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Abstract

In this thesis we study numerical methods for evolution problems in multi-
physics. The term multiphysics is commonly used to describe physical phenom-
ena that involve several interacting models. Typically, such problems result in
coupled systems of partial differential equations.

This thesis is essentially divided into two parts, which address two different
topics with applications in multiphysics. The first topic is numerical analysis
for multiscale problems, with a particular focus on heterogeneous materials, like
composites. For classical finite element methods such problems are known to
be numerically challenging, due to the rapid variations in the data.

One of our main goals is to develop a numerical method for the thermoelastic
system with multiscale coefficients. The method we propose is based on the
localized orthogonal decomposition (LOD) technique introduced in [17]. This
is performed in three steps, first we extend the LOD framework to parabolic
problems (Paper I) and then to linear elasticity equations (Paper II). Using
the theory developed in these two papers we address the thermoelastic system
(Paper III).

In addition, we aim to extend the LOD framework to differential Riccati
equations where the state equation is governed by a multiscale operator. The
numerical solution of such problems involves solving many parabolic equations
with multiscale coefficients. Hence, by applying the method developed in Paper
I to Riccati equations the computational gain may be significantly large. In this
thesis we show that this is indeed the case (Paper IV).

The second part of this thesis is devoted to the Joule heating problem,
a coupled nonlinear system describing the temperature and electric current in
a material. Analyzing this system turns out to be difficult due to the low
regularity of the nonlinear term. We overcome this issue by introducing a new
variational formulation based on a cut-off functional. Using this formulation,
we prove (Paper V) strong convergence of a large class of finite element methods
for the Joule heating problem with mixed boundary conditions on nonsmooth
domains in three dimensions.

Keywords: Thermoelasticity, parabolic equations, linear elasticity, Riccati
equations, multiscale, generalized finite element, localized orthogonal decompo-
sition, Joule heating, thermistor, finite element method, regularity.
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Part 1

Introduction





CHAPTER 1

Multiscale methods

1.1. Background

In many applications it is of great importance to understand how different
materials interact and respond to external forces and temperature changes. For
instance, it may be crucial when designing parts for aircrafts or when construct-
ing a bridge.

In this thesis we study numerical solutions to partial differential equations
(PDEs) describing displacement and temperature changes in materials over
time. In particular, we are interested in applications where the material under
consideration is strongly heterogeneous, e.g. composites. Composite materials
are constructed using two or more different constituents with different physical
properties. Typically, the material properties vary on a very fine scale, as in,
for instance, fiber reinforced materials. Modeling physical behavior in these
materials results in equations with highly varying and oscillating coefficients.
Such problems, that exhibit a lot of variations in the data, often on multiple
scales, are commonly referred to as multiscale problems.

One of the most common methods to obtain numerical solutions to PDEs
is the finite element method (FEM) based on continuous piecewise polynomials.
These methods work well for homogeneous media or media that are not varying
too much in space. However, for highly varying media, like composite materials,
the classical FEMs struggle to approximate the solution accurately unless the
mesh width is sufficiently small. Indeed, the mesh width must be small enough
to resolve all the fine variations in the data. In practice, this leads to issues
with computational cost and available memory.

Today’s increasing interest in, and usage of, composite materials thus pose a
demand for other types of numerical methods. Several such methods have been
proposed over the last two decades, see, for instance, [12, 8, 3, 13]. However,
the analysis of many of these methods requires restrictive assumptions on the
data, such as periodicity or separation of scales.

In [17] a generalized finite element method (GFEM), cf. [4], is proposed
and analyzed. Convergence of the method is proven for an arbitrary positive
and bounded coefficient, that is, no assumptions on periodicity or separation
of scales are needed. The method is often referred to as localized orthogonal
decomposition (LOD).
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Multiscale methods

The purpose of this thesis is to generalize the method proposed in [17] to
solve time dependent PDEs, with highly varying and oscillating coefficients.
The main focus is on equations describing temperature and displacement in
materials.

In Paper I we extend the method to parabolic problems which can be used
to model the evolution of the temperature in a material over time. In Paper II
we consider (stationary) linear elasticity equations describing the displacement
in an elastic body. In Paper III we combine the results in Paper I and Paper II
to address the thermoelastic system, a coupled multiphysics system modeling
the interaction between temperature and displacement in a material. Finally, in
Paper IV we consider differential Riccati equations (DREs) used to solve linear
quadratic regulator (LQR) problems. The LQR problem can, for instance, be
used to model problems where the temperature in a material is subject to a
control input. In all four papers we prove convergence of optimal order, except
for a logarithmic factor in the Riccati case, for highly varying coefficients and
we provide several numerical examples that confirm the analysis.

In the upcoming section we provide some background on the thermoelastic
system and the Riccati equation and define their respective variational formu-
lations. In Section 1.3 the issue with applying the classical FEM to multiscale
problems is described in more detail. In Section 1.4 we introduce the GFEM
proposed in [17] for elliptic equations and discuss the main idea behind the ex-
tension to linear thermoelasticity and Riccati equations. Finally, in Section 1.5
we summarize the appended papers and highlight the main results.

1.2. General setting and notation

Throughout this chapter Ω denotes a domain in Rd, for d = 1, 2, or 3.
We use (·, ·) to denote the inner product in L2(Ω) and ‖ · ‖ the corresponding
norm. Let H1(Ω) := W 1

2 (Ω) denote the classical Sobolev space with norm
‖v‖2H1(Ω) = ‖v‖2 + ‖∇v‖2 and let H1

0 (Ω) denote the functions in H1(Ω) that

vanish on the boundary ∂Ω. We also use the notation H−1(Ω) to denote the
dual space to H1

0 (Ω). We refer to [2] for further details on Sobolev spaces.
Furthermore, let Lp([0, T ];X) denote the Bochner space with norm

‖v‖Lp([0,T ];X) =
(∫ T

0

‖v‖pX dt
)1/p

, 1 ≤ p <∞,

‖v‖L∞([0,T ];X) = ess sup
0≤t≤T

‖v‖X ,

where X is a Banach space equipped with the norm ‖ · ‖X . The dependence
on the interval [0, T ] and the domain Ω is frequently suppressed and we write,
for instance, L2(L2) for L2([0, T ];L2(Ω)). We also use the double-dot product
notation to denote the Frobenius inner product of two matrices A and B

A : B =

d∑
i,j=1

AijBij , A,B ∈ Rd×d.
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General setting and notation

Finally, we use L(X,Y ) to denote the space of linear bounded operators
from a Hilbert space X to another Hilbert space Y . The notation ‖ · ‖L(X,Y )

denotes the corresponding operator norm.

1.2.1. Linear thermoelasticity. Linear thermoelasticity refers to a cou-
pled system of PDEs describing the displacement and temperature of an elastic
body, see [6, 7]. To introduce the mathematical formulation of this system we
let Ω describe the initial configuration of an elastic medium. For a given simu-
lation time T > 0, we let the vector valued function u : [0, T ]×Ω→ Rd denote
the displacement field and θ : [0, T ]×Ω→ R denote the temperature. To define
boundary conditions for u we let ΓuD and ΓuN be two disjoint parts of the bound-
ary such that ΓuD ∪ ΓuN = ∂Ω, where ∂Ω denotes the boundary of Ω. On the
part denoted ΓuD we impose Dirichlet boundary conditions corresponding to a
clamped part of the material. On ΓuN , corresponding to the traction boundary,
we impose Neumann boundary conditions. Similarly, we define ΓθD and ΓθN to
be the drained and flux part of the boundary for the temperature θ.

Under the assumption that the displacement gradients are small, the strain
tensor is given by the following linear relation

ε(u) =
1

2
(∇u+∇uᵀ).

For isotropic materials, the total stress tensor is given by

σ̄ = 2µε(u) + λ(∇ · u)I − αθI,

where I is the d-dimensional identity matrix and α is the thermal expansion
coefficient. The first part of σ̄, involving u, represents the mechanical stress and
the second part, involving θ, represents the thermal stress.

Furthermore, µ and λ denote the Lamé coefficients satisfying

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
,

where ν denotes Poisson’s ratio and E denotes Young’s elastic modulus. Pois-
son’s ratio is a measure on the materials tendency to shrink (expand) when
stretched (compressed) and Young’s modulus describes the stiffness of the ma-
terial. The coefficients α, λ, and µ, are all material dependent and thus rapidly
varying in space for strongly heterogeneous (multiscale) materials.

