/L_ji;
16 coeff_2_i = gamma_ijl *w*0.5/ L_jl*norm(n_ji (1:2) ’*d_jl);
17 coeff_1_l = -eta_ijl *(w*0.5) ^2* pi/L_jl;
18 coeff_2_l = gamma_ijl *w*0.5/ L_ji*norm(n_jl (1:2) ’*d_ji);
19 Delta_poisson_i = coeff_1_i *[d_ji (1) d_ji (2) (-d_ji (1) -coeff_2_i *

d_jl (1)) (-d_ji (2) -coeff_2_i *d_jl (2)) coeff_2_i *d_jl (1)
coeff_2_i *d_jl (2)];

20 Delta_poisson_l = coeff_1_l *[coeff_2_l *d_ji (1) coeff_2_l *d_ji (2) (-
d_jl (1) -coeff_2_l *d_ji (1)) (-d_jl (2) -coeff_2_l *d_ji (2)) d_jl (1)
d_jl (2)];

21 %% Assemblation of KIII
22 P_i = Delta_poisson_i .* d_ji;
23 P_l = Delta_poisson_l .* d_jl;
24 P_j = -P_i -P_l;
25 LocalKIII = [P_i;P_j;P_l];
26 end

Assembly of KIII for all edge pairs, taking the lower number of edge pairs accumu-
lating at nodes on the boundaries into account:

1 %% Poisson_effect different eta at boarders
2 function [K_III]= poisson_effect_different_eta (N, pos , pairs , eta ,

eta_borders , gamma_ijl , w, x_borders)
3 p=size(pairs , 1);
4 K_III= sparse (2*N, 2*N);
5 for e = 1:p
6 x_i = 2* pairs(e ,1) -1;
7 y_i = 2* pairs(e ,1);
8 x_j = 2* pairs(e ,2) -1;
9 y_j = 2* pairs(e ,2);

10 x_l = 2* pairs(e ,3) -1;
11 y_l = 2* pairs(e ,3);
12 %% if central node of edge pair j lies at the boarder , change

eta_ijl
13 if any(x_borders (:) == x_j)
14 eta_ijl = eta_borders ;
15 else
16 eta_ijl = eta;
17 end
18 %% Assembly of KIII
19 Loc_K_III = Local_K_III (pos(x_i), pos(y_i), pos(x_j), pos(y_j),

pos(x_l), pos(y_l), eta_ijl , gamma_ijl , w);
20 K_III ([x_i y_i x_j y_j x_l y_l], [x_i y_i x_j y_j x_l y_l]) =

K_III ([x_i y_i x_j y_j x_l y_l],[x_i y_i x_j y_j x_l y_l]) +
Loc_K_III ;

21 end
22 end

Assembly of K as according to (2.24):
1 function [K] = compute_K_free (N, pos , s, t, pairs , k, w, V_ijl ,

kappa_ijl , eta_ijl , gamma_ijl)

III

A. Source Code for Matrix Assembly

2 %% Computation of K
3 KI = edge_extension (N, pos , s, t, k, w);
4 KII = angular_deviation (N, pos , pairs , kappa_ijl , V_ijl);
5 KIII = poisson_effect (N, pos , pairs , eta_ijl , gamma_ijl , w);
6

7 K = -KI -KII -KIII;
8 end

Generation of force vector F and the total force at the right hand side fx according
to (2.26), (2.27) and (2.28). For completeness fy is computed as well, but it will be
equal to 0 since the y-position of the nodes on the right hand side was fixed.

1 %% Computation of force vector F
2 function [u,force_x , force_y , K_bc] = compute_F (K, displacement , N,

nodes_lhs , nodes_rhs)
3 K_bc = K;
4 F_bc=zeros (2*N ,1);
5 %% Fix LHS
6 for i= nodes_lhs
7 K_bc (2*i -1 ,:) =0;
8 K_bc (2*i ,:) =0;
9 K_bc (2*i-1, 2*i -1) =1;

10 K_bc (2*i, 2*i)=1;
11 end
12 %% Set BC at RHS
13 for i= nodes_rhs
14 F_bc (2*i -1) = displacement ;
15 K_bc (2*i -1 ,:) = 0;
16 K_bc (2*i-1, 2*i -1) =1;
17 % fix y- positions at RHS
18 K_bc (2*i, :) =0;
19 K_bc (2*i, 2*i)=1;
20 end
21 %% Compute u and F
22 u = K_bc \ F_bc;
23 F = K * u;
24 %% Compute f_x and f_y at RHS
25 force_x =0;
26 force_y =0;
27 for i= nodes_rhs
28 force_x = force_x +F(2*i -1);
29 force_y = force_y +F(2*i);
30 end

IV

B
Source Code to Generate Grids

Implementation of q1:
1 %% Construction of quadratic pattern first orientation
2 function [N, pos , s, t, pairs]= quadratic_grid (a, c, r)
3 %% Nodes
4 N = (c+1) *(r+1);
5 nodes = (1:N);
6 %node matrix
7 M = reshape (nodes , (c+1) , (r+1)) ’;
8 % position vectors
9 n1 = linspace (0,a*(c+1) -a,(c+1));

10 X = repmat (n1 ,(r+1) ,1);
11 X_r = reshape (X’,N ,1);
12 n2 = linspace (0,a*(r+1) -a,(r+1)); %+ y_intercept ;
13 Y = repmat (n2 ’,1,(c+1));
14 Y_r = reshape (Y’,N, 1);
15 pos = zeros (1 ,2*N);
16 pos (1:2: end) = X_r;
17 pos (2:2: end) = Y_r;
18

19 %% Edges
20 s = [];
21 t = [];
22 for i = 1:(r+1) -1
23 for j = 1:(c+1) -1
24 s = [s M(i, j) M(i,j)];
25 t = [t M(i+1,j) M(i,j+1)];
26 end
27 end
28 % Add boundaries
29 s = [s M((r+1) ,1:(c+1) -1) M(1:(r+1) -1, (c+1)) ’];
30 t = [t M((r+1) , 2:(c+1)) M(2:(r+1) , (c+1)) ’];
31

32 %% Edge pairs
33 pairs = [];
34 for j = 0:(r+1) -2
35 for i = 1:(c+1) -1
36 pairs = [pairs; j*(c+1)+i j*(c+1)+i+1 j*(c+1)+i+1+(c+1);

...
37 j*(c+1)+i+1 j*(c+1)+i j*(c+1)+i+(c+1); ...
38 (j+1) *(c+1)+i (j+1) *(c+1)+i+1 (j+1) *(c+1)+i+1-(c+1);

...
39 (j+1) *(c+1)+i+1 (j+1) *(c+1)+i (j+1) *(c+1)+i-(c+1)];
40 end
41 end

V

B. Source Code to Generate Grids

Implementation of q2:

