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Abstract

In this thesis a new multiscale method, the discontinuous Galerkin multi-
scale method, is proposed. The method uses localized fine scale computa-
tions to correct a global coarse scale equation and thereby takes the fine
scale features into account. We show a priori error bounds for convection
dominated convection-diffusion-reaction problems with variable coefficients.
We present an posteriori error bound in the case of no convection or reaction
and an adaptive algorithm which tunes the method parameters automati-
cally. We also present extensive numerical experiments which verify our
analytical findings.
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Chapter 1

Introduction

Computer simulations of problems which involve features on multiple scales,
normally referred to as multiscale problems, is one of the greatest challenges
in scientific computing today. Examples include the simulation of flow in
a porous medium and composite materials. To obtain a numerical solution
within an acceptable tolerance, the data in the problem needs to be resolved.
Resolving the data using standard numerical methods can be very compu-
tationally demanding or even impossible for many multiscale problem.

To be able to cope with the computational issues in multiscale problems,
many different methods have been developed during the last twenty years,
often referred to as multiscale methods (Chapter 3). A common feature for
these methods is that the problem is split into a coarse and fine scale, where
fine scale sub-problems are solved (in parallel) on localized patches of the
computational domain. The solutions to the sub-problems are then used to
modify the coarse scale equation such that the fine scale behavior is taken
into account.

Main contributions

The main contributions of this thesis are the following:

• The development of a new multiscale method, the “Discontinuous
Galerkin multiscale method”, using the framework for the variational
multiscale method and the discontinuous Galerkin method for Pois-
son’s equation with variable coefficients. See Paper I, II, and III.

• A priori error bounds with respect to the coarse mesh size, indepen-
dent of the variation in data and without any assumption on scale
separation or periodicity. See Paper III.

7



• Development of an adaptive algorithm, using a posteriori error bounds,
to tune the method parameters in order to get efficient and reliable
approximations. See Paper II.

• The development of a multiscale method for convection dominated
problems together with a proof of convergence under mild assumptions
on the magnitude of the convection term. See Paper IV.

Future work

There are many aspects in multiscale methods which still are relatively new
and open for research. A few examples which would be interesting to inves-
tigate further are:

• Construction of an adaptive algorithm which balances the error caused
by the uncertainty in the data and the discretization error, which are
two important error sources for multiscale problems.

• Implement the methods on parallel machines to allow 3D simulations.

• Consider non-linear convection dominated problems with applications
in two-phase flow, where systems of a coupled convection dominated
transport equations and elliptic pressure equations arise.
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Chapter 2

Setting end discretization

In this chapter the model problem and discrete setting, which the multiscale
method is based on, are discussed. For simplicity we only consider the
Poisson’s equation with variable coefficients. For a discussion on convection-
diffusion-reaction problems, we refer to Paper IV.

2.1 Model problem

We seek a (weak) solution u to,

−∇ ·A∇u = f in Ω,

u = 0 on ∂Ω,
(2.1)

where A is given data describing the properties of the medium, f is an
external forcing, and Ω is a domain with boundary ∂Ω. For (2.1) to be
characterised as a multiscale problem A varies on several different scales.
This equation models diffusion processes and appears frequently in many
different areas of science.

2.2 The finite element method

The finite element method, see e.g. [4] for an overview, approximates the
weak (or variational) form of (2.1). The finite element method has a strong
mathematical foundation which gives efficient tools for showing both a priori
and a posteriori error bounds. Let V be an infinite dimensional space of suf-
ficiently smooth functions, e.g., the Sobolev space V = {v ∈ H1(Ω) | v|∂Ω =
0}). The variational formulation is obtained by multiplying (2.1) with a test
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function v and integrating over the domain Ω. The weak formulation reads:
find u ∈ V such that,

a(u, v) :=

∫
Ω
A∇u · ∇v dx =

∫
Ω
fv dx =: F (v) for all v ∈ V. (2.2)

Since there typically is no analytical solution to (2.2), we seek a solution
in a finite dimensional subset Vc

H ⊂ V, which can be the space of contin-
uous piecewise polynomials on a given the mesh TH . The finite element
approximation reads: find uH ∈ Vc

H such that

a(uH , v) = F (v), for all v ∈ Vc
H . (2.3)

For the solution uH to give a good approximation, the mesh TH needs to
resolve the variation in A. For many real life problems this assumption is
very computational demanding to fulfill.

2.3 Discontinuous Galerkin methods

An interesting alternative to standard (conforming) finite element methods
is the discontinuous Galerkin (dG) method. In dG methods there is no
continuity constraint imposed on the approximation spaces. Instead the
continuity is imposed weakly, i.e., the dG method allows for jumps in the
numerical solution between different elements in the mesh. However, these
jumps tends to zero as the mesh size decreases.

The first dG method was introduced in [26] for numerical approximations
of first order hyperbolic problems. Error bounds are shown, in e.g. [21] and
[19]. DG methods for elliptic problems, so called interior penalty methods,
arise from an observation in [24], that essential boundary condition can be
imposed weakly. In interior penalty methods the inter element continuity is
imposed weakly. Some early work are [28, 6, 2]. See also [13, 5, 27] for a
literature review for dG methods.

The approximation space for the dG method, VH , is the space of piece-
wise discontinuous polynomials, i.e, dG methods uses a non-conforming
ansatz VH �⊂ V. The dG method has a higher number of degrees of freedom
than standard continuous Galerkin methods, but has the advantages that
non-conforming meshes can be used and that it does not suffer from stability
issues for first order or convection dominated PDEs. Also, the dG method
is perfectly suited for hp-adaptivity, where both the mesh size and the order
of the polynomials can vary over the domain, see e.g. [16]. Since the dG
method seek the solution in a space which consists of piecewise polynomials
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without any continuity constraints, a modified bilinear form has to be used.
In the bilinear form the continuity is imposed weakly, i.e., there is a penalty
which forces the jump in the approximate solution to decrease when the
mesh-size decreases. Let TH be a given mesh and EH be the set of edges of
the elements in TH . For two elements T+ and T− sharing a common edge,
e := T+ ∩ T−, the jump and averages on e are defined as

{v} =
1

2
(v|T+ + v|T−) and [v] = v|T+ − v|T− (2.4)

in the interior and as {v} = [v] = vT on the boundary. Defining νe to be
the unit normal pointing from T+ to T−, H : Ω → R to be the mesh-size
defined element-wise as H|T = diam(T ), and σe to be a edge-wise constant
depending on A. The bilinear form for the dG method is defined as

aH(u, v) =
∑
T∈TH

∫
T
A∇u · ∇v dx

−
∑
e∈EH

∫
e

(
νe · {A∇u}[v] + νe · {A∇v}[u]− σe

h
[u][v]

)
ds.

(2.5)

where σe is chosen large enough to makes the bilinear form coercive in the
standard dG energy norm, which is defined as

|||v||| =

⎛
⎝ ∑

T∈TH
‖A1/2∇v‖2L2(T ) +

∑
E∈EH

σe
h
‖[v]‖2L2(e)

⎞
⎠

1/2

. (2.6)

The dG method reads: find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH . (2.7)

Discontinuous Galerkin methods as well as conforming finite element
methods perform badly when the smallest length scale of the medium is not
resolved. However, dG methods has the advantage in treating discontinuous
coefficients, convection dominated problems, mass conservation, and flexi-
bility of the underling mesh, all which are crucial issues in many multiscale
problems including e.g. porous media flow.
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Chapter 3

Multiscale method

In the last two decades there have been a lot of research on multiscale
methods. Some important contributions are the Multiscale Finite Element
Method (MsFEM) introduced in [15, 14] (see also [11, 10]), the heteroge-
neous multiscale method (HMM), introduced in [7] (see also [8, 9]), and
the variational multiscale method (VMS) introduced in [17, 18] (see also
[20, 22, 23]). Common for all these approaches is that local sub-problem are
solved on fine scale patches which locally resolve the variations in the data,
and that the solutions to the sub-problems are used to modify a coarse scale
space or equation.

It is known that standard (one mesh) finite element methods perform
badly when the mesh does not resolve the variations in the coefficients de-
scribing the medium, see e.g. [3]. In this thesis we propose a multiscale
method, using the framework from dG and VMS, which converges to a fine
scale reference solution, independent of the variations in A or regularity of
the underlying solution.