Cauchy’s equilibrium equations states that

−∇ · σ̄ = f,

where f : Ω→ Rd denotes the external body forces. Furthermore, the temper-
ature in the material can be described by the parabolic equation

θ̇ −∇ · κ∇θ + α∇ · u̇ = g,

where κ : Ω→ Rd×d is the heat conductivity parameter and g denotes internal
heat sources. The term α∇ · u̇ corresponds to the internal heating due to the
dilation rate. Note that also κ is material dependent and thus rapidly varying.
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Multiscale methods

To summarize, the linear thermoelastic system is given by the following system
of equations

−∇ · (2µε(u) + λ∇ · uI − αθI) = f, in (0, T ]× Ω,(1.2.1a)

θ̇ −∇ · κ∇θ + α∇ · u̇ = g, in (0, T ]× Ω,(1.2.1b)

u = 0, on (0, T ]× ΓuD,(1.2.1c)

σ̄ · n = 0, on (0, T ]× ΓuN .(1.2.1d)

θ = 0, on (0, T ]× ΓθD,(1.2.1e)

κ∇θ · n = 0, on (0, T ]× ΓθN .(1.2.1f)

θ(0) = θ0, in Ω,(1.2.1g)

where we for simplicity assume homogeneous boundary conditions. Note that
the equations (1.2.1a)-(1.2.1b) are coupled. In [19] a comprehensive review of
the literature on this system, and similar versions of it, is given.

Remark 1.2.1. The system (1.2.1) is formally equivalent to a linear model
for poroelasticity, see, e.g., [19, 22, 3]. In this case θ denotes the fluid pres-
sure, κ the hydraulic conductivity, and α the Biot-Willis coupling-deformation
coefficient. Hence, the results in this thesis also apply to the linear poroelastic
system.

To define a FEM (and a GFEM) for (1.2.1) we define the corresponding
variational (or weak) formulation. For this purpose define the following spaces

V 1 := {v ∈ (H1(Ω))d : v = 0 on ΓuD}, V 2 := {v ∈ H1(Ω) : v = 0 on ΓθD}.

Multiplying (1.2.1a) with v1 ∈ V 1 and (1.2.1b) with v2 ∈ V 2 and using Green’s
formula together with the boundary conditions (1.2.1c)-(1.2.1f) we arrive at the
following variational formulation; find u(t, ·) ∈ V 1 and θ(t, ·) ∈ V 2 such that,
for a. e. t > 0,

(σ(u) : ε(v1))− (αθ,∇ · v1) = (f, v1), ∀v1 ∈ V 1,(1.2.2)

(θ̇, v2) + (κ∇θ,∇v2) + (α∇ · u̇, v2) = (g, v2), ∀v2 ∈ V 2,(1.2.3)

and the initial value θ(0, ·) = θ0 is satisfied. Here σ(u) := 2µε(u) + λ∇ · uI is
the first (mechanical) part of σ̄ involving only the displacement u.

Two functions u and θ are weak solutions if (1.2.2)-(1.2.3) are satisfied and

u ∈ L2(V 1), ∇ · u̇ ∈ L2(H−1), θ ∈ L2(V 2), and θ̇ ∈ L2(H−1). Existence and
uniqueness of such weak solutions are proved in, e.g., [22, 21], and in [19] within
the framework of linear degenerate evolution equations in Hilbert spaces. In
[19] it is also proved that the system is of parabolic type, meaning that it is
well posed for nonsmooth initial data with regularity estimates depending on
negative powers of t.

1.2.2. Riccati equations. Differential Riccati equations (DREs) typi-
cally arise when solving linear quadratic regulator (LQR) problems. The LQR
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problem is a common problem in optimal control theory and has a wide range
of applications.

In LQR problems, the goal is to control the output y given a state x of a
system whose evolution may be influenced through the input u. The relation
between these quantities is given by the state and output equations

ẋ = Ax+ Bu, x(0) = x0,(1.2.4)

y = Cx,(1.2.5)

where A, B, and C are given operators. The output y denotes a measurable
quantity, specified by C, of the system. The goal is to minimize the following
cost functional

J(u) =

∫ T

0

(Qy, y) + (Ru, u) dt+ (Gy(T ), y(T )),(1.2.6)

where Q, R, and G, are given weighting operators. The first term in (1.2.6)
penalizes the output, the second term penalizes the control effort, and the third
term penalizes the final state of the output. It can be proved (see e.g. [1], [16])
that the optimal input u∗ is given by u∗ = −R−1B∗X(T−t)x(t) where X solves
the operator-valued DRE

Ẋ(t) = A∗X(t) +X(t)A+ C∗QC −X(t)BR−1B∗X(t),(1.2.7)

X(0) = G.(1.2.8)

In the context of materials, the input may correspond to a heat source
applied to (parts of) the domain or the boundary and the output a measurable
quantity, like the average of the temperature. In multiscale applications it is
typically the operator A that exhibits multiscale features. This is the case if the
state equation x models physical behavior in a heterogeneous material, such as
a composite.

Let V = H1
0 (Ω) and define the domain of A by D(A) = {u ∈ V |Au ∈ L2}.

In Paper IV we consider settings where the operator A : D(A)→ L2 is given by
(Au, v) = −a(u, v) and a(u, v) =

∫
κ∇u ·∇v. Here κ may describe, for instance,

the conductivity of a composite material.
Furthermore, we let U and Z denote the control and observation space,

respectively, such that B : U → L2, C : L2 → Z, Q : Z → Z, R : U → U , and
for the final state operator G : L2 → L2. The notation (·, ·)U and (·, ·)Z are
used for the corresponding inner products. In this notation, the weak form of
(1.2.7)-(1.2.8) is to find X ∈ L(L2, L2) such that

(1.2.9)
(
Ẋx, y

)
= (Xx,Ay)+(Xy,Ax)+(QCx, Cy)Z−

(
R−1B∗Xx,B∗Xy

)
U
,

for all x, y ∈ D(A).
If A generates a strongly continuous semigroup etA on L2 and the involved

operators are bounded, then there exists a unique solution to (1.2.9), see [5,
Part IV, Ch. 1, Theorem 2.1]. In addition, the solution X is self-adjoint. If A
generates an analytic semigroup etA on L2, as in Paper IV, then X is also a
solution in a classical sense, see [5, Part IV, Ch. 1, Theorem 3.1]. In particular,
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Multiscale methods

this means that A∗X + XA is a well defined operator in L(L2, L2) and X
satisfies (1.2.7)-(1.2.8).

1.3. Classical finite element

In this section we explain more carefully why the classical FEM fails to
approximate the solution to problems with rapidly varying data. To simplify
the discussion we start by considering elliptic equations of Poisson type.

1.3.1. Elliptic equations. Consider the elliptic equation

−∇ ·A∇u = f, in Ω,

u = 0, on ∂Ω,

with the variational formulation; find u ∈ V , such that

a(u, v) = (f, v), ∀v ∈ V,(1.3.1)

where V = H1
0 (Ω) and a(u, v) := (A∇u,∇v). Here the diffusion coefficient

A : Ω → Rd×d is assumed to be rapidly oscillating. We also assume that A is
symmetric and bounded such that α‖v‖2H1 ≤ a(v, v) ≤ β‖v‖2H1 , ∀v ∈ V , for
some positive constants α, β. In particular, this means that a(·, ·) defines an
inner product on V .

To define a FEM we need a triangulation of the domain. Let {Th}h>0 be a
family triangulations of Ω with the mesh size hK := diam(K), for K ∈ Th and
denote the largest diameter in the triangulation by h := maxK∈Th hK . Now
let Vh ⊆ V denote the space of continuous piecewise affine functions on the
triangulation Th. The finite element formulation then reads; find uh ∈ Vh, such
that,

a(uh, v) = (f, v), ∀v ∈ Vh.(1.3.2)

Classical a priori error analysis gives the bound

‖uh − u‖H1 ≤ Ch‖D2u‖,(1.3.3)

where D2u denotes the second order (weak) derivatives of u. Not only does this
bound require additional regularity of the solution, the norm ‖D2u‖ may also
be very large if A is rapidly oscillating. Indeed, if A varies with frequency ε−1

for some ε > 0, then, typically, ‖D2u‖ ∼ ε−1 and we need h < ε in (1.3.3) to
obtain accurate approximations.

To illustrate this, consider the following one-dimensional problem, suggested
in [18], where Ω = [0, 1], A = (2 − cos(2πxε−1))−1, and f = 1, in (1.3.1). The
solution is given by

u = 4(x− x2)− ε

2π

(
1

2
sin(2πxε−1)− x sin(2πxε−1)− ε

2π
cos(2πxε−1) +

ε

2π

)
.

Differentiating twice with respect to x gives |u′′| ∼ ε−1.
For ε = 2−5, the true solution and the corresponding FEM solutions for

different mesh sizes are plotted in Figure 1 (left). We clearly see that the
FEM approximations struggle to approximate u for coarse mesh sizes. The
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Classical finite element

convergence plot in Figure 1 (right) shows that convergence does not take place
until h resolves the data, that is, when h ≤ ε.
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Figure 1. FEM approximations (left) with relative errors in
theH1-norm (right) of a 1D-problem with rapidly varying data.

1.3.2. Parabolic equations. Consider a parabolic problem on the fol-
lowing weak form; find u(t) ∈ V , such that, u(0) = u0 and

(u̇, v) + a(u, v) = (f, v), ∀v ∈ V,(1.3.4)

where a(u, v) = (A∇u,∇v) as in the elliptic equation (1.3.1). The diffusion
coefficient A : Ω→ Rd×d is assumed to not depend on time.