1 %% Construction of quadratic pattern second orientation
2 function [N, pos , s, t, pairs]= quadratic_grid_2 (a, c, r)
3 %% Nodes
4 N = (2*r+1)*c+r;
5 nodes =(1:N);
6

7 % position vectors
8 x1 = zeros (2*r+1 ,1);
9 x1 (1:2: end) = 0.5* sqrt (2)*a;

10 X = [];
11

12 y1 = [0:0.5* a*sqrt (2):r*a*sqrt (2)];
13 y2 = [0.5*a*sqrt (2):a*sqrt (2):r*a*sqrt (2)];
14 Y = [];
15

16 for i = 1:c
17 X=[X; x1+(i -1)*sqrt (2)*a];
18 Y=[Y; y1 ’];
19 end
20

21 X = [X; zeros(r ,1)+c*a*sqrt (2)];
22 Y = [Y; y2 ’];
23

24 pos = zeros (1 ,2*N);
25 pos (1:2: end) = X;
26 pos (2:2: end) = Y;
27

28 %% Edges
29 s = [];
30 t = [];
31 for j = 1:c
32 % nodes of column
33 n_o_c = [1:2*r+1]+(j -1) *(2*r+1);
34 nodes_of_next_column = [1:2*r+1]+j*(2*r+1);
35 s = [s n_o_c (1: end -1)];
36 t = [t n_o_c (2: end)];
37 end
38 for j = 1:c-1
39 n_o_c = [1:2*r+1]+(j -1) *(2*r+1);
40 nodes_of_next_column = [1:2*r+1]+j*(2*r+1);
41 s = [s n_o_c (1:2: end -1) n_o_c (3:2: end)];
42 t = [t nodes_of_next_column (2:2: end) nodes_of_next_column (2:2:

end)];
43 end
44 % Add boundaries
45 s = [s nodes(end -r+1: end) nodes(end -r+1: end)];
46 nodes_last_column = [1:2*r+1]+(c -1) *(2*r+1);
47 t = [t nodes_last_column (1:2: end -1) nodes_last_column (3:2: end)];
48

49 for j=1: length (s)
50 Xs=pos (2*s(j) -1);
51 Ys=pos (2*s(j));
52 Xt=pos (2*t(j) -1);
53 Yt=pos (2*t(j));

VI

B. Source Code to Generate Grids

54 L_ij=sqrt ((Xs -Xt)^2+(Ys -Yt)^2);
55 end
56

57 %% Node matrices (rearrangement of the nodes to simplify access)
58 % node matrix sorted to access columns
59 M = reshape (nodes (1: end -r), 2*r+1 , c);
60 % node matrix to access rows
61 rows =[];
62 for i=1:r
63 % nodes of row
64 n_o_r = [];
65 for j = 1: size(M ,2)
66 n_o_r = [n_o_r M(2*i,j) M(2*i-1,j)];
67 end
68 rows = [rows; n_o_r];
69 end
70 last_row = [nodes(end -r+1):nodes(end)]’;
71 rows = [rows last_row];
72

73 %% Edge pairs
74 pairs = [];
75 % vertical pairs even columns
76 for i=2: size(M ,1) -1
77 for j=1: size(M ,2)
78 pairs = [pairs; M(i-1, j) M(i,j) M(i+1,j)];
79 end
80 end
81 % vertical pairs odd columns
82 for i = 2:2: size(M ,1) -1
83 for j=1: size(M ,2) -1
84 pairs = [pairs; M(i-1, j) M(i,j+1) , M(i+1,j)];
85 end
86 end
87 for i = 2:2: size(M ,1) -2
88 for j=1: size(M ,2) -1
89 pairs = [pairs; M(i,j+1) , M(i+1,j) M(i+1,j+1) +1];
90 end
91 end
92 % horizontal pairs
93 for i=1: size(rows ,1)
94 for j=2: size(rows ,2) -1
95 pairs = [pairs; rows(i,j -1) rows(i,j) rows(i,j+1)];
96 end
97 end
98 for i = 1: size(rows ,1) -1
99 for j = 2:2: size(rows ,2) -1

100 pairs = [pairs; rows(i, j -1) rows(i+1,j) rows(i,j+1)];
101 end
102 for j = 3:2: size(rows ,2) -1
103 pairs = [pairs; rows(i+1, j -1) rows(i,j) rows(i+1,j+1)];
104 end
105 end
106 % last row
107 for i = 3:2: size(rows ,2) -2
108 pairs = [pairs; rows(end ,i -2) rows(end ,i -1) +2 rows(end ,i); ...
109 rows(end ,i -1) +2 rows(end ,i) rows(end ,i+1) +2];

VII

B. Source Code to Generate Grids

110 end
111 % last row last column
112 pairs =[pairs; rows(end ,end -2) rows(end ,end -1) +2 rows(end ,end)];
113 % last column vertical
114 for i=1:r
115 node = nodes(end -r+i);
116 column =M(:, end);
117 column (2:2: end)=[];
118 pairs = [pairs; column (i) node column (i+1)];
119 if i ~= r
120 pairs = [pairs; node column (i+1) node +1];
121 end
122 end

Implementation of t1 and t2. The orientation can be chosen by the input variable
orientation ∈ {1, 2}:

1 %% Construction of triangular pattern both orientations
2 function [N, pos , s, t, pairs] = triangular_grid (a,c, r,

orientation)
3 %% Nodes
4 N = r * c + c + r + 1 - round(c * 0.5);
5 %% position vector
6 pos = zeros (1 ,2*N);
7 x_distance = sqrt (3) *0.5*a;
8 pos_x = (0: x_distance :c* x_distance);
9 pos_y = zeros (1,c+1);

10 pos_y (2:2: end)=0.5*a;
11

12 s = [];
13 t = [];
14

15 for j=0:r-1
16 nodes_of_row =[1:c+1]+j*(c+1);
17 %% position vector
18 pos (2* nodes_of_row -1)=pos_x;
19 pos (2* nodes_of_row)=pos_y+j*a;
20 %% Edges
21 s=[s, nodes_of_row (1: end -1)];
22 t=[t, nodes_of_row (2: end)];
23 end
24 for j=0:r-2
25 nodes_of_row =[1:c+1]+j*(c+1);
26 nodes_of_next_row =[1:c+1]+(j+1) *(c+1);
27 nodes_in_between = nodes_of_row ;
28 nodes_in_between (1:2: end)= nodes_of_next_row (1:2: end);
29

30 s=[s, nodes_of_row , nodes_in_between (1: end -1)];
31 t=[t, nodes_of_next_row , nodes_in_between (2: end)];
32 end
33 nodes_upper_border = [(c+1)*r+1:N];
34 nodes_forelast_row = [1:c+1]+(r -1) *(c+1);
35 nodes_in_between_last_row = nodes_forelast_row ;
36 nodes_in_between_last_row (1:2: end)= nodes_upper_border ;
37