3.1 Multiscale decomposition

To make a multiscale decomposition, we need a coarse mesh TH , and a fine
mesh Th constructed by (possible adaptive) refinements of TH . We let VH

and Vh be the discontinuous Galerkin approximation spaces on TH and Th,
respectively. We assume that the fine mesh Th resolves the smallest length
scale of the data, A. The reference dG solution is given by: find uh ∈ Vh

such that

ah(uh, v) = F (v) for all v ∈ Vh. (3.1)
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We assume uh to be a sufficiently good approximation to u. The space
Vh is split into a coarse and a fine scale contribution. To this end, let
ΠH : L2(Ω) → VH be the element-wise L2-projection onto the coarse space
VH and note the we can express the coarse space as VH = ΠHVh. The fine
space is defined by

Vf = (1−ΠH)Vh = {v ∈ Vh | ΠHv = 0}. (3.2)

Any function vh ∈ Vh can be decomposed into a coarse contribution, vH ∈
VH , and fine scale remainder, vf ∈ Vf , i.e., vh = vH + vf . Choosing VH as
the coarse space the fine scale remainder vf is large and oscillatory and does
not decay until TH resolves the variations in the data. In the next section
we construct a (corrected) coarse space which takes the fine scale features
into account.

3.2 Discontinuous Galerkin multiscale method

The aim of our proposed discontinuous Galerkin multiscale method is to
construct a corrected basis which takes the fine scale features of the data
into account, i.e., the corrected basis has both a coarse and fine scale con-
tribution. The coarse contribution comes from the coarse discontinuous
Galerkin approximation space spanned by the element-wise Lagrange ba-
sis, i.e., VH = span{λT,j |T ∈ TH , j = 1, . . . , r} where r is the number
of basis functions on each element T . For each of the basis functions,
{λT,j | T ∈ TH , j = 1, . . . , r}, we will compute a corrector as follows: find
φT,j ∈ Vf such that

ah(φT,j , v) = ah(λT,j , v) for all v ∈ Vf . (3.3)

It is not feasible in real computations to solve (3.3) for each coarse basis
function since it evolves a variational problem on the entire domain. Instead,
since the correctors, φT,j , decay exponentially away from the support of λT,j

the computations of the corrector function will be done on small patches of
the domain. To this end, let ωT ⊂ Ω be a patch centered at element T and
define Vf (ωT ) = {v ∈ Vf | v|Ω\ωT

= 0}. The localized corrector functions

are calculated as follows: for all T ∈ TH , j = 1, . . . , r, find φT,j ∈ Vf (ωT )
such that

ah(φT,j , v) = ah(λT,j , v) for all v ∈ Vf (ωT ). (3.4)

The corrected coarse space is defined Vms
H := {λT,j − φT,j | T ∈ TH , j =

1, . . . , r}, and the discontinuous Galerkin multiscale method reads: find
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ums
H ∈ Vms

H such that

ah(u
ms
H , v) = F (v) for all v ∈ Vms

H . (3.5)

We have the following a priori error bound

|||u− ums
H ||| ≤ |||u− uh|||+ CH, (3.6)

choosing the patch size to O(H log(H−1)), where H is the mesh size. For a
more elaborate discussion, see Paper III for Poisson’s equation with variable
coefficients, and Paper IV for convection dominated problems.

3.3 Adaptive discontinuous Galerkin
multiscale method

For porous media flow problems the permeability in the ground can vary
with several orders of magnitudes over the entire domain. Which motivates
the use of an adaptive multiscale method to tune the method parameters
in order to obtain an efficient and reliable solution. For adaptive multi-
scale methods, see e.g [20, 25, 12, 1]. In Paper II an adaptive discontinuous
Galerkin multiscale method is presented. It is a slight variation to the discon-
tinuous Galerkin multiscale method presented in Section 3.2 (Paper III) in
the sense that a fine scale corrector for the right hand side is present. Given
a uniform or possibly an adaptive coarse mesh TH , the adaptive discontin-
uous Galerkin multiscale method balances the error caused by truncation
of the patches and the fine scale discretization error. The a posteriori error
bound takes the form

|||u− ums
H ||| ≤ C1

⎛
⎝∑

S∈Th
ρ2S(u

ms
H )

⎞
⎠

1/2

+ C2

⎛
⎝ ∑

T∈TH
ρ2ωT

(ums
H )

⎞
⎠

1/2

, (3.7)

where ρ2S is an error indicator which measure the effect of the local fine scale
mesh size, and ρ2ωT

is an error indicator measuring the effect of the truncated
patches. Because of the general nonconforming meshes allowed using dG,
it is easy to construct a global reference grid for the localized fine scale
computations. This takes advantage of the cancellation of error between
different fine scale patches and also formulates the dG multiscale method
into the convergence framework presented in Paper III. A more elaborate
discussion can be found in Paper II.
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Chapter 4

Summary of papers

4.1 Paper I

D. Elfverson and A. Målqvist. Finite Element Multiscale Methods for Pos-
sion’s Equation with Rapidly Varying Heterogeneous Coefficients. In Proc.
10th World Congress on Computational Mechanics, p 10, International As-
sociation for Computational Mechanics, Barcelona, Spain, 2012.

An abstract framework for constructing finite element multiscale methods
based on the VMS is presented. Using this framework we propose and com-
pare two different multiscale methods, one based on the continuous Galerkin
finite element method and one on the discontinuous Galerkin finite element
method. The continuous Galerkin multiscale method uses local Dirichlet
problems and the discontinuous Galerkin multiscale method uses local Neu-
mann problems, for the localized fine scale problems.

4.2 Paper II

D. Elfverson, G. H. Georgoulis and A. Målqvist. An Adaptive Discontinuous
Galerkin Multiscale Method for Elliptic Problems. To appear in Multiscale
Modeling and Simulation (MMS).

We present an adaptive discontinuous Galerkin multiscale method driven by
an energy norm a posteriori error bound. The a posteriori error bound is
used within an adaptive algorithm to tune the critical parameters, i.e., the
refinement level and the size of the different patches on which the fine scale
constituent problems are solved. We solve local Dirichlet problem instead
for Neumann problem (Paper I) for the localized fine scale problems.
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4.3 Paper III

D. Elfverson, G. H. Georgoulis, A. Målqvist, and D. Peterseim. Convergence
of a Discontinuous Galerkin Multiscale Method. In review in SIAM Jour-
nal on Numerical Analysis (SINUM), available as preprint arXiv:1211.5524,
2012.

A convergence result for a discontinuous Galerkin multiscale method for a
second order elliptic problem is presented. The method differs from the one
proposed in Paper II in the sense that right hand side correction term is not
present. We prove that the error, due to truncation of corrected basis, de-
creases exponentially with the size of the patches. The same corrected basis
as in Paper II is used. We also discuss a way to further localize the corrected
basis to element-wise support leading to a slight increase of the dimension
of the space. Improved convergence rate can be achieved depending on the
piecewise regularity of the forcing function. Linear convergence in energy
norm and quadratic convergence in L2-norm is obtained independently of
the forcing function.

4.4 Paper IV

D. Elfverson and A. Målqvist. Discontinuous Galerkin Multiscale Methods
for Convection Dominated Problems. Technical Report 2013-011, Depart-
ment of Information Technology, Uppsala University, 2013.

In this paper we extend the discontinuous Galerkin multiscale method in
Paper III to convection dominated problems. The advantages of the mul-
tiscale method and the discontinuous Galerkin method allows us to better
cope with multiscale features and boundary layers in the solution. We prove
decay of the corrected basis functions as well as an a priori error bound for
the multiscale method.
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Paper I





FINITE ELEMENT MULTISCALE METHODS FOR POISSON’S EQUATION
WITH RAPIDLY VARYING HETEROGENEOUS COEFFICIENTS

D. Elfverson1, A. Målqvist1

1 Department of Scientific Computing, Uppsala University (daniel.elfverson@it.uu.se)

Abstract. An abstract framework for constructing finite element multiscale methods is pre-
sented. Using this framework we propose and compare two different multiscale methods,
one based on the continuous Galerkin finite element method and one on the discontinuous
Galerkin finite element method. In these multiscale methods the solution is split into coarse
and fine scale contributions. The fine scale contribution is obtained by solving localized con-
stituent problems on patches and is used to obtain a modified coarse scale equation. The
localized constituent problems are completely parallelizable i.e, no communication between
the different problems are needed. The modified coarse scale equation has considerably less
degrees of freedom than the original problem. Numerical experiments are presented where
the effect of the patch size of the local constituent problems as well as the convergence of the
multiscale methods are investigated and compared for the proposed multiscale methods. We
conclude that for a given accuracy and a fixed number of patches, smaller patches can be
used for the discontinuous Galerkin multiscale method compared to the continuous Galerkin
multiscale method.

Keywords: finite element methods, discontinuous Galerkin, multiscale methods

1. INTRODUCTION

There are numerous applications which involves solutions that varies over several dif-

ferent scales, for example flow in porous media such as oil reservoir simulations and CO2

storage. These, so called multiscale problems, are often impossible to solve with standard

single mesh methods since the finest scale needs to be resolved to get a reliable result, see e.g.