Let {Th}h>0 and Vh denote the same triangulation and finite element space
as in Subsection 1.3.1. Furthermore, let 0 = t0 < t1 < ... < tN = T be a uniform
discretization of the time interval such that tj − tj−1 = τ > 0 for j = 1, ..., N .

The classical FEM for (1.3.4) with a backward (implicit) Euler discretization
in time reads; for n ∈ {1, ..., N} find unh ∈ Vh, such that, u0

h = uh,0

(∂̄tu
n
h, v) + a(unh, v) = (fn, v), ∀v ∈ Vh,(1.3.5)

where ∂̄tu
n
h := (unh − u

n−1
h )/τ and uh,0 is a suitable approximation of u0. The

right hand side is evaluated at time tn, that is, fn := f(tn). It is well known,
see, e.g., [20], that the following error estimate holds for the parabolic equation

‖unh − u(tn)‖H1 ≤ Cεh+ Cτ,

where Cε is a constant depending on, among other terms, ‖u(tn)‖H2 and may
thus be of size ε−1 if A varies on scale of size ε, see Section 1.3.1. Hence,
parabolic problems suffer from the same issues as elliptic problems when using
classical finite element.
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Multiscale methods

1.3.3. Linear thermoelasticity. As in the previous sections we define
a family of triangulations {Th}h>0 and we let V 1

h ⊆ V 1 and V 2
h ⊆ V 2 denote

finite element spaces consisting of continuous piecewise affine functions on this
triangulation.

The classical FEM with a backward Euler discretization in time for (1.2.2)-
(1.2.3) reads; for n ∈ {1, ..., N} find unh ∈ V 1

h and θnh ∈ V 2
h , such that

(σ(unh) : ε(v1))− (αθnh ,∇ · v1) = (fn, v1), ∀v1 ∈ V 1
h ,(1.3.6)

(∂̄tθ
n
h , v2) + (κ∇θnh ,∇v2) + (α∇ · ∂̄tunh, v2) = (gn, v2), ∀v2 ∈ V 2

h ,(1.3.7)

with the notation and time discretization as in Section 1.3.2. Here u0
h = uh,0

and θ0
h = θh,0, where uh,0 ∈ V 1

h and θh,0 ∈ V 2
h denote suitable approximations

of the initial conditions.
A priori analysis for the system (1.3.6)-(1.3.7) can be found in [10]. It

follows that the error is bounded by

‖unh − un‖H1 + ‖θnh − θn‖+

( n∑
j=1

τ‖θjh − θ
j‖2H1

)1/2

≤ Cεh+ Cτ,

where the constant Cε depends on both ‖u(tn)‖H2 and ‖θ(tn)‖H2 . By arguments
similar to the ones used for the elliptic equation in Section 1.3.1, we typically
get ‖u(tn)‖H2 ∼ ε−1 and ‖θ(tn)‖H2 ∼ ε−1, if the material has variations on a
scale of size ε.

1.3.4. Riccati equations. For this equation we also consider a family of
triangulations {Th}h>0 and let Vh ⊆ V denote a finite element space consisting
of continuous piecewise linear functions on this triangulation. Furthermore, we
let Ah : Vh → Vh, Bh : U → Vh, and Ch : Vh → Z, be discretized versions of the
operators A, B, and C, defined by

(Ahx, y) = (Ax, y) , (Bhu, y) = (Bu, y) , and (Chx, z)Z = (Cx, z)Z
for all x, y ∈ Vh, u ∈ U and z ∈ Z.

We can now define the semidiscrete FEM of (1.2.9); find Xh : Vh → Vh
such that (

Ẋhx, y
)

= (Xhx,Ahy) + (Xhy,Ahx) + (Chx, Chy)Z(1.3.8)

−
(
R−1B∗hXhx,B∗hXhy

)
U
,

for all x, y ∈ Vh, where Xh(0) is some suitable initial condition.
Let Idh : Vh → L2 be the identity operator from Vh into L2. Note that its

adjoint Id∗h : L2 → Vh is the L2-orthogonal projection of L2 onto Vh. In [14] the
following error bound is proved for the semidiscrete approximation

‖X −Xh Id∗h ‖L(L2,L2) ≤ Cεh2(log h−1 + t−1),(1.3.9)

under the assumption that X(0) ∈ L(L2, L2). The constant Cε involves ε−2,
because the error depends on the error for the parabolic equation, cf. Subsec-
tion 1.3.2. In the L2-norm we generally get ε−2 in the error and since we also
get a factor h2 this leads to the same condition for convergence; h < ε.

10



A generalized finite element method

1.4. A generalized finite element method

In [17] a GFEM, often referred to as localized orthogonal decomposition
(LOD), is proposed and analyzed for elliptic equations of the form (1.3.1). In
Section 1.4.1 below we describe this method and the main ideas used in the
analysis. We then discuss how to extend this framework to parabolic equations.
Finally, we describe how this method can be generalized to define a GFEM for
linear thermoelasticity and Riccati equations.

1.4.1. Elliptic equations. The method proposed in [17] builds on the
ideas from the variational multiscale method [13, 15], where the solution space
is decomposed to into a coarse and a fine part. In [17] the nodal basis functions
in the coarse space is then modified by adding a correction from the fine space.

We begin by assuming that the mesh size h used in the classical FEM in
(1.3.2) is fix and sufficiently small, that is h < ε, such that the error (1.3.3)
is small. In this case, the solution uh and the space Vh are referred to as the
reference solution and the reference space, respectively. Now define VH similarly
to Vh, but with a larger mesh size H > h, such that VH ⊆ Vh. Note that the
classical FEM solution uH in the coarse space VH is not a good approximation
to u. It is, however, cheaper to compute than uh since dim(VH) < dim(Vh).
The aim is now to define a new multiscale space Vms with the same dimension
as the coarse space VH , but with better approximations properties.

To define such a space, we need a (quasi-)interpolation operator IH : Vh →
VH with the properties IH ◦ IH = IH and for K ∈ TH

H−1
K ‖v − IHv‖L2(K) + ‖∇IHv‖L2(K) ≤ CI‖∇v‖L2(ωK), v ∈ Vh,(1.4.1)

where ωK := ∪{K̂ ∈ TH : K̂ ∩K 6= ∅}. For a quasi-uniform mesh, the bounds
in (1.4.1) can be summed to achieve a global bound

H−1‖v − IHv‖+ ‖∇IHv‖ ≤ C‖∇v‖,(1.4.2)

There are many interpolation operators that satisfy these conditions. In Paper
II and Paper III we use an interpolation of the form IH = EH ◦ΠH , where ΠH

is the L2-projection onto P1(TH), the space of functions that are affine on each
triangle K ∈ TH and EH : P1(TH)→ VH is an averaging operator. We refer to
[18, 9] for further details and other possible choices of IH .

Now let Vf denote the kernel to the operator IH

Vf := ker IH = {v ∈ Vh : IHv = 0}.
The space Vh can be decomposed as Vh = VH ⊕ Vf , meaning that vh ∈ Vh can
be decomposed into

vh = vH + vf , vH ∈ VH , vf ∈ Vf .(1.4.3)

The kernel Vf is a fine scale (detail) space in the sense that it captures all
features that are not captured by the coarse space VH . Let Rf : Vh → Vf denote
the Ritz projection onto Vf , that is,

a(Rfv, w) = a(v, w), ∀w ∈ Vf , v ∈ Vh.(1.4.4)

11
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Because of the decomposition (1.4.3) we have the identity

vh −Rfvh = vH + vf −Rf(vH + vf) = vH −RfvH ,

since vf ∈ Vf . Using this we can define the multiscale space Vms

Vms := Vh −RfVh = VH −RfVH .(1.4.5)

Note that Vms is the orthogonal complement to Vf with respect to the inner
product a(·, ·) and must have the same dimension as VH . Indeed, with N
denoting the inner nodes in TH and λz the basis function at node z, a basis for
Vms is given by

{z ∈ N : λz −Rfλz}.
Hence, the basis functions are the classical nodal basis functions modified by
corrections Rfλz computed in the fine scale space. Note that the correction
Rfλz depends on the choice of interpolation IH . A different choice leads to a
different method, since the space Vms changes.

Replacing Vh with Vms in (1.3.2) we can now define the GFEM; find ums ∈
Vms, such that,

a(ums, v) = (f, v), ∀v ∈ Vms.(1.4.6)

The following theorem gives an a priori bound for the GFEM and can be found
in [17]. We include the proof here since it is short and highlights the main ideas
used in the analysis.

Theorem 1.4.1. Let uh be the solution to (1.3.2) and ums the solution to
(1.4.6). Then

‖ums − uh‖H1 ≤ CH‖f‖,
where C does not depend on the derivatives of A.