VIII

B. Source Code to Generate Grids

38 s=[s, nodes_in_between_last_row (1: end -1) , nodes_forelast_row (1:2:
end)];

39 t=[t, nodes_in_between_last_row (2: end), nodes_upper_border];
40

41 pos_x_upper_border =pos_x (1:2: end);
42 pos (2* nodes_upper_border -1)= pos_x_upper_border (1: size(

nodes_upper_border ,2));
43 pos (2* nodes_upper_border)=a*r;
44

45 %% turning the grid
46 if orientation == 1;
47 pos_90 =zeros (1 ,2*N);
48 pos_90 (1:2: end)=pos (2:2: end);
49 pos_90 (2:2: end)=pos (1:2: end);
50 pos = pos_90 ;
51 end
52

53 %% Edge pairs
54 pairs =[];
55 % edge pairs around the central nodes
56 for j=1:2:r-2
57 nodes_of_row =[1:c+1]+j*(c+1);
58 reference_nodes = nodes_of_row (2:2: end -1);
59 for alpha = reference_nodes
60 pairs = [pairs; ...
61 alpha -c-1 alpha alpha -1; alpha alpha -1 alpha -c -1; alpha

-1 alpha -c-1 alpha; ...
62 alpha alpha -1 alpha+c; alpha -1 alpha+c alpha; alpha+c

alpha alpha -1; ...
63 alpha alpha+c alpha+c+1; alpha+c alpha+c+1 alpha; alpha

+c+1 alpha alpha+c; ...
64 alpha alpha+c+1 alpha+c+2; alpha+c+1 alpha+c+2 alpha;

alpha+c+2 alpha alpha+c+1; ...
65 alpha alpha +1 alpha+c+2; alpha +1 alpha+c+2 alpha; alpha

+c+2 alpha alpha +1; ...
66 alpha -c-1 alpha alpha +1; alpha alpha +1 alpha -c -1; alpha

+1 alpha -c-1 alpha];
67 end
68 % rightmost column for odd amount of columns
69 if (-1)^c == -1
70 alpha = nodes_of_row (end);
71 pairs = [pairs; ...
72 alpha -c-1 alpha alpha -1; alpha alpha -1 alpha -c -1; alpha

-1 alpha -c-1 alpha; ...
73 alpha alpha -1 alpha+c; alpha -1 alpha+c alpha; alpha+c

alpha alpha -1;...
74 alpha alpha+c alpha+c+1; alpha+c alpha+c+1 alpha; alpha

+c+1 alpha alpha+c];
75 end
76 end
77 % triangles in between
78 for j=0:2:r-2
79 nodes_of_row =[1:c+1]+j*(c+1);
80 reference_nodes = nodes_of_row (2:2: end);
81 % first orientation
82 for alpha = reference_nodes

IX

B. Source Code to Generate Grids

83 pairs = [pairs; ...
84 alpha alpha -1 alpha+c; alpha -1 alpha+c alpha; alpha

+c alpha alpha -1];
85 end
86 % second orientation
87 for alpha = reference_nodes (1: end -1);
88 pairs = [pairs; ...
89 alpha alpha +1 alpha+c+2; alpha +1 alpha+c+2 alpha;

alpha+c+2 alpha alpha +1];
90 end
91 % rightmost column for odd amount of columns
92 if (-1)^c == 1
93 alpha = reference_nodes (end);
94 pairs = [pairs; ...
95 alpha alpha +1 alpha+c+2; alpha +1 alpha+c+2 alpha; alpha

+c+2 alpha alpha +1];
96 end
97 end
98 % upmost row
99 % even amount of rows

100 if (-1)^r == 1
101 nodes_of_row =[1:c+1]+(r -1) *(c+1);
102 reference_nodes = nodes_of_row (2:2: end -1);
103 for i = 1: size(reference_nodes ,2)
104 alpha = reference_nodes (i);
105 pairs = [pairs; ...
106 alpha -c-1 alpha alpha -1; alpha alpha -1 alpha -c -1;

alpha -1 alpha -c-1 alpha; ...
107 alpha alpha -1 nodes_upper_border (i); alpha -1

nodes_upper_border (i) alpha; nodes_upper_border (i) alpha alpha
-1; ...

108 alpha alpha +1 nodes_upper_border (i+1); alpha +1
nodes_upper_border (i+1) alpha; nodes_upper_border (i+1) alpha
alpha +1; ...

109 alpha -c-1 alpha alpha +1; alpha alpha +1 alpha -c -1;
alpha +1 alpha -c-1 alpha];

110 end
111 % rightmost column for odd amount of columns
112 if (-1)^c == -1
113 alpha = nodes_of_row (end);
114 pairs = [pairs; ...
115 alpha -c-1 alpha alpha -1; alpha alpha -1 alpha -c -1;

alpha -1 alpha -c-1 alpha; ...
116 alpha alpha -1 nodes_upper_border (end); alpha -1

nodes_upper_border (end) alpha; nodes_upper_border (end) alpha
alpha -1];

117 end
118 % odd amount of rows
119 else
120 nodes_of_row =[1:c+1]+(r -1) *(c+1);
121 reference_nodes = nodes_of_row (1:2: end -1);
122 for i = 1: size(reference_nodes ,2);
123 alpha = reference_nodes (i);
124 pairs = [pairs; ...
125 alpha alpha +1 nodes_upper_border (i); alpha +1

nodes_upper_border (i) alpha; nodes_upper_border (i) alpha alpha

X

B. Source Code to Generate Grids

+1; ...
126];
127 end
128 reference_nodes = nodes_of_row (3:2: end);
129 for i = 1: size(reference_nodes ,2);
130 alpha = reference_nodes (i);
131 pairs = [pairs; ...
132 alpha alpha -1 nodes_upper_border (i+1); alpha -1

nodes_upper_border (i+1) alpha; nodes_upper_border (i+1) alpha
alpha -1; ...