[5].

To resolve this problem several multiscale methods have been developed during the

last two decades e.g., the Multiscale Finite Element Method (MsFEM) by Hou and Wu [9] and

the Variational Multiscale Method (VMS) by Hughes [10]. See also [8,7,12] and references

therein for recent development and exposition. Using the framework of the Variational Mul-

tiscale Methods Larson and Målqvist introduced the Adaptive Variational Multiscale method

[11]. This method has further been developed in [12], where the framework for constructing

multiscale methods used in this paper is presented and further discussed.



Lately, there have been a lot of interest in discontinuous Galerkin multiscale methods.

Discontinuous Galerkin (DG) methods appeared in the 1970s; see [3,6] for some early work

for elliptic problem and [4,14,15] for a literature review. A desired property with DG methods

is that they admits good conservation properties of the state variable and are ideally suited for

application to complex and irregular meshes. Conservation is a crucial property for multiscale

problems. Recently proposed multiscale discontinuous Galerkin methods include e.g., [1]

based on the MsFEM, and [2] based on the Heterogeneous Multiscale Method.

In this paper a continuous Galerkin multiscale method and a discontinuous Galerkin

multiscale method for solving Poisson’s equation with rapidly variable heterogeneous coef-

ficients are studied. The continuous Galerkin version was first presented in [11], while the

DG version is new. In the proposed multiscale method the solution is split into coarse and

fine scale contributions. The fine scale contribution is obtained by solving localized con-

stituent problems on patches and is used to obtain a modified coarse scale equation. Both a

symmetric and a non-symmetric version of the modified coarse scale equation are presented.

Numerical experiments are presented, where the size needed for the constituent problems to

get a sufficient approximation as well as the convergence of the different multiscale meth-

ods, are investigated. We conclude that for a given accuracy and a fixed number of patches,

smaller patches can be used for the discontinuous Galerkin multiscale compared to the contin-

uous Galerkin multiscale method. On the coarse scale the discontinuous Galerkin multiscale

method is approximating the L2-projection, rather than the nodal values, which is the case for

continuous Galerkin multiscale method. The property of approximating the L2-projection is

preferable in a multiscale setting. Also, DG has better conservation properties than CG.

The precise setting of the paper is the following. We consider the following model

problem:
−∇ · α∇u = f u ∈ Ω,

n · ∇u = 0 u ∈ ∂Ω,
(1)

where Ω ⊂ R
d for d = 1, 2, 3, is a polygonal domain and α ∈ L∞(Ω), such that α > β >

0, β ∈ R has multiscale structure. Equation (1) has a unique solution u ∈ H1(Ω) up to a

constant for each f ∈ L2(Ω) provided that
∫
Ω
f dx = 0 is satisfied. Defining the L2-scalar

product as (·, ·)L2(ω) on a domain ω ⊆ Ω, the weak formulation of (1) reads: find u ∈ V = H1

such that

(α∇u,∇v)L2(Ω) = (f, v)L2(Ω), ∀v ∈ V . (2)

The rest of the paper is organized as follows. In Section 2, we present the different

finite element methods needed to construct the multiscale methods. In Section 3 an abstract

framework for constructing multiscale methods as well as the specific multiscale methods

used in the numerical examples are proposed. Section 4, is devoted to some implementation

details. Finally, in Section 5 numerical experiment are presented.

2. FINITE ELEMENT METHODS

Let K = {K} be a shape-regular mesh and let Γ denote the set of all edges (or faces

in 3D) of the mesh K. The set Γ is the union of two disjoint subsets Γ = ΓI ∩ ΓB, where ΓI

is the union of the interior edges and ΓB the union of the boundary edges. Given an interior



edge e = ∂K+ ∩ ∂K− ⊂ ΓI for K+, K− ∈ K, denote K+ the element with the higher index

and n as the outward unit normal of K+ on e. Defining v+ := v|∂K+ and v− := v|∂K− , we set

the average and jump operator as,

{v} =
1

2
(v+ + v−), [v] = v+ − v−, (3)

for e ∈ ΓI and

{v} = v+, [v] = v+, (4)

for e ∈ ΓB. Also, for a non negative integer p, we denote by Pp(K), the set of all polynomials

on K of total degree at most p.

2.1. Continuous Galerkin method

In the continuous Galerkin (CG) finite element discretization we are using a conform-

ing approximation of the test space i.e., Vh = {v ∈ V : v|K ∈ Pp(K), ∀K ∈ K} ⊂ V .

Given a bilinear form Bcg : V × V → R and a linear functional Fcg : V → R, the continuous

Galerkin method reads: find uh ∈ Vh such that

Bcg(uh, v) := (α∇uh,∇v)L2(Ω) = (f, v)L2(Ω) =: Fcg(v), ∀v ∈ Vh. (5)

2.2. Discontinuous Galerkin method

In the discontinuous Galerkin method discretization we use a non-conforming approx-

imation i.e., Sh = {v ∈ L2(Ω) : v|K ∈ Pr(K),K ∈ K} 	⊂ V . The discontinuous Galerkin

method reads: find uh ∈ Sh such that

Bdg(uh, v) = Fdg(v), ∀v ∈ Sh, (6)

where the bilinear form Bdg : Sh × Sh → R and the linear functional Fdg : Sh → R are given

by

Bdg(v, z) :=
∑
K∈K

(α∇v,∇z)L2(K) −
∑
e∈ΓI

(
(n · {α∇v}, [z])L2(e) (7)

+ (n · {α∇z}, [v])L2(e) −
σe

he

([v], [z])L2(e)

)
,

Fdg(v) :=(f, v)L2(Ω), (8)

respectively; here he := diam(e), and σe ∈ R is a positive constant, depending on the variable

α, large enough to make the bilinear form (7) coercive with respect to the natural energy norm.

We refer, e.g., to [14,4] and references therein for details on the analysis of DG methods for

elliptic problems.

3. ABSTRACT MULTISCALE METHOD

In the VMS framework, the fine scale finite element space, Wh, is decoupled into

coarse and fine scale contributions Wh = Wc ⊕ Wf , where Wc is associated with a coarse



mesh Kc. The split between the coarse and the fine scales is determined by an inclusion

operator Ic : Wh → Wc. The coarse and fine scale contributions are defined as, Wc := IcWh

and Wf := (I − Ic)W = {v ∈ W : Icv = 0}. There are several different chooses of Ic e.g.

the L2-projection onto Wc or the nodal interpolant onto the coarse mesh. Let B : W×W → R

be a bilinear form, we can then define a multiscale map T : Wc → Wf from the coarse to the

fine scale as

B(T vc, vf ) = −B(vc, vf ) ∀vc ∈ Wc and ∀vf ∈ Wf . (9)

The reference solution and the test function can be decomposed into a coarse and fine-scale

contribution; uh = uc + T uc + uf , v = vc + vf where uc, vc ∈ Wc and (T uc + uf ), vf ∈ Wf .

The multiscale problem reads: find uc ∈ Wc and vf ∈ Wf such that

B(uc + T uc + uf , vc + vf ) = F(vc + vf ), ∀vc ∈ Wc and ∀vf ∈ Wf . (10)

The fine scale component uf can be computed by letting vc = 0 in (10) and using the multi-

scale map (9). We arrive to the problem: find uf ∈ Wf such that

B(uf , vf ) = F(vf ), ∀vf ∈ Wf . (11)

The coarse scale solution is obtained by letting vf = 0 in (10): find uc ∈ Wc such that

B(uc + T uc, vc) = F(vc)− B(uf , vc), ∀vc ∈ Wc. (12)

In (12), T uc and uf are unknown and obtained by solving (9) and (11). Note that B(uc +

T uc, T vc) = 0 and B(uf , T vc) = F(T vc). Then a symmetric formulation of the coarse scale

problem is obtained by considering

B(uc + T uc, vc + T vc) = F(vc + T vc)− B(uf , vc + T vc), ∀vc ∈ Wc. (13)

The linear systems (12) and (13) has dim(Wc) unknowns, but (9) and (11) are equally hard to

solve as the original problem and need to be approximated.

