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better accuracy when the same size of the patches are used.
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1 Introduction

In all branches of engineering science there are numerous problems which in-
volve features on several different scales, for example in oil reservoir simulation
and organic solar cells. These, so called multiscale problems, are often impos-
sible to solve with standard single mesh methods and therefore require another
approach. With a multiscale method the solution is divided into a coarse and
a fine scale contribution where the fine scale equation is solved on patches with
localized right hand side. The solution to the fine scale equation is then used
to solve a modified problem on the coarse scale to obtain the global multiscale
solution. In this paper a continuous Galerkin multiscale method, using finite
elements (FEM) test spaces, and a discontinuous Galerkin multiscale method,
using discontinuous Galerkin (DG) test spaces, are proposed. The methods are
derived using the Variational Multiscale Methods (VMS) framework but with a
symmetric split for the coarse scale equation. Numerical experiments are pre-
sented where exponential decay of the error is observed when increasing the
patches for both CGMM and DGMM. For the same accuracy approximately
one more layer of coarse element in each patch is needed for CGMM compared
to DGMM.

1.1 Previous work

Several multiscale methods have been developed during the last two decades.
The multiscale finite element method (MsFEM) was presented by Hou and Wu
in [8] and was further developed in [5] where over-sampling was introduced in the
patches to reduce the boundary effects. Another approach for solving multiscale
problems is VMS, see [9, 10]. The idea is to decompose the problem into one
coarse and one fine-scale contribution. The coarse-scale problem is then solved
using modified basis functions where the fine-scale contribution has been taken
into account. The Adaptive Variational Multiscale Method, (AVMS) using the
VMS framework, was introduced by Larson and Målqvist in [11]. A posteriori
error estimate in energy norm, where the error is bound in terms of coarse and
fine mesh size for the AVMS, was also introduced in [11].

The development of discontinuous Galerkin (DG) methods started in the
early seventies and have recently received renewed interests in the last few years.
Interior penalty methods are an example of DG methods [6]. They arose from
the observation that Dirichlet boundary conditions can be imposed weakly in-
stead of being built in the finite element space, so the inter-element continuity is
attained in a similar fashion. Moreover, DG methods are, or are close to locally
conservative which is a desired property for example for flow in porous me-
dia. The bilinear form for elliptic problems for the Symmetric Interior Penalty
Galerkin was first introduced by Wheeler in [13]. A unified analysis for different
DG methods for elliptic problems can be found in [3]. A new class of discon-
tinuous Galerkin methods for solving multiscale problems using the MsFEM
framework was introduced in [1].
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1.2 New contributions

In this paper CGMM which was introduced in [11] and DGMM which has not
appeared in literature before, are investigated. Exponential decay for the basis
functions are shown experimentally. For the same size of the patches DGMM
gives much better accuracy than CGMM, and CGMM needs about one more
layer of coarse elements in the localized patches to get the same accuracy.

2 Background

2.1 Preliminaries

For a domain ω ⊆ Ω ⊂ Rd, d = 1, 2, 3, with polygonal boundary ∂ω where
n is the outgoing normal, let Hk(ω) be a Sobolev space with the correspond-

ing norm ‖u‖2Hk(ω) =
∑k

i=1

∫
ω
|u| + |D(i)u|2 dx and Lp(ω) be a Lp-space with

norm ‖u‖pLp(ω) =
∫
ω
|u|p dx, let also |ω| be the Lebesgue measure of ω. The

L2(ω) scalar product is (u, v)L2(ω) =
∫
ω
uv dx, for simplicity it is written as

(u, v)L2(ω) = (u, v)ω, or if ω = Ω simply as (u, v)L2(Ω) = (u, v). Let us also
introduce the space L∞(ω) = {v : |v(x)| < ∞ a.e., x ∈ ω}. If the domain
is left out when defining the spaces it corresponds to the whole domain Ω i.e.
Hk = Hk(Ω) and Lp = Lp(Ω). The domain Ω is divided into disjoint sets
K = {K} where K is called an element. A set of polynomials of degree pk on
each element Ppk

(K) is introduced. Let us also introduce the broken H1-norm
|||v|||2 =

∑
K∈K ‖∇v‖2L2(K) + ‖v‖2L2(Ω). Further discussion about the Sobolev

spaces is found in [2].