Proof. Define e := ums − uh and note that e ∈ Vf . Hence, IHe = 0.
Furthermore we have due to Galerkin orthogonality a(e, vms) = 0 for vms ∈ Vms.
Using this together with the interpolation bound (1.4.2) we have

a(e, e) = −a(e, uh) = −(f, e) ≤ ‖f‖‖e‖ = ‖f‖‖e− IHe‖ ≤ CH‖f‖‖∇e‖,

and the bound follows by using equivalence of the energy norm induced by a(·, ·)
and the H1-norm. �

From Theorem 1.4.1 we have that the solution given by the GFEM converges
to uh, with optimal order, independently of the derivatives (variations) of A.
We emphasize that the total error is bounded by

‖ums − u‖H1 ≤ ‖ums − uh‖H1 + ‖uh − u‖H1 ,

where the error in the second term is due to the classical FEM and assumed to
be of reasonable size, since h is assumed to be sufficiently small.

Although the a priori analysis seems promising, the GFEM as suggested
above suffers from some drawbacks. The problem of finding the corrections
Rfλz, which are needed to construct the basis, are posed in the entire fine scale

12
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space Vf which has high dimension (of the same order as Vh). Furthermore,
the corrections generally have global support, which reduces the sparsity of the
resulting discrete system. Both issues are resolved by performing a localization
of the corrections. The localization is motivated by the observation that the
correction Rfλz decays exponentially away from node z.

1.4.2. Localization. In [17] it is proved that the corrections decay expo-
nentially and a localization procedure is proposed. However, in [11] a different
localization technique is proposed which allows for smaller patches to be used.
We describe the procedure in [11] here, which is also the procedure that is used
in the appended papers.

We define patches of size k in the following way; for K ∈ TH
ω0(K) := int K,

ωk(K) := int
(
∪ {K̂ ∈ TH : K̂ ∩ ωk−1(K) 6= ∅}

)
, k = 1, 2, ...,

and let Vf(ωk(K)) := {v ∈ Vf : v(z) = 0 on Ω \ ωk(K)} be the restriction of Vf

to the patch ωk(K).
We proceed by noting that Rf in (1.4.4) can be written as the sum

Rf =
∑
K∈TH

RKf ,

where RKf : Vh → Vf fulfills

a(RKf v, w) = a(v, w)K , ∀w ∈ Vf , v ∈ Vh, K ∈ TH ,(1.4.7)

where we define

a(v, w)K := (A∇v,∇w)L2(K), K ∈ TH .

The aim is to localize these computations by replacing Vf with Vf(ωk(K)). De-
fine RKf,k : Vh → Vf(ωk(K)) such that

a(RKf,kv, w) = a(v, w)K , ∀w ∈ Vf(ωk(K)), v ∈ Vh, K ∈ TH ,

and set Rf,k :=
∑
K∈TH R

K
f,k. We can now define the localized multiscale space

Vms,k = {vH −Rf,kvH : vH ∈ VH}.(1.4.8)

By replacing Vms with Vms,k in (1.4.6) a localized GFEM can be defined; find
ums,k ∈ Vms,k such that

a(ums,k, v) = (f, v), ∀v ∈ Vms,k.(1.4.9)

Since the dimension of Vf(ωk(K)) can be made significantly smaller than
the dimension of Vf (depending on k), the problem of finding Rf,kλz is compu-
tationally cheaper than finding Rfλz. Moreover, the resulting discrete system
is sparse. It should also be noted that the computation of Rf,kλz for all nodes
z is suitable for parallelization, since they are independent of each other.

The convergence of the method (1.4.9) depends on the size of the patches.
In [17, 11] the following theorem is proved.
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Theorem 1.4.2. Let uh be the solution to (1.3.2) and ums,k the solution to
(1.4.9). Then there exists ξ ∈ (0, 1) such that

‖ums,k − uh‖H1 ≤ C(H + kd/2ξk)‖f‖,
where C does not depend on the derivatives of A.

To achieve linear convergence k should be chosen proportional to logH−1,
that is, k = c logH−1, for some constant c.

1.4.3. Parabolic equations. A natural first step in generalizing the
GFEM to linear thermoelasticity and Riccati equations, is to first extend it
to a time dependent problem of parabolic type. Recall that the thermoelastic
system (1.2.2)-(1.2.3) is parabolic [19]. This is the subject of Paper I.

For this purpose, we first study the error analysis for the classical finite
element method. The error is usually split into the two parts

unh − u(tn) = unh −Rhu(tn) +Rhu(tn)− u(tn) =: θn + ρn,

where Rh : V → Vh is the Ritz projection given by

a(Rhv, w) = a(v, w), ∀w ∈ Vh, v ∈ V.
The error of the Ritz projection is given by the analysis of the elliptic problem

‖Rhv − v‖H1 ≤ Ch‖D2v‖.(1.4.10)

This directly gives the error of ρn. Indeed, ‖ρn‖H1 ≤ Ch‖D2u(tn)‖, where
‖D2u(tn)‖ ≤ Cε‖∇·A∇u(tn)‖ = Cε‖fn− u̇(tn)‖ and Cε depends on the deriva-
tives of A. Furthermore, to bound ‖θn‖H1 we put θn into (1.3.5), which gives

(∂̄tθ
n, v) + a(θn, v) = −((Rh − I)∂̄tu(tn) + (∂̄tu(tn)− u̇(tn)), v)

=: −(∂̄tρ
n + ω, v),

where the error of ∂̄tρ
n follows from (1.4.10). The error of ω only depends on

the time discretization and follows from Taylor’s formula. In order to bound θn

in the H1-norm we can choose v = ∂̄tθ
n. The key observation from this analysis

is that the error depends (apart from ω) on the Ritz projection onto the FEM
space Vh, which is given by the error of the elliptic equation.

Motivated by this, we propose the following GFEM for the parabolic prob-
lem, where the space Vh in (1.3.5) is simply replaced by the multiscale space
Vms defined in Section 1.4.1; for n ∈ {1, ..., N} find unms ∈ Vms, such that,
u0

ms = ums,0

(∂̄tu
n
ms, v) + a(unms, v) = (fn, v), ∀v ∈ Vms,(1.4.11)

with ums,0 a suitable approximation of uh,0. Now, because of the choice of the
space Vms we can define a Ritz projection Rms : Vh → Vms by

a(Rmsv, w) = a(v, w) = (Ahv, w), ∀w ∈ Vms,

where Ah : Vh → Vh is the operator defined by

(Ahv, w) = a(v, w), ∀w ∈ Vh.
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The error analysis for the elliptic problem in [17] gives the bound

‖Rmsv − v‖H1 ≤ CH‖Ahv‖, ∀v ∈ Vh,(1.4.12)

where C is independent of the derivatives of A. The assumption that A does
not depend on time is crucial here. Otherwise, we would have to define a new
space and compute a new set of basis functions at each time step tn.

As for the elliptic equation we assume that h is sufficiently small to resolve
the variations in A. This means that the reference solution uh given by (1.3.5)
approximates u in (1.3.4) sufficiently well. In the error analysis we can thus
split

‖unms − u(tn)‖H1 ≤ ‖unms − unh‖H1 + ‖unh − u(tn)‖H1 ,

where the second part is bounded by classical FEM error analysis. For the first
part we can use a similar analysis, but with the new Ritz projection Rms. We
split the error into the parts

unms − unh = unms −Rmsu
n
h +Rmsu

n
h − unh =: θnms + ρnms,

where the error of ρnms is given by (1.4.12) and Ahunh = Phf
n − ∂̄tunh with Ph

denoting the L2-projection onto Vh. For θnms we get

(∂̄tθ
n
ms, v) + a(θnms, v) = −(∂̄tρ

n
ms, v), ∀v ∈ Vms.

Naturally, the error bound in this case depends on the regularity of the
(discrete) time derivative of the reference solution. Since the initial data is not
in H2 we expect, for instance, ‖∂̄tunh‖ to depend on negative powers of tn. This
is possible since the backward Euler scheme preserves the smoothing effect of
parabolic problems. In Paper I this is thoroughly investigated and error bounds
involving negative powers of tn are derived.

To utilize the localization introduced in Section 1.4.1 we can replace Vms

by Vms,k, define a new Ritz projection Rms,k : Vh → Vms,k, and perform similar
splits of the error. The localized GFEM for the parabolic equation reads; for
n ∈ {1, ..., N} find unms,k ∈ Vms,k, such that, u0

ms,k = ums,k,0

(∂̄tu
n
ms,k, v) + a(unms,k, v) = (fn, v), ∀v ∈ Vms,k,(1.4.13)

with ums,k,0 a suitable approximation of uh,0.
The main result in Paper I is the following theorem.

Theorem 1.4.3. Let {unh}Nn=1 be the solution to (1.3.5) and {unms,k}Nn=1 the

solution to (1.4.13). There exists ξ ∈ (0, 1) such that

‖unh − ũnms,k‖ ≤ C(1 + log n)(H + kd/2ξk)2
(
Cf + t−1

n ‖uh,0‖
)
,

for n ∈ {1, ..., N}, where C and Cf are constants independent of the variations
in A.