3.1. Localization of the multiscale method

Let N be the index set of all nodes, {xi}, in the mesh Kc. Further, given that the

coarse space is spanned by basis functions Wc = span{φj}, let Mi be the index set of all φj

such that φj(xi) = 1, in the continuous setting Mi = {i} and in the discontinuous case Mi

have several entries. For each basis function φj we solve: find T φj ∈ Wf such that

B(T φj, vf ) = −B(φj, vf ), ∀vc ∈ Wf , (14)

where φj + T φj can be viewed as a modified basis function. Because the fast decay of

φj + T φj away from supp(φj), see [13] for the conforming case, we can solve (9) on small

overlapping patches ωi ⊂ Ω for each basis function φj where j ∈ Mi. Defining Wf (ωi) to

be Wf restricted to the patch ωi, (9) is transformed to: for each i ∈ N and j ∈ Mi find

T̃ φj ∈ Wf (ωi) such that

B(T̃ φj, vf ) = −B(φj, vf ), ∀vf ∈ Wf (ωi) (15)

The term (11) can be handled in i similar fashion by splitting the right hand into local contri-

butions using a partition of unity. The size of the patches is determined by adding a superscript

L, ωL
i , as in Definition 1.



Definition 1 Let {φj : j = 1, . . . , dim(Wc)} be the Lagrange basis (continuous or discontin-
uous) of Wc. The sum Φi :=

∑
j∈Mi

φj constructs a standard continuous Lagrangian basis
function. We say that ω1

i is an 1-layer patch, if ω1
i = supp(Φi). Further, we say that ωL

i is an
L-layer patch if

ωL
i = ∪{i:supp(Φi)∩ωL−1

i }�=Øsupp(Φi), L = 2, 3, . . . . (16)

Finally, the set ωL
i \ωL−1

i will be referred to as an L-ring. This is illustrated in Figure 2.

ω
1

i

i

i

ω
2

Figure 1. Example of a 1 layer patch ω1
i and 2 layer patch ω2

i around node i.

3.2. Continuous Galerkin multiscale method

The split between the coarse and fine scale spaces, Vh = Vc ⊕ Vf , is realized by

choosing the inclusion operator to be the nodal interpolant; Ic = Πc. To keep the conformity

of the method the fine scale problem is solved on patches using Dirichlet boundary condition.

The multiscale problem reads: for all i ∈ N find T̃ φi, Uf,i ∈ Vf (ω
L
i ) such that

Bcg(T̃ φj, v) = −Bcg(φj, v), ∀vf ∈ Vf (ω
L
i ),

Bcg(Uf,i, v) = Fcg(φiv), ∀vf ∈ Vf (ω
L
i ).

(17)

The modified coarse scale equations is then formulated as: find Uc ∈ Vc such that

Bcg(Uc + T̃ Uc, vc) = Fcg(vc)− Bcg(Uf , vc), ∀vc ∈ Vc, (18)

for the non-symmetric formulation and as

Bcg(Uc + T̃ Uc, vc + T̃ vc) = Fcg(vc + T̃ vc)− Bcg(Uf , vc + T̃ vc), ∀vc ∈ Vc, (19)

for the symmetric formulation. The solution to the multiscale problem is U = Uc+ T̃ Uc+Uf

where Uf =
∑

i∈N Uf,i.



3.3. Discontinuous Galerkin multiscale method

Exploiting the discontinuous nature of Sh the split between the coarse and fine spaces,

Sh = Sc ⊕ Sf , is realized by choosing the inclusion operator to be the element wise L2-

projection onto Sc; Ic = Pc. This is more natural in a multiscale setting since the coarse scale

solution approximate the average on each coarse element rather than the nodal values. The

discontinuous nature of Sh also allows for using Neumann boundary conditions on the fine

scale problems. With Vc = span{φj}, we need to solve the fine scale problem: for all i ∈ N
and j ∈ Mi where Φi =

∑
j∈Mi

φj find T̃ φj, U
f
i ∈ Sf (ω

L
i ) such that

Bdg(T̃ φj, v) = −Bdg(φj, v), ∀vf ∈ Sf (ω
L
i ),

Bdg(U
f
i , v) = Fdg(Φiv), ∀vf ∈ Sf (ω

L
i ).

(20)

The modified coarse scale equations are formulated as: find Uc ∈ Sc such that

Bdg(Uc + T̃ Uc, vc) = Fdg(vc)− Bdg(Uf , vc), ∀vc ∈ Sc, (21)

for the non-symmetric formulation or

Bdg(Uc + T̃ Uc, vc + T̃ vc) = Fdg(vc + T̃ vc)− Bdg(Uf , vc + T̃ vc), ∀vc ∈ Sc, (22)

for the symmetric formulation. The solution to the multiscale problem is U = Uc+ T̃ Uc+Uf

where Uf =
∑

i∈N Uf,i.

4. IMPLEMENTATION

In the proposed multiscale method, the fine scale problem is perfectly parallelizable

i.e., no communication between different fine scale problems are required. Algorithm 1 shows

how the multiscale methods can be implemented. Note that the outer for-loop is perfectly

parallel. An schematic overview is given in Figure 2 where the lines between the boxes

represent communication. Also, note that the assembly of the coarse stiffness matrix and load

vector is also done in parallel, in the fine scale problems. The extra constraints on the fine

scale problems are realized using Lagrange multipliers

Algorithm 1 Multiscale Method

1: Initialize the coarse mesh with mesh size H .

2: Let the fine mesh size be h = H/2n and the size of the patches L.

3: for i ∈ N do
4: Determine the patch ωL

i .

5: for j ∈ Mi do
6: Compute the fine scale contribution for the modified basis functions T̃ φj .

7: end for
8: Compute the right hand side correction U f

i .

9: end for
10: Solve the modified coarse scale problem to obtain Uc.
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Figure 2. Implementation scheme of the discontinuous Galerkin multiscale method.

5. NUMERICAL EXPERIMENTS

5.1. Decay of modified basis functions

Consider the domain ωL
i , for L = 1, . . . , N . On ωN

i for N = 8, let Kc be a coarse

mesh consisting of 16× 16 elements and Kf be a fine mesh consisting of 128× 128 elements.

Let T̃ Lφj ∈ Wf (ω
L
i ) be the solution of

B(T̃ Lφj, v) = −B(φj, v), ∀v ∈ Wf (ω
L
i ), (23)

computed on ωL
i and extended by 0 in Ω \ ωL

i , where φj ∈ Mi, is a basis function on the

coarse scale. Three types of permeabilities, called Ones, Period, and SPE, are used. For One,

a = 1, for Period, α = 1 or α = 0.1 with a period of 1/64 in x-direction, and SPE, data is

taken from the 31st layer permeability data in the tenth SPE comparative solution project1 and

illustrated in Figure 3. The aspect ration is amax/amin = 5.9823 ·105. The decay of the coarse

modified basis function φj + T̃ Lφj is illustrated by computing T̃ Lφj for L = 1, . . . , N − 1

using T̃ Nφj as a reference solution. The space Wf and the bilinear form B(·, ·), are defined

as Vf and Bcg(·, ·) for the continuous Galerkin multiscale method, and as Sf and Bdg(·, ·) for

the discontinuous Galerkin multiscale method. Exponential decay, in the broken energy norm

|||v|||2 =
∑
K∈Kf

‖
√
α∇v‖2L2(K), (24)

for L = 1, . . . , N when N = 4, is observed in Figure 4. The fast decay motivates us to solve

the constituent problems on patches ωL
i ⊂ Ω using a small number of L-rings. This, in turn,

means less computational work and a smaller overlap between the localized problems. The

DG method converges faster than CG to to the reference solution in the relative broken energy

1Tenth SPE comparative solution project http://www.spe.org/web/csp/



Figure 3. Permeability structure for SPE (c) in log scale.
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Figure 4. Convergence in the relative energy norm (24) when L = 1, 2, 3 in equation (23)

for different permeability using continuous Galerkin (solid line) and discontinuous Galerkin

(dashed line).

norm (24). Hence, smaller patches are needed for solving the local problems using DG than

CG to achieve the same accuracy.

5.2. Comparison of the continuous and discontinuous Galerkin multiscale methods

Consider the model problem (1) on the unit square Ω = (0, 1) × (0, 1). Let K be a

reference mesh with MN × MN elements, and Kc a coarse mesh of N × N elements i.e.,

each coarse elements is further subdivided into M×M elements. In the numerical experiment

N = 16 and M = 8. Let, f(x, y) = −1 for {0 < x, y < 1/128}, f(x, y) = 1 for {127/128 <

x, y < 1}, and f = 0 otherwise, be the forcing function. The same permeabilities, Ones, Rand
and SPE, as in Section 5.1 are used. In the numerical experiments all patches, ωL

i , are of the

same size, L, and for each iteration L is increased by one. The continuous Galerkin multiscale

method and the discontinuous Galerkin multiscale method are compared, see Figure 5. We

conclude:
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Figure 5. Convergence in the broken relative energy norm (24) when L = 1, 2, . . . , 8 for

different permeability using continuous Galerkin multiscale method (solid line) and discon-

tinuous Galerkin multiscale method (dashed line).