(a) Continuous Galerkin basis function. (b) Discontinuous Galerkin basis function

Figure 1: Example of basis function for FEM (a) and DG (b).

For the finite element method the linear continuous basis function φi where
φi = 1 in node i and φi = 0 in node j 6= i is used. In the discontinuous Galerkin
method the basis function exists only on one element K. Let Mi consist of all
j such that φj = 1 in node i and MK all j such that K = supp(φj). The basis
function φj is then defined as: φj is continuous on element K, φj = 1 when
j ∈Mi, φj = 0 when j ∈ (MK \Mi) and φj = 0 everywhere else in Ω\K. The
same notations for the basis functions in FEM and DG are used, which one we
refer to is given by the context.
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2.2 The model problem

Given a polygonal domain Ω ⊂ Rd, d = 1, 2, 3, the Poisson equation with
variable coefficients and homogeneous Neumann boundary conditions{

−∇ ·α∇u = f u ∈ Ω,
n · ∇u = 0 u ∈ ∂Ω,

(1)

is studied. Equation (1) has a unique solution u ∈ H1(Ω) up to a constant for
each f ∈ L2(Ω) and α ∈ L∞(Ω) such that α(x) > β > 0, ∀x ∈ Ω, provided
that

∫
Ω
f dx = 0 is satisfied. Let V be the space of test functions on Ω, α :

V × V → R be a bilinear form corresponding to the diffusion operator −∇ ·α∇
and l : V → R a linear functional corresponding to the forcing function f , the
weak formulation of (1) reads: find u ∈ V = H1(Ω) such that

a(u, v) = (−∇ ·α∇u, v) = (f, v) = l(v), ∀v ∈ V. (2)

2.3 The Finite element method

Let the test space be V = H1(Ω). By multiplying (1) with v ∈ V and applying
Green’s formula we arrive at the the weak formulation: find u ∈ V = H1(Ω)
such that

acg(u, v) = (α∇u,∇v) = (f, v) = l(v), ∀v ∈ V. (3)

The finite element problem reads: find U ∈ Vcg = {v ∈ C(Ω) : v|K ∈
Ppk

(K), ∀K ∈ K} such that

acg(U, v) = l(v), ∀v ∈ Vcg. (4)

Let φi ∈ Vh be one in node i and zero in all nodes j 6= i such that Vh =
span(φi)i∈N where N is the number of nodes. Write U =

∑
i∈N ξφi, Aij =

a(φi, φj) and bi = l(φi), then equation (4) is transformed to the algebraic ex-
pression

Aξ = b, (5)

which can easily be solved on a computer since A is symmetric and positive
definite. The FEM is analyzed in e.g. [4] and convergence is proved.

2.4 The Discontinuous Galerkin method

Let Γ = ∪K∈K∂K denote the union of all sides of the elements, Γ is the union
of two disjoint subsets Γ = Γ∂Ω ∪ Γint where Γ∂Ω = ∂Ω ∩ ∪K∈K∂K denotes
the union of all boundary sides and Γint = ∪K∈K∂K\∂Ω the union of all the
interior edges. Let us start with some definitions:

Definition 1. We let {v} and [v] be defined by:

{v} :=

{
(v+ + v−)/2 v ∈ Γint,
v+ v ∈ Γ∂Ω,

(6)

[v] :=

{
v+ − v− v ∈ Γint,
v+ v ∈ Γ∂Ω,

(7)

where v± = lims→0+ v(x∓ snK).
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Let the discontinuous finite element space be defined by Vdg = {v ∈ L2(Ω) :
v|K ∈ Ppk

(K), ∀K ∈ K)}, multiply (1) by v ∈ V and apply Green’s formula.
For element K we arrive at the the weak formulation