133];
134 end
135 end

Implementation of h1:
1 %% Construction of hexagonal pattern first orientation
2 function [N, pos , s, t, pairs]= hexagonal_grid_3 (a,c, r)
3 %% Nodes
4 N = (c+1) *(2*r+1);
5 nodes = reshape ([1:N], 2*r+1, c+1);
6 %% Position vectors
7 % x direction
8 pos_x1 = zeros (1 ,2*r+1);
9 pos_x1 (1:2: end) = 0.5*a;

10 pos_x2 = zeros (1 ,2*r+1) +1.5*a;
11 pos_x2 (2:2: end) = 2*a;
12 % y direction
13 y_distance = sqrt (3) *0.5*a;
14 pos_y =(0: y_distance : y_distance *(2*r));
15 % position vector for all nodes
16 pos=zeros (1 ,2*N);
17 pos (2* nodes (: ,1) -1)= pos_x1 ;
18 pos (2* nodes (: ,1))=pos_y;
19 for i=3:2:c+1
20 nodes_of_column = nodes (:,i);
21 pos (2* nodes_of_column -1) = pos_x1 +1.5*(i -1)*a;
22 pos (2* nodes_of_column) = pos_y;
23 end
24 for i=2:2:c+1
25 nodes_of_column = nodes (:,i);
26 pos (2* nodes_of_column -1) = pos_x2 +(i -2) *1.5*a;
27 pos (2* nodes_of_column) = pos_y;
28 end
29 %% Edges
30 s = [];
31 t = [];
32 for i = 1:c
33 nodes_of_column = nodes (:,i);
34 s = [s, nodes_of_column (1: end -1) ’];
35 t = [t, nodes_of_column (2: end) ’];
36 end
37 % edges of last column
38 nodes_of_last_column = nodes (:,c+1);
39 if (-1)^c == -1
40 s = [s, nodes_of_last_column (1: end -1) ’];

XI

B. Source Code to Generate Grids

41 t = [t, nodes_of_last_column (2: end) ’];
42 else
43 s = [s, nodes_of_last_column (1: end -3) ’];
44 t = [t, nodes_of_last_column (2: end -2) ’];
45 end
46 if (-1)^c == -1
47 for i = 1:2:2* r
48 nodes_of_row = nodes(i ,:);
49 nodes_of_next_row = nodes(i+1 ,:);
50 s = [s, nodes_of_row (1:2: end -1) nodes_of_next_row (2:2: end

-1)];
51 t = [t, nodes_of_row (2:2: end) nodes_of_next_row (3:2: end)];
52 end
53 else
54 for i = 1:2:2* r
55 nodes_of_row = nodes(i ,:);
56 nodes_of_next_row = nodes(i+1 ,:);
57 s = [s, nodes_of_row (1:2: end -2) nodes_of_next_row (2:2: end

-2)];
58 t = [t, nodes_of_row (2:2: end -1) nodes_of_next_row (3:2: end

-1)];
59 end
60 for i = 1:2:2* r
61 nodes_of_row = nodes(i ,:);
62 nodes_of_next_row = nodes(i+1 ,:);
63 s = [s, nodes_of_next_row (end -1)];
64 t = [t, nodes_of_row (end)];
65 end
66 end
67 nodes_of_last_row = nodes (2*r+1 ,:);
68 s = [s, nodes_of_last_row (1:2: end -1)];
69 t = [t, nodes_of_last_row (2:2: end)];
70 %% Edge pairs
71 pairs =[];
72 % edge pairs on diagonal edges
73 for i=1:2*r-1
74 for j=1:c %2:c
75 pairs =[pairs; nodes(i,j) nodes(i+1,j) nodes(i+2,j)];
76 end
77 end
78 % last column
79 if mod(c ,2) == 0
80 for i = 1:2*r-3
81 pairs = [pairs; nodes(i,c+1) nodes(i+1,c+1) nodes(i+2,c+1)

];
82 end
83 else
84 if mod(r, 2) ==0
85 for i = 2:2*r
86 pairs = [pairs; nodes(i-1,c+1) nodes(i,c+1) nodes(i+1,c

+1)];
87 end
88 else
89 for i = 2:2*r
90 pairs = [pairs; nodes(i-1,c+1) nodes(i,c+1) nodes(i+1,c

+1)];

XII

B. Source Code to Generate Grids

91 end
92 end
93 end
94 % edge pairs on horizontal edges
95 % every odd column
96 for i =1:2:2*r-1
97 for j=1:2:c
98 pairs = [pairs; nodes(i+1,j) nodes(i,j) nodes(i,j+1); ...
99 nodes(i,j) nodes(i,j+1) nodes(i+1,j+1) ;...

100 nodes(i+1,j) nodes(i+2,j) nodes(i+2,j+1) ;...
101 nodes(i+2,j) nodes(i+2,j+1) nodes(i+1, j+1)];
102 end
103 end
104 % every even column
105 if (-1)^c==-1
106 for i =2:2:2*r-1
107 for j=2:2:c
108 pairs = [pairs; nodes(i+1,j) nodes(i,j) nodes(i,j+1);

...
109 nodes(i,j) nodes(i,j+1) nodes(i+1,j+1) ;...
110 nodes(i+1,j) nodes(i+2,j) nodes(i+2,j+1) ;...
111 nodes(i+2,j) nodes(i+2,j+1) nodes(i+1, j+1)];
112 end
113 end
114 for j=2:2:c
115 % bottom row
116 pairs = [pairs; nodes (1,j) nodes (2,j) nodes (2,j+1) ;...
117 nodes (2,j) nodes (2,j+1) nodes (1, j+1)];
118 % top row
119 pairs = [pairs; nodes (2*r+1,j) nodes (2*r,j) nodes (2*r,j

+1); ...
120 nodes (2*r,j) nodes (2*r,j+1) nodes (2*r+1,j+1)];
121 end
122 else
123 for i =2:2:2*r-1
124 for j=2:2:c-1
125 pairs = [pairs; nodes(i+1,j) nodes(i,j) nodes(i,j+1);

...
126 nodes(i,j) nodes(i,j+1) nodes(i+1,j+1) ;...
127 nodes(i+1,j) nodes(i+2,j) nodes(i+2,j+1) ;...
128 nodes(i+2,j) nodes(i+2,j+1) nodes(i+1, j+1)];
129 end
130 pairs = [pairs; nodes(i+1,c) nodes(i,c) nodes(i-1,c+1); ...
131 nodes(i,c) nodes(i-1, c+1) nodes(i, c+1) ;...
132 nodes(i+1,c) nodes(i+2,c) nodes(i+1,c+1) ;...
133 nodes(i+2,c) nodes(i+1,c+1) nodes(i, c+1) ;...
134];
135 end
136 for j = 2:2:c-1
137 % bottom row
138 pairs = [pairs; nodes (1,j) nodes (2,j) nodes (2,j+1) ;...
139 nodes (2,j) nodes (2,j+1) nodes (1, j+1)];
140 % top row
141 pairs = [pairs; nodes (2*r+1,j) nodes (2*r,j) nodes (2*r,j+1);

...
142 nodes (2*r,j) nodes (2*r,j+1) nodes (2*r+1,j+1)];