• To obtain a given accuracy, in the relative broken energy norm (24), the discontinuous

Galerkin multiscale method requires approximately one layer less than the continuous

Galerkin multiscale method. For a comparison of the degrees of freedom required for

the fine scale problems, see Table 1.

• This is a bit unfair comparison since the reference solution is the DG respectively CG

solution computed on the fine scale. DG has a more enriched test and trial space and

may give a better approximation than CG because of the discontinuous permeability

coefficients.

• On the coarse scale the discontinuous Galerkin multiscale method is approximating the

L2-projection rather than the nodal values, which is the case for continuous Galerkin

multiscale method. This is preferable in a multiscale setting.

• The DG method has better conservation properties which is an important property in

many multiscale applications.

Table 1. Degree of freedom for the fine scale problems

layers CGMM DGMM

1 (2n+ 1)d (4n)d

2 (4n+ 1)d (8n)d

3 (6n+ 1)d (12n)d

4 (8n+ 1)d (16n)d
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AN ADAPTIVE DISCONTINUOUS GALERKIN
MULTISCALE METHOD FOR ELLIPTIC PROBLEMS

DANIEL ELFVERSON†§ , EMMANUIL H. GEORGOULIS‡ , AND AXEL MÅLQVIST†¶

Abstract. An adaptive discontinuous Galerkin multiscale method driven by an energy norm
a posteriori error bound is proposed. The method is based on splitting the problem into a coarse
and a fine scale. Localized fine scale constituent problems are solved on patches of the domain and
are used to obtain a modified coarse scale equation. The coarse scale equation has considerably
less degrees of freedom than the original problem. The a posteriori error bound is used within
an adaptive algorithm to tune the critical parameters, i.e., the refinement level and the size of the
different patches on which the fine scale constituent problems are solved. The fine scale computations
are completely parallelizable, since no communication between different processors is required for
solving the constituent fine scale problems. The convergence of the method, the performance of the
adaptive strategy and the computational effort involved are investigated through a series of numerical
experiments.

Key words. multiscale, discontinuous Galerkin, a posteriori error bound

AMS subject classifications. 65N30, 65N15

1. Introduction. Problems involving features on several different scales, usu-
ally termed multiscale problems, can be found in many branches of the engineering
sciences. Examples include the modelling of flow in a porous medium and of compos-
ite materials. Multiscale problems involving partial differential equations are often
impossible to simulate with an acceptable accuracy using standard (single mesh) nu-
merical methods. A different approach, usually coming under the general term of
multiscale methods, consists of considering coarse and fine scale contributions to the
solution, with the fine scale contributions approximated on localized patches. The
fine scale contributions are then used to upscale the problem in order to obtain an
approximation to the global multiscale solution.

1.1. Previous work. Numerous multiscale methods have been developed dur-
ing the last three decades, see e.g. [8, 7] for early works, or [16, 29, 15] and references
therein for exposition and recent developments. An important development is the
Multiscale Finite Element Method (MsFEM) by Hou and Wu [21], which was fur-
ther developed in [12], with the introduction of oversampling to reduce resonance
effects. Another approach is the, so-called, Variational Multiscale method (VMS)
of Hughes and co-workers [22, 23]. The idea in VMS is to decompose the solution
space into coarse and fine scale contributions. A modified coarse scale problem is then
solved (using a finite element approach), so that the fine scale contribution is taken
into account. To maintain the conformity of the resulting modified finite element
space, homogeneous Dirichlet boundary conditions are imposed on each fine-problem
patch boundary. The Adaptive variational multiscale method (AVMS) using the VMS
framework, introduced by Larson and Målqvist [27], makes use of multiscale-type a
posteriori error bound to adapt the coarse and fine scale mesh sizes as well as the
fine-problem patch-sizes automatically. A priori error analysis can be found in [30].

†Information Technology, Uppsala University, SE-751 05, Uppsala, Sweden.
‡Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, UK.
§Supported by The Göran Gustafsson Foundation and The Swedish Research Council.
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An interesting alternative to conforming finite element methods is the class of dis-
continuous Galerkin (DG) methods, whereby the approximation spaces are element-
wise discontinuous; the continuity of the underlying exact solutions is imposed weakly.
DG methods appeared in the 1970s and in the early 1980s [32, 28, 9, 5, 24] and have
recently received renewed interest; we refer to the volumes [13, 14, 20, 33] and the ref-
erences therein for a literature review. DG methods admit good conservation proper-
ties of the state variable and, due to the lack of inter-element continuity requirements
are ideally suited for application to complex and/or irregular meshes. Also, there
has been work to better cope with the case of high contrast diffusion; see e.g. [19]
where a DG method based on weighted average is proposed and analysed. Discontin-
uous Galerkin methods for solving multiscale problems have been discussed using the
framework of the MsFEM [1] and of the Heterogeneous Multiscale Method (HMM)
[2]; see also [37, 36, 35, 34]. An a priori error analysis for the class of discontinuous
Galerkin multiscale method studied in this paper can be found in [17].

1.2. New contributions. In this work, we propose an Adaptive Discontinuous
Galerkin MultiScale method (ADG-MS) using the framework of VMS. The underling
DG method is based on weighted averages across the element interfaces. The adap-
tivity is driven by energy norm a posteriori error bounds. The multiscale method is
based on solving localized problems on patches, which are then upscaled to solve a
coarse scale equation. The lack of any inter-element continuity requirements of the
approximate solution, allows for very general meshes which is very common in multi-
scale applications, i.e., meshes that contains several types of elements and/or hanging
nodes. The split between the coarse and fine sale is realized using the elemetwise
L2-projection onto the coarse mesh. This is more natural in a multiscale setting
than, e.g., using the nodal interpolant as in [27]. It is also much easier and efficient
to construct an L2 orthogonal split using DG as opposed to conforming multiscale
methods. The ADG-MS inherits a local conservation property from DG on the coarse
scale, which is crucial in many applications such as porous media flow. The fine scale
problems can be solved independently with localized right hand sides, and it is known
that the solutions decay exponentially [17], which allows for small patches. In this
case the ADG-MS converges to the reference solution, thereby taking full advantage
of cancellation between patches; this is not the case for the original AVMS [27] since
hanging nodes are not allowed. In the a posteriori error bound, the error is bounded
in terms of the size of the different fine-scale patches and on both the fine-scale and
the coarse-scale mesh sizes. An adaptive algorithm to tune all these parameters au-
tomatically is proposed. The numerical experiments show good performance of the
algorithm for a number of benchmark problems.

1.3. Outline. The rest of this work is structured as follows. Section 2 is devoted
to setting up the model problem, the basic DG discretization and some notation. A
general framework for multiscale problems along with the discontinuous Galerkin
multiscale method is derived in Section 3, and the a posteriori error bound is derived
in Section 4. The implementation of the method and the adaptive algorithm are
discussed in Section 5. In Section 6, a number of numerical experiments are presented,
and finally some conclusions are drawn in Section 7.

2. Preliminaries. In this section we define some notations and the underling
DG method is presented.

2.1. Notation. Let ω ⊆ R
d, d = 2, 3 be an open polygonal domain. Denote the

L2(ω)-inner product by (·, ·)L2(ω) , and the corresponding norm by ‖ ·‖L2(ω). Also, let
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H1(ω) be the Sobolev space with norm ‖ · ‖H1(ω) := (‖ · ‖2L2(ω) + ‖∇ · ‖2L2(ω))
1/2 and

Hs(ω) the standard Hilbertian Sobolev space of index s ∈ R. We shall also make use
of the space L∞(ω) consisting of almost everywhere bounded functions, with norm
‖ · ‖L∞(ω) := ess supω| · |; see, e.g., [3] for details. Finally, the d-dimensional Lebesgue
measure will be denoted by μd(·).

2.2. The Model problem. Let Ω ⊂ R
d be an open polygonal domain with

Lipschitz boundary ∂Ω, d = 2, 3, and consider the elliptic boundary value problem
find u ∈ {v ∈ H1(Ω) : v|∂Ω = 0} fulfilling

−∇ ·A∇u = f u ∈ Ω, (2.1)

u = 0 u ∈ ∂Ω, (2.2)

with f ∈ L2(Ω) and A ∈ L∞(Ω,Rd,d
sym) such that A has uniform spectral bounds,

bounded below by α > 0 ∈ R almost everywhere.