The factor (1 + log n) can be removed if f = 0. In Paper I a more general
form of the parabolic problem is studied, but the convergence result remains
the same.
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1.4.4. A note on the initial data. In the analysis we allow the initial
data to be nonsmooth. A nonsmooth initial data means that the error bounds
generally blow up close to t = 0. This appears as a negative power of t in the
error analysis.

One argument for allowing nonsmooth initial data is because the FEM
solution that we want to approximate only have initial data uh,0 ∈ Vh and
Vh 6⊂ H2(Ω). A relevant question is if this can be relaxed. Can we impose some
other condition on uh,0 (and thus u0) to avoid working in the nonsmooth data
regime?

The answer is yes, but it is a restrictive assumption that may not be fulfilled
in many applications. To illustrate what this assumption would look like, let
us, for simplicity, consider the semidiscrete version that is still continuous in
time. Find uh ∈ Vh such that

(u̇h, v) + a(uh, v) = (f, v), ∀v ∈ Vh,(1.4.14)

with initial data uh(0) = u0,h. We note that the error analysis depends on

terms like e.g.
∫ T

0
‖u̇h(t)‖2H1 dt, cf. Paper I. By differentiating the parabolic

equation once with respect to t we get

(üh, v) + a(u̇h, v) = (ḟ , v),

with the initial data u̇h(0) = Phf(0) − Ahu0,h. The value of u̇h(0) is derived
by letting t approach zero in (1.4.14). Now, choosing v = u̇h we may derive an

energy estimate for
∫ T

0
‖u̇h(t)‖2H1 dt. However, the initial data is bounded in

L2 only if ‖Ahu0,h‖L2
is bounded. This means that there must exist a g ∈ L2

such that

(Ahu0,h, v) = a(u0,h, v) = (g, v), ∀v ∈ Vh.

Since u0,h needs to be an approximation of u0, for instance u0,h = Rhu0, this
implies that u0 must fulfill the same assumption. That is,

a(u0, v) = (g, v), ∀v ∈ V.

Hence, the initial data would have to be the solution to an elliptic equation with
right hand side g ∈ L2. If this is fulfilled, the t−1-factor in the error estimate
could be avoided. However, it is restrictive and we have chosen to work with
the much more general assumption u0 ∈ L2 in Paper I. In Paper III we assume
that the initial data is in H1

0 , which is less general, but still nonsmooth.

1.4.5. Linear thermoelasticity. For the parabolic equation we relied on
results for the elliptic (stationary) equation. Hence, a natural step is to first
analyze the stationary version of the thermoelastic system. By neglecting the
terms involving time derivatives we arrive at the following system; find uh ∈ V 1

h

and θh ∈ V 2
h , such that

(σ(uh) : ε(v1))− (αθh,∇ · v1) = (f, v1), ∀v1 ∈ V 1
h ,

(κ∇θh,∇v2) = (g, v2), ∀v2 ∈ V 2
h .
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To derive a GFEM for this system we need to decompose two different spaces;
V 1
h and V 2

h . One could hope to use the full system as a bilinear form for the
split. However, this is not an inner product, since it is not symmetric, and
we cannot define a natural orthogonal decomposition of the form V 1

h × V 2
h =

V 1
ms × V 2

ms ⊕ V 1
f × V 2

f in the same fashion as before. Instead, we use (σ(·) :
ε(·)) to decompose V 1

h and (κ∇·,∇·) to decompose V 2
h , which are both inner

products on their respective space. This is done by mimicking the procedure
described in Section 1.4.1. First define two interpolations I1

H : V 1
h → V 1

H and
I2
H : V 2

h → V 2
H into the coarse finite element spaces V 1

H ⊆ V 1
h and V 2

H ⊆ V 2
h .

Now, the corresponding kernels are V 1
f := ker I1

H and V 2
f := ker I2

H , and we can
define the Ritz projections onto these spaces R1

f : V 1
h → V 1

f and R2
f : V 2

h → V 2
f

given by

(σ(v1 −R1
f v1) : ε(w1)) = 0, ∀w1 ∈ V 1

f , v1 ∈ V 1
h

(κ∇(v2 −R2
f v2),∇w2) = 0, ∀w2 ∈ V 2

f , v2 ∈ V 2
h .

The multiscale spaces are finally defined as

V 1
ms := V 1

H −R1
f V

1
H , V 2

ms := V 2
H −R2

f V
2
H ,

as in (1.4.5). With these spaces we can now define a GFEM corresponding to
the stationary system. Find ums ∈ V 1

ms and θms ∈ V 2
ms

(σ(ums) : ε(v1))− (αθms,∇ · v1) = (f, v1), ∀v1 ∈ V 1
ms,

(κ∇θms,∇v2) = (g, v2), ∀v2 ∈ V 2
ms.

The spaces V 1
ms and V 2

ms are designed to handle multiscale behavior in the
coefficients µ, λ, and κ respectively. However, α is also material dependent and
can be expected to vary at the same scale. For this reason, we shall add an
extra correction to the solution ums inspired by the techniques in [15, 11]. This
additional correction is defined as uf ∈ V 1

f , such that,

(σ(uf) : ε(w1)) = (αθms,∇ · w1), ∀w1 ∈ V 1
f ,

and we define ũms = ums + uf . It can now be proved, cf. Paper III, that the
following error bounds hold

‖uh − ũms‖H1 ≤ CH‖f‖+ C‖θh − θms‖,(1.4.15)

‖θh − θms‖H1 ≤ CH‖g‖,(1.4.16)

where C is independent of the variations in µ, λ, α, and κ.
Inspired by this, we formulate the following GFEM for the time dependent

system. For n ∈ {1, ..., N} find ũnms = unms + unf , with unms ∈ V 1
ms and unf ∈ V 1

f ,
and θnms ∈ V 2

ms, such that

(σ(ũnms) : ε(v1))− (αθnms,∇ · v1) = (fn, v1)(1.4.17)

(∂̄tθ
n
ms, v2) + (κ∇θnms,∇v2) + (α∇ · ∂̄tũnms, v2) = (gn, v2),(1.4.18)

(σ(unf ) : ε(w1))− (αθnms,∇ · w1) = 0,(1.4.19)
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for all v1 ∈ V 1
ms, v2 ∈ V 2

ms, and w1 ∈ V 1
f . Here ũ0

ms = ũms,0 and θ0
ms = θms,0

are some suitable approximations of uh,0 and θh,0. Here we have added an
additional correction, unf , on unms in each time step motivated by the correction
in the stationary setting. The system now consists of three coupled equations.

For the analysis of the time dependent problem we may now define a Ritz
projection corresponding to the stationary system, with the additional correc-
tion included, and split the error into two parts, see Paper III.

To proceed we also need to perform a localization of both spaces V 1
ms and

V 2
ms. We use the patches ωk(K) defined in Section 1.4.2 to define localized

spaces V 1
ms,k and V 2

ms,k, as in (1.4.8). To motivate this we need to show that the

corrections R1
f λx and R2

f λy decay exponentially away from node x and y, where
λx and λy denotes the classical hat functions in V 1

H and V 2
H respectively. The

correction R2
f λy is based on the inner product (κ∇·,∇·), which is of the same

type as a(·, ·) in Section 1.4.1. Hence, the decay follows directly from [17, 11].
The correction R1

f λx is based on the elasticity form (σ(·) : ε(·)) and the decay
does not follow directly from the earlier results. This is instead proven in Paper
II.

The localized GFEM for (1.3.6)-(1.3.7) is now defined as; for n ∈ {1, ..., N}
find

ũnms,k = unms,k +
∑
K∈TH

un,Kf,k ,

with unms,k ∈ V 1
ms,k, un,Kf,k ∈ V 1

f (ωk(K)), and θnms,k ∈ V 2
ms,k, such that

(σ(ũnms,k) : ε(v1))− (αθnms,k,∇ · v1) = (fn, v1),(1.4.20)

(∂̄tθ
n
ms,k, v2) + (κ∇θnms,k,∇v2) + (α∇ · ∂̄tũnms,k, v2) = (gn, v2),(1.4.21)

(σ(un,Kf,k ) : ε(w1))− (αθnms,k,∇ · w1)K = 0,(1.4.22)

for all v1 ∈ V 1
ms.k, v2 ∈ V 2

ms,k, and w1 ∈ V 1
f (ωk(K)).

The main theorem in Paper III is Theorem 1.4.4 below which is proved under
certain conditions on the size of H. Here Cf,g denotes a constant depending on
f and g, see Paper III for details.

Theorem 1.4.4. Let {unh}Nn=1 and {θnh}Nn=1 be the solutions to (1.3.6)-
(1.3.7) and {ũnms,k}Nn=1 and {θnms,k}Nn=1 the solutions to (1.4.20)-(1.4.22). There

exists ξ ∈ (0, 1), such that

‖unh − ũnms,k‖H1 + ‖θnh − θnms,k‖H1 ≤ C(H + kd/2ξk)
(
Cf,g + t−1/2

n ‖θ0
h‖H1

)
,

for n ∈ {1, ..., N}, where C and Cf,g are constants independent of the variations
in µ, λ, α, and κ.