XIII

B. Source Code to Generate Grids

143 end
144 pairs = [pairs; nodes (1,c) nodes (2,c) nodes (1,c+1) ;...
145 nodes (2*r+1,c) nodes (2*r, c) nodes (2*r-1,c+1)];
146 end
147 %% erasing redundant nodes for even amount of columns
148 if (-1)^c == 1
149 N = N -2;
150 redundant_nodes = [nodes_of_last_column (1) ,

nodes_of_last_column (end)];
151 indices =[2* redundant_nodes -1, 2* redundant_nodes];
152 pos(indices)=[];
153 end
154 end

Implementation of h2:
1 %% Construction of hexagonal pattern second orientation
2 function [N, pos_90 , s, t, pairs]= hexagonal_grid_4 (a,c, r)
3 %% Generating grid
4 [N, pos , s, t, pairs] = hexagonal_grid_3 (a,r,c);
5 %% turning the grid
6 pos_90 =zeros (1 ,2*N);
7 pos_90 (1:2: end)=pos (2:2: end);
8 pos_90 (2:2: end)=pos (1:2: end);

Program to generate the grid wanted:
1 function [N, pos , s, t, pairs] = generate_grid (shape , a, c, r)
2 if strcmp (shape ,’q’)
3 [N, pos , s, t, pairs] = quadratic_grid (a,c,r);
4 elseif strcmp (shape , ’q_2 ’)
5 [N, pos , s, t, pairs] = quadratic_grid_2 (a,c,r);
6 elseif strcmp (shape , ’t_1 ’)
7 [N, pos , s, t, pairs] = triangular_grid_4 (a, c, r, 0);
8 elseif strcmp (shape , ’t_2 ’)
9 [N, pos , s, t, pairs] = triangular_grid_4 (a, r, c, 1);

10 elseif strcmp (shape , ’h_1 ’)
11 [N, pos , s, t, pairs] = hexagonal_grid_3 (a,c,r);
12 elseif strcmp (shape , ’h_2 ’)
13 [N, pos , s, t, pairs] = hexagonal_grid_4 (a,c,r);
14 end
15 end

Program to compute the dimensions of the grid and their unit edge length from a
given density and pattern:

1 function [a, l, h]= size_and_a_from_density (shape , d, c, r)
2 %% number of edges
3 if strcmp (shape ,’q_1 ’)
4 nr_edges = 2 * c * r + c + r;
5 elseif strcmp (shape , ’q_2 ’)
6 nr_edges = 4 * c * r;
7 elseif strcmp (shape , ’t_1 ’)
8 nr_edges = 3 * c * r + r - c - 1 + round ((c + 1) * 0.5);
9 elseif strcmp (shape , ’t_2 ’)

XIV

B. Source Code to Generate Grids

10 nr_edges = 2 * c * r + c * ceil ((r + 1) / 2) + (c - 1) * floor
((r + 1) / 2);

11 elseif strcmp (shape , ’h_1 ’)
12 nr_edges = (4 * r + r + 1) * ceil(c / 2) + r * floor(c / 2);
13 if mod(c, 2) == 0
14 nr_edges = nr_edges + 2 * (r - 1);
15 end
16 elseif strcmp (shape , ’h_2 ’)
17 nr_edges = (4 * c + c + 1) * ceil(r / 2) + c * floor(r / 2);
18 if mod(r, 2) == 0
19 nr_edges = nr_edges + 2 * (c - 1);
20 end
21 end
22 %% a, length and height
23 if strcmp (shape ,’q_1 ’)
24 a = nr_edges / (d * c * r);
25 l = a * c;
26 h = a * r;
27 elseif strcmp (shape , ’q_2 ’)
28 a = nr_edges / (2 * d * (c - 0.5) * (r - 0.5));
29 l = sqrt (2) * a * (c - 0.5);
30 h = sqrt (2) * a * (r - 0.5);
31 elseif strcmp (shape , ’t_1 ’)
32 a = nr_edges * 2 / ((sqrt (3) * r * c - sqrt (3) * 0.5 * c) * d);
33 h = a * r - 0.5 * a;
34 l = sqrt (3) * 0.5 * a * c;
35 elseif strcmp (shape , ’t_2 ’)
36 a = nr_edges * 2 / (sqrt (3) * (r * c - 0.5 * r) * d);
37 h = sqrt (3)* 0.5 * a * r;
38 l = a * c - 0.5 * a;
39 elseif strcmp (shape , ’h_1 ’)
40 a = nr_edges * 4 / (d * (6 * sqrt (3) * r * c - 3 * sqrt (3) * c)

);
41 h = r * sqrt (3) * a - sqrt (3) * 0.5 * a;
42 l = 1.5 * a * c;
43 elseif strcmp (shape , ’h_2 ’)
44 a = nr_edges * 4 / (d * (6 * sqrt (3) * r * c - 3 * sqrt (3) * r)

);
45 h = 1.5 * a * r;
46 l = c * sqrt (3) * a - sqrt (3) * 0.5 * a;
47 end

Program to select nodes within a rectangle given by two of its corner nodes, necessary
to select the nodes for the boundary conditions:

1 function [nodes]= select_nodes (x_lower , y_lower , x_upper , y_upper ,
pos)

2 % number of nodes in the network
3 n = size(pos ,2) * 0.5;
4 % selecting nodes within rectangle def. by "lower" and "upper"

corner points
5 nodes =[];
6 for i=1:n
7 x_pos = pos (2*i -1);
8 y_pos = pos (2*i);

XV

B. Source Code to Generate Grids

9 if x_pos >= x_lower && x_pos <= x_upper && y_pos >= y_lower &&
y_pos <= y_upper

10 nodes =[nodes i];
11 end
12 end
13 end

XVI

C
Source Code to Compute

Mechanical Entities

Program to generate the junction volume, corresponding to the edge length with
respect to choice ∈ {1, 2} for V1 or V2:

1 function [V]= junction_volume (shape , choice , a, w)
2 if choice == 1
3 if strcmp (shape ,’q_1 ’) | strcmp (shape , ’q_2 ’)
4 V = 1/4*w^3;
5 elseif strcmp (shape , ’t_1 ’) | strcmp (shape , ’t_2 ’)
6 V = 1/6 *w^3;
7 elseif strcmp (shape , ’h_1 ’) | strcmp (shape , ’h_2 ’)
8 V = 1/3 *w^3;
9 end

10 elseif choice == 2
11 I_circ =pi *0.25*(0.5* w)^4;
12 V = I_circ /a;
13 end

Program to compute the stiffness:
1 %% Stiffness
2 function [S] = stiffness (displacement , force , l, h)
3 force_per_unit_length = force /h;
4 strain = displacement /l;
5 S = force_per_unit_length / strain ;
6 end

Program to compute Poisson’s ratio:
1 %% Poisson ’s ratio
2 function PR = poissons_ratio (l,h,u_x ,u)
3 decrease_height = max(abs(u(2:2: end)));
4 PR = (decrease_height /h)/(u_x/l);
5 end