2.3. Discretization and subdivision. The domain Ω is subdivided into a par-
tition K = {K} of shape-regular and closed elements K with boundaries ∂K, i.e.
Ω̄ = ∪K∈KK̄. On the partition K, let h : ∪K∈KK → R be a mesh-function defined
element-wise by h|K := diam(K), K ∈ K. The partition is allowed to be irregular
(i.e,. hanging nodes are allowed) and it is locally quasi-uniform in the sense that
the ratio of the mesh function h for neighboring elements is uniformly bounded from
above and below. Let ΓB be the set of all boundary edges and ΓI be the set of all
interior edges (or faces when d = 3) such that Γ = ΓB∩ΓI is the set of all edges in the
partition K. Associated with the diffusion tensor, we consider the element-wise con-
stant functions A0, A0 : ∪K∈KK → R defined by the biggest and smallest eigenvalue
of A, respectively, on each element K. For Ki,Kj ∈ K, with μd−1(∂Ki∩∂Kj) > 0, let
Ki,Kj be denoted by K+ and K−, where K+ is the element with the higher index.
On interior element interfaces e ∈ ΓI we shall make use of the shorthand notation
v+ := v|K+ , v− := v|K− ; on boundary edges we set v+ := v|K . We also define the
weighted mean value by

{v}w := wK+(e)v
+ + wK+(e)v

−, (2.3)

where

wK+(e) :=
A0|K−

A0|K+ +A0|K−
, wK−(e) :=

A0|K+

A0|K+ +A0|K−
, (2.4)

for each e ∈ ΓI and

wK+(e) = 1, wK+(e) = 0, (2.5)

for e ∈ ΓB . Further, the jump across element interfaces is defined by

[v] := v+ − v− for e ∈ ΓI , and [v] := v+ for e ∈ ΓB , (2.6)

and the harmonic mean value γe by

γe :=
2A0|K+ ·A0|K−

A0|K+ +A0|K−
. (2.7)

Also, n will denote the outward unit normal to ∂K+ when μd−1(∂K
+ ∩ ∂K−) > 0.

When μd−1(∂K ∩ ∂Ω) > 0, n will be the outward unit normal to ∂Ω.
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2.4. The Discontinuous Galerkin method. For a nonnegative integer r, we
denote by Pr(K̂), the set of all polynomials on K̂ of total degree at most r, if K̂ if
the reference d-simplex or, of degree at most r in each variable, if K̂ the reference
d-hypercube.

Consider the space V := Vh + H1+ε(Ω) with ε > 0 but arbitrary small, and let
the discontinuous finite element space be given by

Vh := {v ∈ L2(Ω) : v ◦ FK |K ∈ Pr(K̂), K̂ ∈ K}, (2.8)

where FK : K̂ → K is the respective elemental map for K ∈ K, which is allowed to be
non-affine, provided its Jacobian remains non-singular and uniformly bounded from
above and below with respect to all meshes.

The discontinuous Galerkin method then reads: find uh ∈ Vh such that

a(uh, v) = �(v), ∀v ∈ Vh, (2.9)

where the bilinear form a(·, ·) : V ×V → R and the linear form �(·) : V → R are given
by

a(v, z) :=
∑
K∈K

(A∇v,∇z)L2(K) −
∑
e∈Γ

(
(n · {AΠ∇v}w, [z])L2(e) (2.10)

+ (n · {AΠ∇z}w, [v])L2(e) −
σeγe
he

([v], [z])L2(e)

)
,

�(v) :=(f, v)L2(Ω), (2.11)

respectively. Here Π : (L2(Ω))d → (Vh)
d denotes the orthogonal L2-projection oper-

ator onto (Vh)
d, he := diam(e), and σe ∈ R is a positive constant. The bilinear form

(2.11) is coercive with respect to the natural energy norm,

|||v||| =
(∑

K∈K
‖A1/2∇v‖2L2(K) +

∑
e∈Γ

σeγe
he

‖[v]‖2L2(e)

)1/2

(2.12)

if σe is chosen to be large enough. We refer, e.g., to [14, 6] and references therein for
details on the analysis of DG methods for elliptic problems. Discontinuous Galerkin
methods with weighted averages were introduced in [10, 19].

Remark 2.1. For all v ∈ Vh, we have Π∇v = ∇v, therefore the bilinear form
(2.10) with v, z ∈ Vh is reduced to the more familiar form

a(v, z) =
∑
K∈K

(A∇v,∇z)L2(K) −
∑
e∈Γ

(
(n · {A∇v}w, [z])L2(e)

+ (n · {A∇z}w, [v])L2(e) −
σeγe
he

([v], [z])L2(e)

)
. (2.13)

3. The Multiscale method. In the VMS framework, the finite element solution
space Vh is decoupled into coarse and fine scale contributions, viz., Vh = VH ⊕ Vf ,
with VH ⊂ Vh. To this end, let ΠH : L2(Ω) → VH be the (ortogonal) L2-projection
onto the coarse mesh. The split between the coarse and fine scales is then determined
by, VH := ΠHVh and Vf := (I−ΠH)Vh = {v ∈ Vh : ΠHv = 0} where I is the identity
operator.
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The multiscale map T : VH → Vf from the coarse to the fine scale is defined as

a(T vH , vf ) = −a(vH , vf ) ∀vH ∈ VH and ∀vf ∈ Vf . (3.1)

The next step is to decompose uh and v in (2.9) into coarse and fine scale components.
In particular, we have

uh = uH + T uH + uf , (3.2)

and v = vH + vf , with uH , vH ∈ VH and T uH , vf ∈ Vf , for some uf ∈ Vf . Equation
(2.9) is equivalent to the problem: find uH ∈ VH and vf ∈ Vf such that

a(uH + T uH + uf , vH + vf ) = �(vH + vf ), ∀vH ∈ VH and ∀vf ∈ Vf . (3.3)

The fine scale component uf can be computed by letting vH = 0 in (3.3) and using
the multiscale map (3.1). We obtain the fine scale problem driven by the right hand
side data f: find uf ∈ Vf such that

a(uf , vf ) = �(vf ), ∀vf ∈ Vf . (3.4)

The coarse scale solution is obtained by letting vf = 0 in (3.3): find uH ∈ VH such
that

a(uH + T uH , vH) = �(vH)− a(uf , vH), ∀vH ∈ VH . (3.5)

In (3.5), T vH and uf are unknown and obtained by solving (3.1) and (3.4). Note that
the linear system (3.5) has dim(VH) unknowns.

3.1. Localization and Discretization. The bilinear form is characterized by
more local behavior in Vf than in Vh [30, 17]. This motivates us to solve the fine scale
equations on (localized) overlapping patches, instead of the whole domain Ω. The
patches are chosen large enough to ensure sufficiently accurate computations of T vH
and uf . The computations of the fine scale components of the solution can be done
in parallel with localized right hand sides. To define the coarse space VH , we begin
by fixing a coarse mesh KH . Then, VH is defined as,

VH := {v ∈ L2(Ω) : v ◦ FK |K ∈ Pr(K̂), K̂ ∈ KH}. (3.6)

Definition 3.1. For all K ∈ KH , define element patches of size L patch as

ω1
K = int(K)

ωL
K = int(∪{K ′ ∈ KH | K ′ ∩ ω̄L

K}), L = 2, 3, . . . .
(3.7)

The patch ωL
K will be refered to as a L-layer patch. This is illustrated in Figure 3.1.

On each L-layer patch, we let K(ωL
K) be a restiction of K to ωL

K , such that
∪K∈K(ωL

K) = ω̄L
K . Also let ΓI(ωL

K) and ΓB(ωL
K) be the interior respectively boundary

edges on K(ωL
K). Moreover, we assume that KH |ωL

K
and K(ωL

K) are nested, that is,

every coarse elementKH ∈ KH |ωL
K
coincides with a union of fine elementsK ∈ K(ωL

K).

Also, the fine test spaces Vf (ω
L
K), are defined by

Vf (ω
L
K) := {v ∈ Vf : v|Ω\ωL

K
= 0}. (3.8)

Finally, let the indicator function be χK = 1 on element K and 0 otherwise and
MK be the index set of all basis functions φj ∈ VH that have support on K i.e.,
χK =

∑
j∈MK

φj .
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Figure 3.1. Example of a one ω1
K , two ω2

K , and three ω3
K layer patches around element T in

a quadrilateral mesh.

3.2. The Discontinuous Galerkin Multiscale method. For each K ∈ KH

the following local problems need to be solved: find T̃ φj ∈ Vf (ω
L
K), ∀j ∈ MK and

Uf,K ∈ Vf (ω
L
K) such that

a(T̃ φj , vf ) = −a(φj , vf ), ∀vf ∈ Vf (ω
L
K), (3.9)

a(Uf,K , vf ) = �(χKvf ), ∀vf ∈ Vf (ω
L
K). (3.10)

The modified coarse scale problem is formulated as: find UH ∈ VH such that

a(UH + T̃ UH , vH) = �(vH)− a(Uf , vH), ∀vH ∈ VH , (3.11)

where Uf :=
∑

K∈KH
Uf,K . The approximate solution to the multiscale problem is

given by

U = UH + T̃ UH + Uf . (3.12)

The above procedure will be referred to as the discontinuous Galerkin multiscale
method.