(α∇u,∇v)K = (f, v)K + (α∇u ·nK , v)∂K , (8)

summing over all element K ∈ K and using a∇u ·n = {a∇u ·n} a.e we have∑
K∈K

(α∇u,∇v)K = (f, v) +
∑

e∈Γint

({α∇u ·ne}, [v])e, (9)

where e is an edge in 2–D and a face in 3–D. To arrive at the weak formulation
two more terms are added, one for symmetry and one penalty term to make the
weak form coercive

adg(u, v) =
∑
K∈K

(α∇u,∇v)K −
∑

e∈Γint

({α∇u} ·ne, [v])e −
∑

e∈Γint

({α∇v} ·ne, [u])e

+
∑

e∈Γint

σe
|e|

([u], [v])e, (10)

l(v) = (f, v), (11)

where σe ∈ R is chosen to be a large enough arbitrary constant. The discontin-
uous Galerkin method reads: Find U ∈ Vdg such that

adg(U, v) = l(v) ∀v ∈ Vdg. (12)

Equation (12) is transformed to an algebraic expression in an analogous way as
for the continuous case. The DG is analyzed in e.g [3] and references within and
convergence is proved.

An important property with this DG method is that it is close to be locally
mass conservative i.e. the deviation is computable. To be locally mass conser-
vative means that flow over the boundary should be the same as the created or
destroyed mass in each element K ∈ K for the approximated solution U in (12)
i.e.

({α · ∇U} ·ne, 1)∂K = −(f, 1)K , (13)

needs to be satisfied for each K ∈ K. In (13) the term ({α · ∇U} ·ne, 1)∂K
corresponds to the flux over the boundary of K and (f, 1)K the created or
destroyed mass in K. Let w ∈ Vdg be one on element K and zero otherwise, we
have

({α · ∇U} ·ne, 1)∂K = −(α · ∇U,∇1)K + ({α · ∇U} ·ne, 1)∂K

+ ({α · ∇1} ·ne, [U ])∂K −
∑
e∈∂K

σe
|e|

([U ], 1)e

+
∑
e∈∂K

σe
|e|

([U ], 1)e (14)

= −adg(U,w) +
∑
e∈∂K

σe
|e|

([U ], 1)e (15)

= −(f, 1)K +
∑
e∈∂K

σe
|e|

([U ], 1)e, (16)
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where equation (10) and adg(U,w) = l(w) = (f, w) = (f, 1)K are used. This
means that the method is mass conservative if the penalty parameter σe = 0, for
standard choices of σe the penalty term is typically small and computable. This
means that the method is close to be mass conservative and that the deviation
can be computed and if necessary be subtracted from the final result. A com-
pletely mass conservative method can be obtained by using a non-symmetric
DG method.

3 Multiscale Methods

Using the VMS framework, V is decoupled into a coarse and a fine scale contri-
bution V = Vc⊕Vf , where Vc is associated with a coarse mesh Kc. We introduce
the inclusion operator Ic : V → Vc. The split between the coarse and the fine
scale is defined as Vc = IcV and Vf = (I − Ic)V = {v ∈ V : Icv = 0}. Expand
u = uc+T uc+uf and v = vc+T vc+vf in (1). Here T is a multiscale projection
T : Vc → Vf defined below in (21) and uc, vc ∈ Vc, uf , vf ∈ Vf . The multiscale
problem reads: find uc ∈ Vc and vf ∈ Vf such that

a(uc +T uc +uf , vc +T vc + vf ) = l(vc +T vc + vf ), ∀vc ∈ Vc, ∀vf ∈ Vf . (17)

A symmetric split proposed in [12] by Målqvist is used. The fine-scale equations
are derived be letting vc = 0 in (17): Find T vc ∈ Vf and vf ∈ Vf such that

a(T uc + uc, vf ) = l(vf )− a(uc, vf ), ∀vf ∈ Vf , (18)

a(uf , vf ) = l(vf ), ∀vf ∈ Vf , (19)

a(T uc, vf ) = −a(uc, vf ), ∀vf ∈ Vf , (20)

where T is defined by (21) for an arbitrary vc i.e.

a(T vc, vf ) = −a(vc, vf ), ∀vc ∈ Vc and ∀vf ∈ Vf . (21)

The coarse-scale solution is obtained by letting vf = 0 in (17): Find vc ∈ Vc
such that

a(uc + T uc, vc + T vc) = l(vc + T vc)− a(uf , vc + T vc), ∀vc ∈ Vc, (22)

In (22) T vc and vf are unknown and obtained by solving (19) and (21). Note
that a(uf , vc+T vc) = 0 in the continuous case but not when T is approximated,
i.e. calculated on a patch ω ⊂ Ω and not the whole domain Ω. An example
what an approximate solution u = uf +T uc +uf can look like is given in Figure
2.
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(a) Permeability structure a projected
in log scale.