Program to set material specific parameters according to Tables 3.1 and 3.2:
1 %% Setting mechanical parameters regarding the material
2 % if reinforcement of KIII is wanted , this list should be

complemented by gamma and eta (and if wanted another eta value
for the borders)

3 function [k, w, A_c , kappa , D] = material_parameters (material ,
factor_kappa)

XVII

C. Source Code to Compute Mechanical Entities

4 if strcmp (material , ’Steel ’)
5 % young ’s modulus
6 k = 200 e9;
7 % unit diameter
8 w = 0.01;
9 % scope of density

10 D = [10:2:40];
11 elseif strcmp (material , ’Carbon ’)
12 % young ’s modulus
13 k = 240 e9;
14 % unit diameter
15 w = 0.000007;
16 % scope of density
17 D = [25:5:90];
18 elseif strcmp (material , ’Paper ’)
19 % young ’s modulus
20 k = 105 e8;
21 % unit diameter
22 w = 0.000018;
23 % scope of density
24 D = [590:55:1800];
25 end
26 % cross sectional area
27 A_c = (0.5*w)^2* pi;
28 % bending param;
29 kappa = factor_kappa * k;
30 end

Program to compute the actual displacement ux from the initial length L0 and the
chosen percentage of displacement:

1 function u_x = displacement (length , percentage)
2 u_x = (percentage / 100) * length ;
3 end

Program to plot the original and displaced network:
1 %% Plot_graph
2 function plot_graph (shape , d, u_x , N, pos , s, t, u)
3 nodes =(1:N) ’;
4 m=size(s ,2);
5 edges =(1:m) ’;
6 pos_table = reshape (pos , [2, N]) ’;
7 %% Displaced positions
8 pos_new = pos + u;
9 pos_table_new = reshape (pos_new , [2,N]) ’;

10 %% Node and edge table
11 nodetable = table(nodes , pos_table (: ,1) , pos_table (: ,2) , ’

VariableNames ’, {’node ’, ’x position ’, ’y position ’});
12 edgetable = table ([s’ t’], edges , ’VariableNames ’, {’EndNodes ’, ’

edge ’});
13 %% Colors
14 darkGrey = [0.4 0.4 0.4];
15 cyan = [0.25 0.78 1.0];
16 %% Original graph

XVIII

C. Source Code to Compute Mechanical Entities

17 G = graph(edgetable , nodetable);
18 figure ();
19 axis equal
20 plot(G, ’NodeColor ’, darkGrey , ’EdgeColor ’, darkGrey , ’XData ’,

pos_table (: ,1) , ’YData ’, pos_table (: ,2))
21 %xlim ([-0.2 max(pos_new) +0.2]) ;
22 xlim ([min(pos_new) -0.2 max(pos_new) +0.2]) ;
23 ylim ([min(pos_new) -0.2 max(pos_new) +0.2]) ;
24 %% Displaced graph
25 hold on
26 plot(G, ’NodeColor ’, cyan , ’EdgeColor ’, cyan , ’XData ’,

pos_table_new (: ,1) , ’YData ’, pos_table_new (: ,2))
27 % legend (’ original grid ’, ’displaced grid ’)
28 title ({" Shape: " + shape + "" ; " Density : " + d + ""; "

Displacement : " + u_x })
29 end

XIX

C. Source Code to Compute Mechanical Entities

XX

D
Executive Programs

Program to define the experiment’s input:
1 %% Input to compare patterns
2 clear all
3 close all
4 clc
5 % material : choose between (string , capital letter) ’Steel ’, ’

Carbon ’ and ’Paper ’
6 material = ’Steel ’;
7 % number of rows and columns (int)
8 rc = 30;
9 % percentage of original length how much right hand side should be

10 % displaced (num > 0)
11 percentage_displacement = 10;
12 % kappa = factor_kappa *k
13 factor_kappa = 1;
14 % Junction volume approach : choose between 1 and 2
15 choice_V = 1;
16 % Which graphic should be plottet ? Choose between
17 % Density - Stiffness analysis : ’SD ’
18 % Density - Poisson ’s ratio : ’PD ’
19 % Condition number of K with boundary conditions - Edge length : ’CE

’
20 output = ’PD’;
21 % List of densities which should be printed or empty list
22 print_grids = [];
23 %% Shape(s)
24 shapes = {’q_1 ’, ’q_2 ’, ’t_1 ’, ’t_2 ’, ’h_1 ’, ’h_2 ’};
25 compare_patterns (material , rc , shapes , percentage_displacement ,

choice_V , factor_kappa , output , print_grids)

Program to generate plots for comparing different networks at rising densities:
1 %% Compare networks of chosen shapes
2 % generating plots for comparison and possibly exemplary deformed

networks
3 function compare_patterns (material , rc , shapes ,

percentage_displacement , choice_V , factor_kappa , output ,
print_grids)

4 %% Mechanical parameters
5 [k, w, A_c , kappa , D] = material_parameters (material , factor_kappa)

;
6 %% Generate grid and compute displacement
7 for shape = shapes
8 % initialisation

XXI

D. Executive Programs

9 Stiffness = [];
10 Poissons_ratio = [];
11 Cond_nrs = [];
12 Edge_length = [];
13 for d=D
14 [S, PR , Cond , a] = compute_SPrCond (k, w, A_c , kappa , d, rc ,

shape , percentage_displacement , choice_V);
15 Stiffness = [Stiffness , S];
16 Poissons_ratio = [Poissons_ratio , PR];
17 Cond_nrs =[Cond_nrs , Cond];
18 Edge_length = [Edge_length , a];
19 %% Print output densities
20 for j = print_grids
21 if d == j
22 plot_graph (shape , d, u_x , N, pos , s, t, u’);
23 hold off
24 end
25 end
26 end
27 %% Plot
28 j = length (print_grids)*6;
29 if strcmp (output , ’SD’)
30 figure (j+1)
31 plot(D, Stiffness , ’-s’)
32 hold on
33 elseif strcmp (output , ’PD’)
34 figure (j+2)
35 plot(D, Poissons_ratio , ’-o’, ’MarkerSize ’ ,5)
36 hold on
37 elseif strcmp (output , ’CE’)
38 figure (j+3)
39 plot(Edge_length , Cond_nrs , ’-*’)
40 hold on
41 end
42 end
43 %% Title and legend of the figure
44 if strcmp (output , ’SD’)
45 xlabel (’Density ’)
46 ylabel (’Stiffness ’)
47 legend (shapes , ’Location ’, ’northwest ’)
48 title ({’Density stiffness analysis ’; ’K = - K^I - K^{II}’; "