1.4.6. Riccati equations. Recall that we are interested in operators A,
such that (Au, v) = −a(u, v) and a(u, v) =

∫
κ∇u·∇v. Hence the state equation

is a parabolic equation of the type considered in Paper I. It thus makes sense
to use the same GFEM space that we used for the parabolic equation and build
upon the results from this paper.
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Let us describe the localized GFEM version of this method directly, without
taking the step via the global GFEM. The idea is to replace Vh in (1.3.8) with
the localized GFEM space Vms,k defined in (1.4.8), . For this purpose, we first
define the operators Ams

k : Vms,k → Vms,k, Bms
k : U → Vms,k and Cms

k : Vms,k → Z
such that

(Ams
k v, w) = (Av, w) , (Bms

k u,w) = (Bu,w) , and (Cms
k v, z)Z = (Cv, z)Z ,

for all v, w ∈ Vms,k, u ∈ U and z ∈ Z. With this notation the (semidiscrete)
localized GFEM of (1.3.8) is to find Xms

k : Vms,k → Vms,k satisfying(
Ẋms
k u, v

)
= (Xms

k u,Ams
k v) + (Xms

k v,Ams
k u)(1.4.23)

+ (Cms
k u, Cms

k v)Z −
(
R−1(Bms

k )∗Xms
k u, (Bms

k )∗Xms
k v

)
U

for all u, v ∈ Vms,k and with Xms
k (0) some appropriate approximation of X(0).

In the analysis it is convenient to write the Riccati equations (1.3.8) and
(1.4.23) on integral form. For this purpose, we let Eh(t) : L2 → L2 denote
the solution operator so that uh = Eh(t)u0 is the solution to the homogeneous
parabolic equation

(u̇h, v) + a(uh, v) = 0, ∀v ∈ Vh,

with uh(0) = (Idh)∗u0. Recall that (Idh)∗ is the L2-projection onto Vh. Sim-
ilarly, we define the solution operator Ems

k (t) corresponding to the GFEM for
the homogeneous parabolic equation in Vms,k. Let us also abbreviate

X̃(t) = IdhXh(t)(Idh)∗, Ỹ (t) = Idh Idms
k Xms

k (t)(Idms
k )∗(Idh)∗,(1.4.24)

where Idms
k : Vms,k → Vh is the identity operator such that Idms

k v = v for v ∈
Vms,k. Its L2-adjoint is the L2-orthogonal projection of Vh onto Vms,k. With

these definitions, both X̃ and Ỹ are operators from L2 to L2, which is an
advantage in the analysis. It turns out that on integral form X̃ and Ỹ are equal
to the following

X̃(t) = Eh(t)∗X̃(0)Eh(t)

+

∫ t

0

Eh(t− s)∗
(

(ChPh)∗ChPh − X̃(s)ShX̃(s)
)
Eh(t− s) ds,

and

Ỹ (t) = Ems
k (t)∗X̃(0)Ems

k (t)

+

∫ t

0

Ems
k (t− s)∗

(
(ChPh)∗ChPh − Ỹ (s)ShỸ (s)

)
Ems
k (t− s) ds,

where Sh := Idh BhR−1B∗h Id∗h. It is now evident that the error between X̃(t)

and Ỹ (t) depends on the error between the parabolic solution operators Eh(t)
and Ems

k (t), which we analyze in Paper I.
The main result in Paper IV is the following theorem
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Theorem 1.4.5. Let X̃ and Ỹ be localized versions of the operators defined
in (1.4.24). Then there exists ξ ∈ (0, 1) such that for

‖X̃(t)− Ỹ (t)‖L(L2(Ω),L2(Ω)) ≤ C(H + kd/2ξk)2
(

log(H + kd/2ξk)−1 + t−1
)
,

t ∈ (0, T ], where C is a constant independent of the variations in A.

In Paper IV we have chosen, to make the notation less heavy, to suppress
the dependency of k (and assume k ∼ logH−1) throughout the paper. The

error bound then reads ‖X̃(t) − Ỹ (t)‖L(L2,L2) ≤ CH2
(

logH−1 + t−1
)
. This

is of the same order as for the classical FEM (1.3.9), except that the constant
does not depend on ε, that is, the constant is independent of the variations in
A, in this case.

To perform numerical experiments we need to discretize in time. In Pa-
per IV we split the equation into a parabolic and a nonlinear part and propose
a Strang splitting scheme for the time discretization. This is combined with a
low-rank formulation to perform fast computations also for large systems.

1.5. Summary of Paper I-IV

Paper I. In Paper I we propose and analyze the GFEM (1.4.11) for para-
bolic equations with highly varying and oscillating coefficients. We prove con-
vergence of optimal (second) order in the L2-norm to the reference solution
assuming initial data only in L2. We do not assume any structural conditions
on the multiscale coefficient, such as, periodicity or scale separation. Further-
more, we show how to extend this method to semilinear parabolic problems,
where the right hand side in (1.3.4) is replaced by f(u).

Paper II. In Paper II we propose a GFEM for linear elasticity equations
with applications in heterogeneous materials. In particular, we prove expo-
nential decay of the corrections R1

f λz in Section 1.4.5. Furthermore, we prove
that the GFEM reduces the locking effect that occurs for materials with large
Lamé parameter λ when using classical continuous and piecewise linear finite
elements.

Paper III. In Paper III we build on the theory developed in Paper I and
Paper II to define a GFEM for linear thermoelasticity with highly varying co-
efficients describing a heterogeneous material. We prove linear convergence to
the reference solution in the H1-norm independent of the variations in the data,
see Theorem 1.4.4 in Section 1.4.5.

Paper IV. In Paper IV we use the results from parabolic equations derived
in Paper I to develop a GFEM for differential Riccati equations with multiscale
features. We prove second order convergence (except for a logarithmic factor)
in the L2-operator norm for the semidiscrete problem. Furthermore, we show
how to derive the fully discrete matrix-valued equations and how to discretize
these in time using a splitting scheme of Strang type. In addition, we show how
the computations can be performed efficiently in a low-rank setting.
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1.6. Future work

In applications involving composite materials there may be uncertainties in
the material parameters, such as position or rotation, coming from the assembly
procedure. These uncertainties can, for instance, be modeled by letting the
coefficients depend on a random variable ω. For a general elliptic problem, the
PDE would be of the following form

−∇ ·A(x, ω)∇u(x, ω) = f(x, ω),

where A(·, ω) is multiscale in space for a fixed ω. However, A(·, ω) now takes
different values for different outcomes ω. This, in turn, means that the space
Vms will be different for different outcomes ω. Hence, the main idea to replace
the space Vh with Vms fails. This requires new ideas for the construction of an
appropriate multiscale space.

While the general stochastic problem is far from a solution, there are many
interesting special cases which can be handled within the current LOD frame-
work. For instance, composite materials with defects. This can be modeled as
a stochastic problem by letting an inclusion in the material be missing, rotated,
or shifted, with a certain (low) probability. This means that for each outcome
ω, the coefficient A(x, ω) may only change its value at some (few) places in the
domain. The affected LOD basis functions may then be recomputed locally. In
the case of a shift or rotation, the change in A may be described by a mapping
with a small derivate, which can be used to derive new corrections efficiently.
Moreover, there is a possibility to use error indicators to decide when it is nec-
essary to update the corrections. If the change is very small, the corrections
will remain roughly the same and it is unnecessary to compute new ones. This
is ongoing work in the community.

Another interesting direction is inverse problems with multiscale features,
which can be used to detect defects in composite materials. This is also a very
challenging problem numerically, since the solution procedure involves solving
a PDE with (different) multiscale coefficients many times. It is possible that
one can use the a priori knowledge of where the inclusions are supposed to be,
as in the stochastic case in the previous paragraph, to derive a more efficient
method.

In viscoelastic theory, the following (strongly) damped wave equation is
commonly used

ü−∇ · (A∇u̇+B∇u) = f.

If the medium of interest is heterogeneous, both A and B are highly varying
coefficients. Thus, it is not enough to only use b(·, ·) = (B∇·,∇·) when defining
the multiscale space Vms. The variations in A needs to be accounted for by either
considering a time-dependent basis, or adding appropriate additional corrections
to the GFEM solution. This is ongoing work in the community.

Furthermore, in Paper IV we focus on diffusion operators of the form
(Ax, v) =

∫
(κ∇x · ∇v) for the state equation. However, for many problems

in multiphysics, the state equation is a coupled system of equations, such as the
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thermoelastic system. It is thus of interest to allow the operator A in the Ric-
cati equation to represent a system of (multiscale) equations instead. Analysis
of problems of this kind should be considered in the future. For this to be pos-
sible one first needs to study the LOD method for the corresponding evolution
problem without the control input. As for linear thermoelasticity, this involves
finding an appropriate multiscale space for the system and, possibly, additional
corrections to be added to the solution.