(b) Coarse scale solution, uc.

(c) Fine scale correction of the multiscale co-
efficient a, T uc.

(d) Fine scale correction of the forcing func-
tion f , uf .

(e) Multiscale solution, u = uc + T uc + uf .

Figure 2: The multiscale solution (e) is obtained from the coarse scale equation
(b) using fine scale corrections from the multiscale coefficient (c) and forcing
function (d) computed on the domain (a).
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(a) One

(b) Rand

(c) SPE

Figure 3: Example of a modified basis functions φi+T φi computed on a domain
ω. Three different multiscale coefficient are used, One then a=1, Rand then a
is a uniformly distributed random numbers between (0, 1] on each element and
SPE then the data is taken from http://www.spe.org/web/csp/.
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3.1 Localization and Discretization

Because the bilinear form has a more local behavior in Vf than in V as can be
seen in Figure 3 the fine-scale equations are solved on small overlapping patches
ωL
i , see Definition 2, to get good approximations of T vc and uf . This can be

done in parallel with localized right hand sides.

Definition 2. ω1
i is a 1-layer patch if ω1

i = supp(Φi), where Φi =
∑

j∈Mi
φj.

Here φj is a coarse basis function and Mi consists of all j such that φj = 1 in
node i. Further we say that ωL

i is a L-layer patch if,

ωL
i = ∪{i:supp(Φi)∩ωL−1

i }6=Øsupp(Φi), L = 2, 3, . . . (23)

For each L we add one more L-ring around node i. This is illustrated in Figure
4

Figure 4: Example of a patch with one L-ring w1
i and two L-rings ω2

i around
node i.

Let us introduce the discrete spaces Vcg
c using FEM for CGMM and Vdg

c using
DG for DGMM on the coarse mesh Kc = {K}. The domain Ω is the union of
coarse elements i.e. ∪K∈KcK = Ω, let also Kf (ωL

i ) = {K ∈ K : K ∈ ωL
i } be a

local fine mesh for each i ∈ 1, . . . ,N , where ωL
i ⊂ Ω is the union of fine elements

i.e. ∪K∈Kf (ωL
i )K = ωL

i . Let us also assume that Kc∩ωL
i and Kf (ωL

i ) are nested

so that any K ∈ Kc ∩ωL
i can be written as a union of elements in K ∈ Kf (ωL

i ).
The discrete approximations of Vf for CGMM are

Vcg
f (ωL

i ) = {v ∈ Vcg(ω) : Icv = 0}, (24)

and for DGMM
Vdg
f (ωL

i ) = {v ∈ Vdg(ω) : Icv = 0}. (25)
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3.2 CGMM

In CGMM the split between the coarse and fine mesh is realized using the
nodal interpolant as the inclusion operator Ic = Πc and the fine-scale equation
is solved on patches with a homogeneous Dirichlet boundary condition. Let
N be the number of nodes in the coarse mesh K and let Vc = span{φi}i∈N .
For each i ∈ N we need to solve the local problems: Find T̃ φi ∈ Vcg(ωL

i ) and
Uf,i ∈ Vcg(ωL

i ) such that

acg(T̃ φi, vf ) = −acg(φi, vf ), ∀vf ∈ Vcg
f (ωL

i ), (26)

acg(Uf,i, vf ) = l(φivf ), ∀vf ∈ Vcg
f (ωL

i ), (27)

where Uf =
∑

i∈N Uf,i.
The modified coarse scale problem is formulated as: Find Uc ∈ Vcg

c such
that

acg(Uc + T̃ Uc, vc + T̃ vc) = l(vc + T̃ vc)− acg(Uf , vc + T̃ vc), ∀vc ∈ Vcg
c . (28)

The approximate solution to the multiscale problem is U = Uc + T̃ Uc + Uf .