We note that the approximation U is not equal to uh in general, since the domains
of the fine scale problems are truncated. However, as discussed above, it is expected
that U is a good approximation to uh, due to the decaying nature of the fine scale
solutions away from the respective patch. For the approximation U to converge to
the exact solution u of (2.1) in the limit, both the support of the local problems
should be gradually extended to the whole computational domain and the fine scale
meshsize h should converge to 0. The multiscale method proposed here differs from
the one proposed in [17], in that a right hand side correction is present. Using the
formulation without the presence a right hand side correction, the multiscale solution
converges to a some H-perturbation of the exact solution u, uniformly with respect
to the diffusion coefficient structure.

Remark 3.2. Note that for a non-uniform mesh K (and/or KH), the conver-
gence results presented in [17] still hold if the corrected basis functions are computed
on patches of a common reference mesh K. On the other hand if the adaptive al-
gorithm is used so that the overlap between different corrected basis functions are
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computed on different meshes (cf., e.g., [27]), less cancellation of the error will occur
and convergence can no longer be guaranteed by the argument in [17].

3.3. Local conservation property. The DG methods are known to have good
local conservation properties in that the normal fluxes are conservative. The ADG-
MS inherits this property on the coarse scale. To see this, we introduce the normal
fluxes on element KH ∈ KH as

σ̂(U) := ({n ·A∇U}w − σeγeh
−1
e [U ])[χKH

], e ∈ ∂KH , (3.13)

where U = UH + T̃ UH +Uf , χKH
= 1 on element KH and χKH

= 0 otherwice ([χKH
]

is either 1 or −1), and each interface e is a face of a fine scale element K ∈ K, i.e.,
the number of edges can exceed the number of faces for each element KH . By setting
w ∈ VH to be w = χKH

in (2.10), (2.11), and by using the discrete normal fluxes
defined in (3.13), we arrive to the discrete element-wise conservation law

(f, 1)L2(KH) + (σ̂(U), 1)L2(∂KH) = 0, (3.14)

for all KH ∈ KH .

4. A Posteriori Error Bound in Energy Norm. Let the constant 0 ≤ C <
∞ be any generic constant neither depending on H, h, L, nor A; let a � b abbreviates
the inequality a ≤ Cb. The following approximation results will be used frequently
throughout this section. Let π be the orthogonal L2-projection operator onto element-
wise constant functions. Then π satisfies the following approximation properties: for
an element K, we have

||v − πv||L2(K) �
hK√
A0

||A1/2∇v||L2(K), ∀v ∈ H1(K), (4.1)

||v − πv||L2(∂K) �
√

hK

A0
||A1/2∇v||L2(K) ∀v ∈ H1(K). (4.2)

Lemma 4.1. Let Ic
h : Vh → Vh ∩ H1(Ω) be a averging interpolation operator

defined pointwise as

Ic
hvh(x̃) =

1

|Kx̃|
∑

K∈Kx̃

vh(x̃)|K , (4.3)

where Kx̃ is the set of elements in K for which x̃ belong, with the cardinal |Kx̃|. Then,

||vh − Ic
hvh||2L2(K) � ||

√
he[vh]||2L2(∂K), (4.4)

||A1/2∇(vh − Ic
hvh)||2L2(K) � A0|| 1√

he

[vh]||2L2(∂K). (4.5)

holds for all vh ∈ Vh and K ∈ K.
The proof, omitted here, follows closely that of [25]. Lemma 4.1 can also be

extended to irregular meshes. There a hierarchical refinement of the mesh is performed
to eliminate the hanging nodes; we refer to [26] for details. For irregular meshes the
constant in the bounds of Lemma 4.1 also depends on the number of hanging nodes
on each face.

Remark 4.2. The result in Lemma 4.1 can be sharpened if the diffusion tensor
is isotropic and a locally quasi-monotone [31] distribution is assumed to hold. Then
A0|K can be replaced by the harmonic mean value γe on face e; see [11].
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First we derive a posteriori error bound for the underling (one scale) DG method.
Theorem 4.3. Let u, uh be given by (2.1)-(2.2) and (2.9), respectively. Let also

Ic
huh ∈ Vh∩H1(Ω) be given by (4.3). Moreover, let E := Ec+Ed where Ec := u−Ic

huh

and Ed := Ic
huh − uh. Then

|||E||| � (
∑
K∈K

�2K)1/2 + (
∑
K∈K

ζ2K)1/2, (4.6)

where

�K =
hK√
A0

||(1−Π)(f +∇ ·A∇uh)||L2(K), (4.7)

+

√
hK

A0

(
||(1− wK(e))n · [A∇uh]||L2(∂K\ΓB) + ||σeγe

he
[uh]||L2(∂K)

)
,

ζ2K = ||A1/2∇(uh − Ic
huh)||2L2(K) + ||

√
σeγe
he

[uh]||2L2(∂K). (4.8)

Remark 4.4. Using Ic
huh as the conforming part of uh, we arrive to an a pos-

teriori bound whereby Ic
huh can either be evaluated directly, or bounded using Lemma

4.1. Another possible choice is a weighted averging interpolation operator with the
weights depending on the diffusion tensor [4].

Remark 4.5. Concerning the lower efficiency bounds, the term (4.7) is robust
with respect to the diffusion tensor; see [18]. But to prove that (4.8) is robust with
respect to the diffusion tensor, to the authors’ knowledge, the diffusion tensor has to
be isotropic and satisfy a locally quasi-monotone property [31, 11].

Proof. Note that

|||E||| ≤ |||Ec|||+ |||Ed|||, (4.9)

where the first part can be bounded by

|||Ec|||2 � a(Ec, Ec) = a(E , Ec)− a(Ed, Ec) � a(E , Ec) + |||Ed||||||Ec|||. (4.10)

Let πh be the L2-orthogonal projection onto the element-wise constant functions and
define η := Ec − πhEc. We then have

a(E , Ec) = a(u, Ec)− a(uh, Ec) = �(Ec)− a(uh, Ec) = �(η)− a(uh, η), (4.11)

which implies

|||Ec|||2 = a(Ec, Ec) =
(
�(η)− a(uh, η)

)
− a(Ed, Ec). (4.12)

Upon integration by parts and using the identity [vw] = {v}w[w] + {w}w̄[v] where w̄
is the skew-weighted average given by

{v}w̄ := wK−(e)v
+ + wK+(e)v

−, (4.13)

the first term on the right-hand side of (4.12) yields

�(η)− a(uh, η)

=
∑
K∈K

(f +∇ ·A∇uh, η)L2(K) +
∑
e∈Γ

(
− (n · [A∇uh], {η}w̄)L2(e\ΓB) (4.14)

+(n · {AΠ∇η}w, [uh])L2(e) − σγeh
−1
e ([uh], [η])L2(e)

)
.
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The first term on the right-hand side of (4.14) can be bounded as follows,

∑
K∈K

(f+∇·A∇uh, η)L2(K) �
∑
K∈K

hK√
A0

||(1−Π)(f+∇·A∇uh)||L2(K)||A1/2∇Ec||L2(K),

using (4.1). The second term on the right-hand side of (4.14) gives

∑
e∈Γ\ΓB

(n · [A∇uh], {η}w̄)L2(e) (4.15)

�
∑
K∈K

√
hK

A0
||(1− wK(e))n · [A∇uh]||L2(∂K\ΓB)||A1/2∇Ec||L2(K),

using (4.2). For the third term on the right-hand side of (4.14), noting that∇η = ∇Ec,
we deduces

∑
e∈Γ

(n · {AΠ∇Ec}w, [Ed])L2(e) �
∑
K∈K

1√
hKA0

||γe[Ed]||L2(∂K)||A1/2∇Ec||L2(K),

using an inverse estimate and the L2-stability of Π. For the last term on the right-hand
side of (4.14), we have

∑
e∈Γ

σeγe
he

([uh], [η])L2(e) �
∑
K∈K

√
hK

A0
||σeγe

he
[uh]||L2(∂K\ΓB)||A1/2∇Ec||L2(K).

The last term on the right-hand side of (4.12) is bounded using the continuity if the
bilinear form. Combining all the above bounds and using Lemma 4.1 to bound the
nonconforming part, the result follows.