In addition, the convergence analysis of the Riccati equation in Paper IV
only applies to the semidiscrete case. A natural next step would be to analyze
the convergence of the fully discrete method, by also taking the splitting scheme
into account.
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CHAPTER 2

The Joule heating problem

2.1. Background

When an electric current is passed through a conductor, heat is produced.
A typical example is a light bulb, which becomes warm when in use. Other com-
mon applications are thermistors, i.e. resistors whose resistance are temperature
dependent. These can be used for temperature sensors, fuses, micro-assembly,
etc. In most applications the electrical potential is typically only applied to
smaller parts of the boundary of the conductor, for instance through electric
pads. To model this properly we need to consider mixed boundary conditions,
see, e.g., [7].

The electrical heating effect can be modeled by the following coupled non-
linear system

(2.1.1) u̇−∆u = σ(u)|∇ϕ|2, ∇ · σ(u)∇ϕ = 0,

together with appropriate boundary conditions, where u denotes the tempera-
ture and ϕ the electric potential. It is based on Ohm’s and Fourier’s law, see,
e.g., [4] and references therein. Indeed, if J is the electric current density and q
the flow of heat, then

J = −σ(u)∇ϕ, q = −κ(u)∇u,

where σ and κ represents the electrical and thermal conductivity, respectively.
The conservation equations are

u̇+∇ · q = J · E, E = −∇ϕ, ∇ · J = 0.

In this thesis we consider the somewhat simpler version when κ(u) = 1. Using
this, the conservation laws gives (2.1.1).

It turns out that the quadratic source term in (2.1.1) poses difficulties when
studying existence, uniqueness, and regularity of the system. Generally, |∇ϕ|2 ∈
L1 only and in three dimensions this is not enough to guarantee σ(u)|∇ϕ|2 ∈
H−1. Thus, results from the classical variational framework, which requires
that the right hand side is in H−1, is not available.

In [2] the issue with the source term is avoided by rewriting the term using
the equation for ϕ. With this new formulation they are able to prove existence
of a solution in L2(H1). However, to prove convergence of numerical solutions to
the problem, additional regularity is needed, see, for instance, [6, 1]. Typically,
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sufficient regularity in three dimensions cannot be proved, but needs to be
assumed.

The purpose of this thesis is to prove strong convergence of finite element
approximations of the Joule heating problem with mixed boundary conditions
under very mild assumptions on the domain and the data. This is achieved by
defining a new variaitonal formulation based on a cut-off functional. The results
are applicable to a large class of finite element methods that are conforming in
space and piecewise constant in time, satisfying a backward Euler scheme.

Furthermore, under the assumption of creased domains, we prove unique-
ness and additional regularity of the solution. In this setting, it is also possible
to deduce higher regularity in the interior of the domain. This makes the prob-
lem suitable for adaptive mesh refinement.

The rest of this chapter is outlined as follows: In Section 2.2 we introduce
the classical variational formulation and the new variational formulation based
on the cut-off functional. We also discuss the issue with the source term in
more detail. In Section 2.3 we define the finite element approximations and
summarize the main results. In Section 2.4 we give an overview of the results
on regularity and uniqueness. Finally, in Section 2.5 we summarize Paper V
and in Section 2.6 we discuss some possible future work.

2.2. Variational formulation with cut-off

The full Joule heating system, including boundary and initial conditions, is
given by

Dtu−∆u = σ(u)|∇ϕ|2, in Ω× (0, T ),(2.2.1a)

∇ · (σ(u)∇ϕ) = 0, in Ω× (0, T ),(2.2.1b)

u = gu, on ΓuD × (0, T ),(2.2.1c)

ϕ = gϕ, on ΓϕD × (0, T ),(2.2.1d)

n · ∇u = 0, on ΓuN × (0, T ),(2.2.1e)

n · ∇ϕ = 0, on ΓϕN × (0, T ),(2.2.1f)

u(·, 0) = u0, in Ω,(2.2.1g)

where Dt denotes the time derivative ∂
∂t and Ω ⊆ R3 describes the body of

a conductor. Furthermore, ΓuD and ΓuN denotes the Dirichlet and Neumann

boundary for u, respectively, and ΓuD ∪ ΓuN = ∂Ω. Analogously, we define ΓϕD
and ΓϕN for ϕ. We also assume that gu and gϕ are defined on the whole domain
Ω.

We let W k
p (Ω) denote the classical range of Sobolev spaces and define

W k
p (Ω; ΓuD) := {v ∈W k

p (Ω) : v|Γu
D

= 0}, for k > 1/p.

The space W k
p (Ω; ΓϕD) is defined analogously and H1 is used to denote W 1

2 . We
also use V ∗ for the dual space to V . Furthermore, we use Lp(0, T ;V ) for the
Bochner spaces, see previous chapter, and the notation v ∈ H1(0, T ;V ) is used
to denote v,Dtv ∈ L2(0, T ;V ).
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From (2.2.1) one can define the following variational formulation; find a
pair (u, ϕ) = (gu + ũ, gϕ + ϕ̃) such that

(ũ, ϕ̃) ∈ L2(0, T ;H1(Ω; ΓuD)) ∩H1(0, T ;H1(Ω; ΓuD)∗)× L2(0, T ;H1(Ω,ΓϕD))

and for a.e. t ∈ (0, T ]

〈Dtu, v〉+ 〈∇u,∇v〉 = 〈σ(u)|∇ϕ|2, v〉,(2.2.2a)

〈σ(u)∇ϕ,∇w〉 = 0,(2.2.2b)

〈u(0), z〉 = 〈u0, z〉,(2.2.2c)

for all (v, w) ∈W 1
∞(Ω; ΓuD)×H1(Ω; ΓϕD) and z ∈ L2(Ω), cf. [4].

Since ϕ̃ ∈ L2(0, T ;H1(Ω,ΓϕD)), we get σ(u)|∇ϕ|2 ∈ L1(0, T ;L1(Ω)), if σ is
bounded and the boundary data gϕ is smooth enough, see Paper V for precise
details.

However, in three spatial dimensions, we cannot guarantee that L1(Ω) is in
H1(Ω; ΓuD)∗. To illustrate this, consider

‖f‖H1(Ω)∗ = sup
v∈H1(Ω)

v 6=0

〈f, v〉
‖v‖H1(Ω)

≤ sup
v∈H1(Ω)

v 6=0

‖f‖L1(Ω)‖v‖L∞(Ω)

‖v‖H1(Ω)
,

where we have used Hölder’s inequality. This is well defined if we can bound
‖v‖L∞(Ω) ≤ C‖v‖H1(Ω). Using Sobolev’s inequality, this holds if 1 > d/2.
Hence, the argument is not valid for d = 3 and we may not deduce that
σ(u)|∇ϕ|2 is in L2(0, T ;H1(Ω; ΓuD)∗).

The fact that the right hand side is not in L2(0, T ;H1(Ω; ΓuD)∗) is problem-
atic in this variational framework. The regularity is too low to prove existence
of a solution through fixed point theorems.

In [2] another variational formulation is proposed by utilizing the identity

σ(u)|∇ϕ|2 = ∇ · (σ(u)ϕ∇ϕ),

which follows by employing (2.2.1b). It is also possible to prove a maximum
principle for ϕ, meaning that ϕ ∈ L∞(0, T ;L∞(Ω)), if gϕ is bounded. Thus,

|〈∇ · (σ(u)ϕ∇ϕ), v〉| = | − 〈σ(u)ϕ∇ϕ,∇v〉|
≤ C‖σ(u)‖L∞(Ω)‖ϕ‖L∞(Ω)‖∇ϕ‖L2(Ω)‖v‖L2(Ω),

and it is clear that ∇ · (σ(u)ϕ∇ϕ) defines an element in L2(0, T ;H1(Ω; ΓuD)∗).
With this approach existence can be proved through Schauder’s fixed point
theorem, cf. [2].

However, this formulation is not appropriate for finite element approxima-
tions. For the right hand side to be well defined for a finite element solution
ϕh, we need ϕh ∈ L∞(0, T ;L∞(Ω)). For a fixed h this is true, but it gives a
constant that depends inversely on the mesh size h, which causes blow up when
h → 0. This poses a demand for a discrete maximum principle, which in turn
poses restrictive conditions on the triangulation of the mesh. In this thesis, we
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avoid this by introducing the following cut-off functional

dfe := min{max{f + gϕ, a}, b} − gϕ.
for some fixed a, b ∈ R with a ≤ minΓϕ

D×[0,T ] gϕ and b ≥ maxΓϕ
D×[0,T ] gϕ, inspired

by the stationary problem [9]. The cut-off is designed such that dϕ̃e = ϕ̃ and
for general functions f the bound a− gϕ ≤ dfe ≤ b− gϕ holds.