3.3 DGMM

For DGMM the split is done using the L2-projection onto the coarse mesh
Ic = Pc, so that Vc = PcV and Vf = (I −Pc)V. This should be a better choice
than the nodal interpolate because the L2-projection approximates the mean
value while the nodal interpolate gives an exact value in the nodes.

The fine-scale equations are solved on patches with homogeneous Neumann
boundary condition, which is a more natural choice and can be used because
DGMM can handle discontinuities between the basis functions. Let N be the
number of coarse nodes andMi contain all j such that φj is equal to one in node

i. For each i ∈ N we need to solve the local problems: find T̃ φj ∈ Vf (ωL
i ), ∀j ∈

Mi and Uf,i ∈ Vf (ωL
i ) such that

adg(T̃ φj , vf ) = −adg(φj , vf ), ∀vf ∈ Vdg
f (ωL

i ), (29)

adg(Uf,i, vf ) = l(Φivf ), ∀vf ∈ Vdg
f (ωL

i ), (30)

where Φi =
∑

j∈Mi
φj and Uf =

∑
i∈N Uf,i.

The modified coarse scale problem is formulated as: Find Uc ∈ Vdg
c such

that

adg(Uc + T̃ Uc, vc + T̃ vc) = l(φi + T̃ vc)− adg(Uf , vc + T̃ vc), ∀vc ∈ Vdg
c . (31)

The approximate solution to the multiscale problem is U = Uc + T̃ Uc + Uf .
An important property of DGMM is that it is close to be locally mass con-

servative. To be mass conservative means that the approximated solution U for
the multiscale problem satisfies

({α · ∇U} ·ne, 1)∂K = −(f, 1)K , (32)

for each K ∈ K. In (32) the term ({α · ∇U} ·ne, 1)∂K corresponds to the flux
over the boundary of K and (f, 1)K the created or destroyed mass in K. Let
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w ∈ Vdg be w=1 on element K and w = 0 on ∂K we have

({α · ∇U} ·ne, 1)∂K = ({α · ∇Uc} ·ne, 1)∂K + ({α · ∇T̃ U} ·ne, 1)∂K

+ ({α · ∇Uf} ·ne, 1)∂K) (33)

= −adg(U,w)− adg(T̃ U,w)− adg(Uf , w)

+
∑
e∈∂K

σe
|e|
(
([U ], 1)e + ([T̃ U ], 1)e + ([Uf ], 1)e

)
(34)

= −adg(Uf , w) +
∑
e∈∂K

σe
|e|

([U ], 1)e (35)

= −(f, 1) +
∑
e∈∂K

σe
|e|

([U ], 1)e, (36)

where equation (10) and adg(Uf , w) = (f, w) = (f, 1)K are used. The deviation
is computable and can if necessary be subtracted from the end result, see Section
2.4 for further analysis.

3.4 Implementation for DGMM

The algorithm used in the implementation is presented in Algorithm 1 and
is given an overview in Figure 5. Here N are the number of nodes in the
coarse mesh. The constraints on the fine scale Vf = (I − Ic)V is realized

Figure 5: Sketch over the implementation structure for DGMM

using Lagrangian multipliers. The spaces Vf and Vc are L2-orthogonal to each
other which means that (vc, vf ) = 0 for all vf ∈ Vf (ω) and vc ∈ Vc(ω). Let
Vc = span(φi) and Vf = span(ϕi), then the system of equations to be solved on
the fine scale is, (

K PT

P 0

)
ξ =

(
b
0

)
, (37)
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Algorithm 1 DGMM

1: Initialize the coarse mesh with mesh size hc.
2: Let the fine mesh size be hf = hc/2

n and the number of L-rings be L where
n,L are integers greater than 0.

3: for i ∈ N do
4: Determine the patch ωL

i .
5: Compute T̃ φj for all j ∈Mi by solving (29)
6: Compute Uf,i by solving (30)
7: Compute bj for all j ∈ Mi by solving the right hand side of (31) using

Uf,i and φj + T̃ φj
8: end for
9: Assemble the stiffness matrix K for and solve the modified problem Kβ = b

(31) .
10: The approximate solution to the multiscale problem is U =

∑
j βj(φj +

T̃ φj) +
∑

i Uf,i.

where

P =


(φ1, ϕ1) (φ1, ϕ2) . . . (φ1, ϕN )
(φ2, ϕ1) (φ2, ϕ2) . . . (φ2, ϕN )

...
...