Material : " + material })
49 elseif strcmp (output , ’PD’)
50 xlabel (’Density ’)
51 ylabel (’Poissons ratio ’)
52 legend (shapes , ’Location ’, ’northeast ’)
53 title ({’Poissons ratio ’; ’K = - K^I - K^{II}’; " Material : " +

material })
54 elseif strcmp (output , ’CE’)
55 xlabel (’Edge length ’)
56 ylabel (’Condition number ’)
57 legend (shapes , ’Location ’, ’northeast ’)
58 title ({" Condition number of K_{BC} in terms of a"; ’K = - K^I -

K^{II}’; " Material : " + material })
59 end

XXII

D. Executive Programs

Program to compute a network’s stiffness, Poisson’s ratio and cond(KBC):
1 %% Compute stiffness , Poisson ’s ratio and condition number of a

network
2 % program to ensure symetrical grids computing all entities of

interest
3 % working for one shape and one density value
4 function [S, PR , Cond , a] = compute_SPrCond (k , w, A_c , kappa , d,

rc , shape , percentage_displacement , choice_V)
5 %% Columns and rows
6 c = rc;
7 r = rc;
8 % ensuring symmetric grids
9 if strcmp (shape , ’t_2 ’) && mod(rc ,2) ~= 0

10 c = c+1;
11 r = r+1;
12 elseif strcmp (shape , ’h_2 ’) && mod(rc ,2) == 0
13 c = c+1;
14 r = r+1;
15 end
16 % edge length and dimensions
17 [a, l, h] = size_and_a_from_density (shape , d, c, r);
18 % junction volume
19 V = junction_volume (shape , choice_V , a, w);
20 % actual displacement from percentage of displacement
21 u_x = displacement (l, percentage_displacement);
22 %% Net
23 [N, pos , s, t, pairs] = generate_grid (shape ,a,r,c);
24 %% BC nodes
25 min_x=min(pos (1:2: end));
26 min_y=min(pos (2:2: end));
27 max_x=max(pos (1:2: end));
28 max_y=max(pos (2:2: end));
29 nodes_lhs = select_nodes (min_x , min_y , min_x , max_y , pos);
30 nodes_rhs = select_nodes (max_x , min_y , max_x , max_y , pos);
31 %% Elsasticity matrix
32 Edge_extension = - edge_extension (N, pos , s, t, k, w);
33 Angular_deviation = - angular_deviation (N, pos , pairs , kappa , V);
34 %%% possibly reinforcing KIII
35 % nodes_top = select_nodes (min_x , max_y , max_x , max_y , pos)

;
36 % nodes_bottom = select_nodes (min_x , min_y , max_x , min_y ,

pos);
37 % nodes_boarders = [nodes_top , nodes_bottom];
38 % Poisson_effect = - poisson_effect_different_eta (N, pos ,

pairs , eta , eta_boarders , gamma , w, [2* nodes_boarders -1]);
39 K = Edge_extension + Angular_deviation ; % + Poisson_effect
40 %% Displacement and force
41 [u ,force_x , ~, K_bc] = compute_F (K, u_x , N, nodes_lhs , nodes_rhs);
42 S = stiffness (u_x ,force_x ,l,h);
43 PR = poissons_ratio (l,h,u_x ,u);
44 Cond = condest (K_bc);
45 end

Input for random manipulation:

XXIII

D. Executive Programs

1 %% Input for random grid manipulation
2 % material : choose between (string , capital letter) ’Steel ’, ’Carbon

’ and ’Paper ’
3 material = ’Steel ’;
4 % number of rows and columns (int)
5 rc = 30;
6 % shapes : choose one or more of (string) ’q_1 ’, ’q_2 ’, ’t_1 ’, ’t_2

’, ’h_1 ’, ’h_2 ’
7 shapes = {’h_1 ’,’q_1 ’};
8 % density (int >0)
9 density = 25;

10 % percentage of original length how much right hand side should be
displaced (num > 0)

11 percentage_displacement = 10;
12 % kappa = factor_kappa *k
13 factor_kappa = 1;
14 % Junction volume approach : choose between 1 and 2
15 choice_V = 1;
16 % Kind of manipulation , choose between
17 % Random node displacement : ’Node_displacement ’
18 % Random removal of edges: ’Edge_removal ’
19 manipulation = ’Node_displacement ’;
20 % manipulation range: range for beta or the percentage of removed

edges
21 % in the thesis : [0.02:0.02:0.5] for ’Node_displacement ’
22 % and [0:0.001:0.03] for ’Edge_removal ’
23 manipulation_range = [0.1:0.1:0.5];
24 % iterations : number of samples per beta/ percentage
25 iterations = 10;
26

27 %% Calling the program rdn_manipulation for each shape
28 for shape = shapes
29 [S_av] = rdn_manipulation (material , rc , shape , density ,

percentage_displacement , choice_V , factor_kappa , manipulation ,
manipulation_range , iterations);

30 end

Program compare stiffness values at increasing random manipulation:
1 function [S_av] = rdn_manipulation (material , rc , shape , density ,

percentage_displacement , choice_V , factor_kappa , manipulation ,
manipulation_range , iterations)

2 %% Mechanical parameters
3 [k, w, A_c , kappa , D] = material_parameters (material , factor_kappa)

;
4 %% Stiffness of original grid
5 [S, ~, ~, ~] = compute_SPrCond (k, w, A_c , kappa , density , rc , shape

, percentage_displacement , choice_V);
6 %% Rows and columns
7 if strcmp (shape , ’t_2 ’) && mod(rc ,2) ~= 0
8 c = rc +1;
9 r = rc +1;

10 elseif strcmp (shape , ’h_2 ’) && mod(rc ,2) == 0
11 c = rc +1;
12 r = rc +1;
13 else

XXIV

D. Executive Programs

14 c = rc;
15 r = rc;
16 end
17 d = density ;
18 [a, l, h] = size_and_a_from_density (shape , d, c, r);
19 V = junction_volume (shape , choice_V , a, w);
20 u_x = displacement (l, percentage_displacement);
21 %% Network
22 [N, pos , s, t, pairs] = generate_grid (shape ,a,r,c);
23 %% BC nodes
24 min_x=min(pos (1:2: end));
25 min_y=min(pos (2:2: end));
26 max_x=max(pos (1:2: end));
27 max_y=max(pos (2:2: end));
28 nodes_lhs = select_nodes (min_x , min_y , min_x , max_y , pos);
29 nodes_rhs = select_nodes (max_x , min_y , max_x , max_y , pos);
30 %% Initialisation
31 S_av = [];
32 scatter_y =[];
33 %% Random manipulation
34 for beta = manipulation_range
35 beta
36 S_rdn = [];
37 if strcmp (manipulation , ’Node_displacement ’)
38 for i = 1: iterations
39 pos_rdn = random_displacement (pos , -beta*a, beta*a);
40 %% K
41 K = -edge_extension (N,pos_rdn ,s,t,k,w)-

angular_deviation (N, pos_rdn , pairs , kappa , V);
42 %% Displacement and force
43 [u,force_x , ~ ,~]= compute_F (K, u_x , N, nodes_lhs ,

nodes_rhs);
44 %% Stiffness
45 Stiffness_rdn = stiffness (u_x , force_x , l, h);
46 S_rdn = [S_rdn , Stiffness_rdn];
47 scatter_y = [scatter_y , Stiffness_rdn];
48 end
49 elseif strcmp (manipulation , ’Edge_removal ’)
50 unconnected_networks = 0;
51 i = 1;
52 while i <= iterations
53 [s_rdn , t_rdn , pairs_rdn] = random_edge_removal (beta , s