With this cut-off functional we define a new variational formulation using
the spaces

X := L2(0, T ;H1(Ω; ΓuD)) ∩H1(0, T ;H1(Ω; ΓuD)∗)× L2(0, T ;H1(Ω,ΓϕD)),

Y := H1(Ω; ΓuD)×H1(Ω; ΓϕD).

A weak solution to (2.2.1) is a pair (u, ϕ) = (gu+ũ, gϕ+ϕ̃), such that (ũ, ϕ̃) ∈ X
and for a.e. t ∈ (0, T ]

〈Dtu, v〉+ 〈∇u,∇v〉 = −〈σ(u)dϕ̃e∇ϕ,∇v〉+ 〈σ(u)∇ϕ · ∇gϕ, v〉,(2.2.3a)

〈σ(u)∇ϕ,∇w〉 = 0,(2.2.3b)

〈u(0), z〉 = 〈u0, z〉,(2.2.3c)

for all (v, w) ∈ Y and z ∈ L2(Ω).
Note that for a finite element approximation ϕh we now need dϕ̃he ∈

L∞(0, T ;L∞(Ω)) to ensure that the right hand side is in L2(0, T ;H1(Ω; ΓuD)).
This is fulfilled, independently of h, by definition of the cut-off functional.
Hence, a discrete maximum principle is avoided. In Paper V we prove that
the variational formulation based on the cut-off (2.2.3) is equivalent to the for-
mulation (2.2.2). This motivates the introduction of the cut-off functional and
we can approximate (2.2.3) instead of (2.2.2).

2.3. Finite element approximations

We consider a large class of finite element approximations by allowing
{V um}m∈N and {V ϕm}m∈N to be any kind of hierarchical families of subspaces
with finite dimension, whose unions are dense in H1(Ω; ΓuD) and H1(Ω; ΓϕD),
respectively. For a semidiscrete method we define

Xm := {v ∈ C(0, T ;V um) : v|[ti,ti+1) ∈ C1(ti, ti+1;V um) ∀ i} × L∞(0, T ;V ϕm).

A semidiscrete Galerkin solution is a pair (um, ϕm) = (gu + ũm, gϕ + ϕ̃m) such
that (ũm, ϕ̃m) ∈ Xm and for a.e. t ∈ (0, T ]

〈Dtum, v〉+ 〈∇um,∇v〉 = −〈σ(um)dϕ̃me∇ϕm,∇v〉(2.3.1a)

+ 〈σ(um)∇ϕm · ∇gϕ, v〉,
〈σ(um)∇ϕm,∇w〉 = 0,(2.3.1b)

〈um(0), z〉 = 〈u0, z〉,(2.3.1c)

for all (v, w) ∈ V um × V ϕm and z ∈ V um.
For a fully discrete method we need to introduce a time discretization. We

let {Jl}l∈N be a family of nested partitions, on the form 0 = t0 < t1 < ... < tN =
T , of the time interval J = [0, T ]. We denote the subintervals In := (tn−1, tn],
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define fn := f(tn), and consider a uniform time discretization in the analysis,
that is, we assume tn − tn−1 = τl.

To define a fully discrete method we define the space

Xm,l ={v(x, t) : ∀n ∃w ∈ V um : v(t, ·) = w, t ∈ In}
× {v(x, t) : ∀n ∃w ∈ V ϕm : v(t, ·) = w, t ∈ In}.

to be used with a backward Euler step in time, We seek a pair (um,l, ϕm,l) =
(gu + ũm,l, gϕ + ϕ̃m,l) such that (ũm,l, ϕ̃m,l) ∈ Xm,l and for n = 1, ..., N ,〈

unm,l − u
n−1
m,l

τl
, v

〉
+ 〈∇unm,l,∇v〉 = −〈σ(unm,l)dϕ̃nm,le∇ϕnm,l,∇v〉(2.3.2a)

+ 〈σ(unm,l)∇ϕnm,l · ∇gnϕ, v〉,
〈σ(unm,l)∇ϕnm,l,∇w〉 = 0,(2.3.2b)

〈u0
m,l, z〉 = 〈u0, z〉,(2.3.2c)

for all (v, w) ∈ V um × V ϕm and z ∈ V um.
In Paper V we prove the following two theorems for the strong convergence

of the semi-discrete and fully discrete methods, respectively.

Theorem 2.3.1. A subsequence of solutions (ũmk
, ϕ̃mk

) ∈ Xmk
of (2.3.1)

converges strongly in X to a solution (ũ, ϕ̃) of (2.2.3).

Theorem 2.3.2. A subsequence of solutions (ũmk,lk , ϕ̃mk,lk) ∈ Xmk,lk of
(2.3.2) converges strongly in L2(0, T ;H1(Ω; ΓuD))×L2(0, T ;H1(Ω; ΓϕD)) to a so-
lution (ũ, ϕ̃) of (2.2.3).

We can only guarantee that there exists a subsequence converging to a weak
solution, since uniqueness is not proved for the Joule heating problem. However,
if the solution is unique, then the whole sequence converges.

2.4. Regularity and uniqueness of the solution

As discussed in the previous section, the uniqueness of a solution in the
space L2(0, T ;H1(Ω)) is not proved so far and remains an open problem. How-
ever, if we make some additional assumptions on the boundary conditions we
may improve upon the regularity and prove uniqueness.

The main assumption is that Ω is a creased domain, see [10] for the full
definition. In our setting it allows Ω to be a Lipschitz domain with ΓuD and
ΓϕD open and non-empty, but ∂ΓuD and ∂ΓϕD cannot be re-entrant. This means
that the angles between the Dirichlet and Neumann parts of the boundary
are strictly less than π. To achieve the result in the following theorem, some
additional assumptions on the data are needed, see Paper V for details.

Theorem 2.4.1. Let p > 3
2 and r > 4p

2p−3 . If Ω is a creased domain and

the problem data is sufficiently smooth, then there exists a unique solution to
(2.2.1) satisfying

ũ ∈W 1
r (0, T∗;Lp(Ω)) ∩ Lr(0, T∗;W 1

2p(Ω; ΓuD)), ϕ̃ ∈ Lr(0, T∗;W 1
2p(Ω; ΓϕD)),
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for some 0 < T∗ ≤ T .

This theorem combines results from two papers, [8] and [10]. In Paper V
prove that the Joule heating problem fits into the framework presented in [8].
One of the key assumptions is that the Laplacian ∆ is a topological isomorphism
from W 1

2p(Ω; ΓuD) to W−1
2p (Ω; ΓuD) and from W 1

2p(Ω; ΓϕD) to W−1
2p (Ω; ΓϕD). We

verify that this is indeed the case if the domain is creased, as proven in [10].
In [2, Section 4] it is proved that if ∇ϕ ∈ L2q/(q−3)(0, T ;Lq(Ω)), for q > 3,

then the solution is unique. We emphasize that the proof there is for pure
Dirichlet or pure Neumann boundary conditions only, and needs to be adapted
to the mixed setting. However, the result is interesting since it coincides with
the regularity we get.

Furthermore, assuming that the solution fulfills the regularity in Theo-
rem 2.4.1 we prove, in Paper V, additional regularity in the interior of the
domain. Thus, the problem is well suited for h- and hp-adaptive finite ele-
ments.

2.5. Summary of Paper V

Paper V. In Paper V we propose a new variational formulation based on
a cut-off functional. With this formulation, we are able to prove strong con-
vergence for a large class of finite element approximations of the Joule heating
problem in three spatial dimensions with mixed boundary conditions on Lips-
chitz domains. The analysis covers both semidiscrete methods on conforming
subspaces and fully discrete methods using a backward Euler scheme.

We prove higher regularity and uniqueness of the solution on creased do-
mains. We perform numerical examples to verify the convergence and while
all cases do converge, the non-creased domain setting has a significant lower
convergence rate.

In addition, we prove higher regularity in the interior of the domain. The
difference in regularity throughout the domain implies that the problem is suit-
able for h- and hp- adaptive mesh refinements. This is confirmed by considering
goal oriented adaptivity for some numerical examples.

2.6. Future work

In future works one should perform a more rigorous a posteriori analysis for
the goal oriented adaptivity. In particular, it should be proved that the dual
problem is well-posed. Furthermore, the error from linearizing the dual problem
and the procedure to approximate the dual solution (extrapolation is used in
FEniCS [12]) should be analyzed.

It is still an open problem to show that the solution to (2.2.3), or the
version without the cut-off functional, is unique. In the stationary case there
are counterexamples proving that the solution is not unique [5]. However, the
time-dependent case is different, since we start with the initial data u0.
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The Joule heating equations often appear in more complicated systems,
such as the thermoviscoelastic problem [11]. This system models the temper-
ature, electric potential, and deformation of a material and is used to model,
for instance, actuators on the micro-scale [7]. A next step could be to analyze
these equations.

Finally, one may also combine the two parts in this thesis, by considering
the Joule heating problem with multiscale coefficients.
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