. . .
...

(φM , ϕ1) (φM , ϕ2) . . . (φM , ϕN )

 . (38)

Here K is the stiffness matrix, b is the load vector and U =
∑

j ξϕj is the

solution to (37). For the coarse scale problem the condition
∫

Ω
u dx = 0 is

added to get a full rank matrix, this condition is realized using Lagrangian
multipliers. All the code was implemented in MATLAB.

3.5 Choice of penalty parameter σ

The penalty parameter σe in (10) is chosen as σe = C(
(kK+

1 )2

kK+
0

+
(kK−

1 )2

kK−
0

) where

kKo x
Tx ≤ xTα(x)x ≤ kK1 x

Tx, ∀x ∈ K. Here e is the common side of K+

and K−. The constraint’s is inspired by [7] where they derive a strict C for
triangular meshes. In the case of piecewise constant function on each element
the penalty parameter is σe = C(kK

+

+ kK
−

) where kK is the value of α in
element K. The same choice of the penalty parameter σ is used both when
solving the coarse and fine scale equations.
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4 Numerical Results

4.1 Decay of basis functions for CGMM and DGMM

Let the domain be Ω = ωL
i and the forcing function f = φi − 1

|Ω|
∫

Ω
φi on ω1

i

and f = 0 otherwise, where φi ∈ Vc is a coarse basis function. Let us look at
the model problem (1) for L = 1, 2, . . . , N . For each L we add one more layer
of L-rings around φi. The discrete weak formulation of the problem reads: find
u ∈ W such that,

a(u, v) = l(v), ∀v ∈ W, (39)

where W = {v ∈ Vh : Pcv = 0}, here Vh = Vcg for CGMM and Vh = Vdg

for DGMM. The decay of the L2-norm on the boundary ‖u‖L2(∂Ω) and the

(a) One (b) Rand (c) SPE

Figure 6: Permeability structure for One (a), Rand (b) and SPE (c) projected
in log scale.

convergence of the energy norm |||UL − UN ||| for L = 1, . . . , N when N = 4. A
few different multiscale coefficients a with different characters is investigated.

The test was done using the following permeabilities, One then a=1, Rand
then a has uniformly distributed random numbers between (0, 1] and SPE data
is taken from the tenth SPE comparative solution project and has amax/amin =
2.3584 · 104. The different permeabilities are shown in Figure 6.

Exponential decay is observed with respect to the number of L-rings for
‖u‖L2(∂Ω) of the solution, presented in Figure 7 using L = 1, 2, 3, 4. The speed
of convergences in the energy norm is shown in Figure 8. Because of the quick
decay this means that we can solve the localized fine-scale problems on a subset
ωL
i ⊂ Ω using a small number of L-rings to get a good approximation of the

solution, which in turn means less computational work and the overlap between
the localized problems will also be less. The DG method converges both faster
to UN in the energy norm and has a faster decay on the boundary. Hence, fewer
L-rings are needed for solving the local problems using DG than for CG test
spaces to achieve the same accuracy.
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Figure 7: Decay of the solution ‖u‖L2(∂Ω) in equation (39) for different perme-
ability using continuous Galerkin (solid line) and discontinuous Galerkin (dashed
line) on the space W = {v ∈ Vh : Pcv = 0}.

Figure 8: Convergence of |||UL − U4||| when L = 1, 2, 3 in equation (39) for
different permeability using continuous Galerkin (solid line) and discontinuous
Galerkin (dashed line) on the space W = {v ∈ Vh : Pcv = 0}.
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4.2 Convergence of CGMM

Let Ω = (0, 1) × (0, 1) be the computational domain, further let K = {K} be
a coarse mesh defined on Ω with N × N square elements where each element
K ∈ Kc is further subdivided into M ×M square elements. The model problem
(1) is solved using the forcing function

f(x, y) = 2π2 cos(πx) cos(πy), (40)

and with the different multiscale structures One, Rand and SPE. When the mul-
tiscale structure is One then a=1, with Rand then a is a uniformly distributed
pseudo random numbers between (0,1] on each element and with SPE the data
is taken from the tenth SPE comparative solution data set and shown in Figure
9.