, t, pairs);
54 %% Test if connected
55 if TestConnected (N,s_rdn ,t_rdn) == false
56 unconnected_networks = unconnected_networks +1;
57 else
58 %% K
59 K = -edge_extension (N,pos ,s_rdn ,t_rdn ,k,w)-

angular_deviation (N, pos , pairs_rdn , kappa , V);
60 %% Displacement and force
61 [u,force_x , ~ ,~]= compute_F (K, u_x , N, nodes_lhs ,

nodes_rhs);
62 %% Stiffness
63 Stiffness_rdn = stiffness (u_x , force_x , l, h);
64 S_rdn = [S_rdn , Stiffness_rdn];

XXV

D. Executive Programs

65 scatter_y = [scatter_y , Stiffness_rdn];
66 i=i+1
67 end
68 end
69 end
70 average_stiffness = mean(S_rdn);
71 S_av = [S_av , average_stiffness];
72 end
73 scatter_x = repmat (manipulation_range , iterations , 1);
74 scatter_x = reshape (scatter_x , 1, iterations *size(

manipulation_range ,2));
75 %% Plot
76 x = manipulation_range ;
77 y = zeros (1, size(manipulation_range ,2))+S;
78 figure ()
79 plot(x,y,’g-’,’Linewidth ’ ,1)
80 hold on
81 sz =10;
82 scatter (scatter_x ,scatter_y , sz , ’filled ’, ’MarkerFaceColor ’, ’c’,

’MarkerEdgeColor ’, ’b’)
83 plot(x,S_av , ’ro --’, ’MarkerFaceColor ’, ’red ’, ’Markersize ’, 5)
84 % labels
85 if strcmp (manipulation , ’Node_displacement ’)
86 xlabel (’Range of displacement ’)
87 ylabel (’Stiffness ’)
88 title ({" Shape: "+ shape; "r = c = "+r; " Displacement : "+ u_x })
89 legend (’Original stiffness ’, ’Stiffness of manipulated grids ’,

’Average stiffness of manipulated grids ’,’Location ’ ,’SouthWest ’
)

90 hold off
91 elseif strcmp (manipulation , ’Edge_removal ’)
92 xlabel (’Percentage of removed edges ’)
93 ylabel (’Stiffness ’)
94 title ({" Shape: "+ shape; "r = c = "+r; " Displacement : "+ u_x })
95 legend (’Original stiffness ’, ’Stiffness of manipulated grids ’,

’Average stiffness of manipulated grids ’,’Location ’ ,’SouthWest ’
)

96 hold off
97 end

Program to generate a network with randomly displaced nodes at fixed β:
1 function [pos_rdn]= random_displacement (pos , scope_min , scope_max);
2 p = size(pos ,2);
3 % vector of rdn numbers within chosen scope
4 r = (scope_max - scope_min).* rand (1,p) + scope_min ;
5 % randomly manipulated position vector
6 pos_rdn = pos + r;

Program to generate a network with randomly removed edges at fixed percentage:
1 function [s_new , t_new , pairs_new]= random_edge_removal (percentage ,

s, t, pairs)
2 central_nodes = pairs (: ,2);
3 m = size(s ,2);

XXVI

D. Executive Programs

4 % integer number of edges to remove
5 nr_remove_edges = round(percentage *m);
6 % random indices of edges that will be removed
7 r = randi ([1 m], nr_remove_edges , 1);
8 % keeping track of vanishing edge pairs by removing edges:
9 % search for any edge pair which contains the edge r(i)

10 % with endnodes s(r(i)) and t(r(i))
11 edge_pairs_to_remove =[];
12 for i = 1: nr_remove_edges
13 remove_edge = r(i);
14 for j = 1: size(central_nodes ,1)
15 if central_nodes (j) == s(remove_edge) && (pairs(j ,1) == t(

remove_edge) | pairs(j ,3) ==t(remove_edge))
16 edge_pairs_to_remove = [edge_pairs_to_remove ,j];
17 end
18 if central_nodes (j) == t(remove_edge) && (pairs(j ,1) == s(

remove_edge) | pairs(j ,3) ==s(remove_edge))
19 edge_pairs_to_remove = [edge_pairs_to_remove ,j];
20 end
21 end
22 end
23 %% removing edge pairs
24 pairs(edge_pairs_to_remove ,:) =[];
25 pairs_new =pairs;
26 %% removing edges
27 s(r)=[];
28 t(r)=[];
29 s_new=s;
30 t_new=t;

Test whether the network with removed edges is still connected:
1 function B = TestConnected (N,s,t)
2 i=1;
3 while i<=N
4 if any(s==i) || any(t==i)
5 i=i+1;
6 if i == N
7 B = true;
8 end
9 else

10 B = false;
11 break
12 end
13 end
14 end

XXVII

DEPARTMENT OF MATHEMATICAL SCIENCES
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden
www.gu.se

www.gu.se

	List of Figures
	List of Tables
	Introduction
	Basic Model
	Outline

	Background
	Mechanical Definitions
	Stress and Strain
	Hooke's Law
	Poisson's Ratio
	Density and Stiffness
	Beam Theory
	Junction Volume

	Elasticity Matrix Assembly
	Single Unconnected Rods
	Connected Networks
	Edge Extension
	Angular Deviation
	Poisson Effect

	Computation of the Stiffness of a Network

	Fiber Networks
	Network Patterns
	Quadratic Grids
	Triangular Grids
	Hexagonal Grids

	Base Unit Calculations
	One Quadratic Grid
	The Triangular Grids
	Triangular Shape t1
	Triangular Shape t2

	Results

	Choice of Parameters

	Results
	Density-Stiffness Analysis
	Variation of Junction Volume Vijl
	Variation of Bending Parameter
	Variation of Material: Carbon and Paper

	Poisson's Ratio
	Random Manipulation of Regular Grids
	Node Displacement
	Edge Removal

	Conclusion & Outlook
	Source Code for Matrix Assembly
	Source Code to Generate Grids
	Source Code to Compute Mechanical Entities
	Executive Programs