(a) One (b) Rand (c) SPE

Figure 9: Permeability layer from the tenth SPE comparative solution data set
projected in log scale.

The convergence is measured in the relative energy norm

E(UL) =
|||UL − Ur|||
|||Ur|||

, (41)

where Ur is a reference solution computed on a fully resolved mesh with NM ×
NM square elements. The numerical test was done using N = 16, M = 8 and
by letting L increase i.e. L = 1, 2, . . . , N such that ωN

i = Ω for all i. Here UL

is the solution using the computational domain ωL
i for each patch when solving

the fine-scale problems.
In Figure 10 exponential decay is observed for the different permeabilities

One, Rand and SPE, with respect to the number of L-rings in the for relative
energy norm E(UL).
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Figure 10: Convergence in the relative energy norm E(UL), equation (41), when
L increases using the different permeabilities One, Rand and SPE for CGMM.

4.3 Convergence of DGMM

Here the same setup as in Section 4.2 is used, The model problem (1) is solved
using the permabilities One, Rand and Spe with the forcing function (40) and
Ω is split into N ×N coarse square elements where each coarse element K ∈ Kc

is further subdivided into M ×M fine square elements. The error is measured
in the relative energy norm (41).

In Figure 11, exponential decay is observed for the different permeabilities
One, Rand and SPE, with respect to the number of L-rings in the relative energy
norm E(UL).
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Figure 11: Convergence in relative energy norm E(UL), equation (41), when L
increases using the different permabilities One, Rand and SPE for DGMM.

5 Conclusions

Both CGMM and DGMM has exponential decay when increasing the number
of L-rings for the patches. In practice when solving multiscale problem seldom
more than a few L-rings are needed to get a sufficient solution. In Figure 12,
CGMM and DGMM are compared for the first three layers. In the case of
permeability One in Figure 12(a) and permeability Rand in Figure 12(b), the
accuracy are approximately the same for CGMM and DGMM when using one
layer less for DGMM. This is not the case when using permeability SPE in
Figure 12(c) even though the DGMM solution is more accurate for the same
number of layers. This could depend on the choice of penalty parameter σe.
Using a larger σe in the case of permeability One and Rand, the plot of the
error for DGMM is approaching the plot of error for CGMM in a similar way
as in Figure 12(c). Typically DG gives a better solution for discontinuous data
than FEM. This effect can not be seen in our experiments since we compare
with FEM and DG as reference solutions.
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(a) One (b) Rand

(c) SPE

Figure 12: Comparing the relative energy norm E(UL) for CGMM and DGMM
on the first three layers using the different permeabilities One (a), Rand (b)
and SPE (c)

The degrees of freedom for solving fine-scale problem is (n(2L− 1) + 1)d for
CGMM and (2n(2L−1))d for DGMM. Here n is the number of elements for each
spatial direction for a one layer patch and d the is the spatial dimension. Let us
say that the acquired accuracy is obtained by using two layers for CGMM and
one layers for DGMM. Then each fine-scale problem has (3n + 1)d degrees of
freedom when using CGMM and (2n)d degrees of freedom when using DGMM,
which means that in this case it takes less computational work to solve each
fine scale equation and the overlap between the localized problems will also be
less, see Table 1. DGMM also has the desired property that it is close to be

Table 1: Let n be the number of elements for each spatial direction for a one layer
patch in the mesh. This shows the degree of freedom for the fine scale problems
using a different number of L-rings. Without parenthesis is the amount of layers
for CGMM and with parenthesis is for DGMM.

layers CGMM DGMM
1 (n+ 1)d −

2 (1) (3n+ 1)d (2n)d

3 (2) (5n+ 1)d (6n)d

4 (3) (7n+ 1)d (10n)d
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locally mass conservative, which is very important property in flow calculations.
This means that without using heavier computations we obtain a close to mass
conservative more accurate multiscale method. A completely mass conservative
method could be obtained by using a non-symmetric DG method.
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