A posteriori error estimate for the ADG-MS is given below.
Theorem 4.6. Let u, U be defined in (2.1)-(2.2) and (3.12), respectively and set

Ic
hU ∈ H1(Ω). Set E := Ec + Ed where Ec := u − Ic

hU and Ed := Ic
hU − U . Define

UKH
:=
∑

j∈MKH
Uj(φj + T̃ φj) +Uf,KH

, where Uj are the nodal values calculated by

(3.11) for all KH . Then, E satisfies the estimate

|||E ||| � (
∑
K∈K

�2K)1/2 + (
∑
K∈K

ζ2K)1/2 + (
∑

KH∈K̃H

ρ2ωL
KH

)1/2,
(4.16)

where

ρ2ωL
KH

=
∑

e∈ΓB(ωL
KH

)

(
H2

KO
H

hKOA0|KO
H

)(
||n · {A∇Ui}w||L2(e) +

σeγe
he

||[Ui]||L2(e)

)2
,(4.17)

measures the effect of the truncated patches, KO,KO
H are from outside of ωL

KH
, and

�K =
hK√
A0

||(1−Π)(f +∇ ·A∇U)||L2(K), (4.18)

+

√
hK

A0

(
||(1− wK(e))n · [A∇U ]||L2(∂K) + ||σeγe

he
[U ]||L2(∂K)

)
,

ζ2K = ||
√
A∇(U − Ic

hU)||2L2(K) + ||
√

σeγe
he

[U ]||2L2(∂K). (4.19)
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messuring the refinement level of the fine scale.
Remark 4.7. One possible adaptive strategy would be to refine the coarse mesh as

much one can afford, using a standard a posteriori error bound (e.g., using Theorem
4.3), and then further improve the approximation using Theorem 4.6. Note that fine
scale problems do not have to be solved everywhere.

Remark 4.8. For the estimator ρωL
KH

to retain its optimality with respect to the

mesh-sizes, one should assume that H2
KH

� hK . We note that this is not an unrea-
sonable requirement, for, otherwise, each fine scale problem would be more expensive
to solve than the coarse scale problem.

Proof. Using the same idea as in Theorem 4.3. We first, note that

|||Ec|||2 = a(Ec,Ec) = a(E ,Ec)− a(Ed,Ec). (4.20)

Then, using (2.9) and the fine scale equations (3.9)–(3.10), we have

a(E ,Ec) = �(Ec)− a(U,Ec), (4.21)

= �(Ec − vH)− a(U,Ec − vH), (4.22)

= �(Ec − vH − vf )− a(U,Ec − vH − vf ) + �(vf )− a(U, vf ), (4.23)

for any vH ∈ VH and vf ∈ Vf . Note that,

�(vf )− a(U, vf ) =
∑

KH∈K̃H

�(χKH
vf )− a(UKH

, vf ) (4.24)

=
∑

KH∈K̃H

∑
e∈ΓB(ωL

KH
)

(
(n · {A∇Ui}w, [ξLKH

vf ])L2(e) (4.25)

+(n · {A∇ξLKH
vf}w, [Ui])L2(e) −

σeγe
he

([Ui], [ξ
L
KH

vf ])L2(e)

)
,

where ξLKH
= 0 on ωL

KH
and ξLKH

= 1 otherwise, that is, vf = ξLKH
vf + (1 − ξLKH

)vf
where (1− ξLKH

)vf ∈ Vf (ω
L
KH

). Then, applying (4.25), we deduce

a(E ,Ec) =
(
�(Ec − vH − vf )− a(U,Ec − vH − vf )

)
(4.26)

+
∑

KH∈K̃H

∑
e∈ΓB(ωL

KH
)

(
(n · {A∇Ui}w, [ξLKH

vf ])L2(e)

+(n · {A∇ξLKH
vf}w, [Ui])L2(e) −

σeγe
he

([Ui], [ξ
L
KH

vf ])L2(e)

)
= : I + II.

Term I can be estimated as in the proof of Theorem 4.3, upon selecting vH := πHEc

and vf = πf (Ec − πHEc) = πfEc, where πH and πf are the element-wise constant L2-
orthogonal projections onto the coarse space VH on the fine space Vf , respectively.
We note that, by construction, πfπHv = 0, for all v ∈ Vh.

Since vf is chosen to be piecewise constant the second term in II is equal to zero.
For each K ∈ K, and for each e ∈ ΓB(ωL

KH
)\ΓB , we have

∣∣∣(n · {A∇Ui}w, [ξLKH
vf ])L2(e) −

σeγe
he

([Ui], [ξ
L
KH

vf ])L2(e)

∣∣∣
�
(
||n · {A∇Ui}w||L2(e) +

σeγe
he

||[Ui]||L2(e)

)
||[ξLKH

vf ]||L2(e),
(4.27)
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using (4.28) and the Cauchy-Schwarz inequality, for e ∈ ΓB , the first term in (4.27)
disappears. Note that, ||[ξLKH

vf ]||L2(e) is either ||[v+f ]||L2(e) or ||[v−f ]||L2(e) depending

on ξLKH
. To bound the term involving vf , for simplicity let vf be either v+f or v−f , we

note that:

||vf ||L2(e) �
1√
hK

‖vf‖L2(K) �
1√
hK

‖vf‖L2(KH)

� 1√
hK

||Ec − πHEc||L2(KH) � HKH√
hK

||∇Ec||L2(KH)

� HKH√
hKA0

||
√
A∇Ec||L2(K), (4.28)

using a trace inequality, and the L2-stability of πf , viz., ||πfv||L2(KH) ≤ ||v||L2(KH).
Combining the above and summing over all patches, using the discrete version of

the Cauchy-Schwarz inequality, the proof is concluded.

5. Implementation and Adaptivity. The system of equations arising from
the discretization of the modified coarse multiscale problem (3.11) is given by

KU = b− d, (5.1)

where Ki,j = a(φj + T̃ φj , φi), bi = �(φi), and di = a(Uf , φi). To assemble the right

and left hand sides of (5.1), T̃ φi and Uf,i need to be computed for all i ∈ N . This
can be done in parallel since no communication is required between the different fine
scale problems. For each fine scale problem it is also possible to assemble Ki,j =

a(φj + T̃ φj , φi), bi = �(φi), and di =
∑

j∈N a(Uf,j , φi) for a fixed i and for all j
such that μd(supp(φj) ∩ ω̄K) > 0. The constraints needed on the fine scale test

spaces to solve T̃ φi and Uf,i are Vf = {v ∈ Vh : ΠHv = 0}, which are implemented
using Lagrange multipliers. The spaces Vf and VH are orthogonal with respect to the
L2-inner product.

Let VH = span{φi} and Vf = span{ϕi}. Then, the system of equations to be
solved on the fine scale is given by(

K PT

P 0

)
ξ =

(
b
0

)
, (5.2)

where

P =

⎛
⎜⎜⎜⎝

(φ1, ϕ1) (φ1, ϕ2) . . . (φ1, ϕN )
(φ2, ϕ1) (φ2, ϕ2) . . . (φ2, ϕN )

...
...

. . .
...

(φM , ϕ1) (φM , ϕ2) . . . (φM , ϕN )

⎞
⎟⎟⎟⎠ , (5.3)

with Kk,l = ai(ϕk, ϕl) and b either bk = li(ϕk) for (3.10) or bk = −ai(φi, ϕk) for (3.9).
Using the a posteriori error estimate above, it is possible to design an adaptive

algorithm that automatically tunes the fine mesh size and the size of the patches. In
the numerical experiments below, we have implemented Algorithm 1, which extends
the patches in all directions and uses a uniform mesh refinement of the fine scale on
each coarse element. A more elaborate algorithm which only extends in the direc-
tion where the error is large and uses adaptive mesh refinement would be a possible
extension, since the a posteriori indicators above contain local contributions of each
individual patch-boundary face and of each fine scale element residual.
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Algorithm 1 Adaptive Discontinuous Galerkin Multiscale Method

1: Initialize the coarse mesh, KH with mesh function H, and a fine mesh, Kh with
meshfunction h, by using to uniform refinements of KH i.e., h = H/4.

2: For all KH let the size of the patches be ω3
KH

.
3: Set the mesh refinment level to X%.
4: while (

∑
K∈K �2h,K)1/2 + (

∑
K∈K ζ2h,K)1/2 + (

∑
KH∈KH

ρ2
ωL

KH

)1/2 > TOL do

5: for K ∈ K̃H do
6: Solve the fine scale problems (3.1) and (3.10).
7: Compute the matrix and vector entries on the coarse scale (5.1).
8: end for
9: Solve the modified coarse scale problem (3.11).

10: Mark the indicator with X% largest error in {�2h,K + ζ2h,K , ρ2L,ωi
}.

11: for KH ∈ KH do
12: if ρ2L,ωi

is marked then

13: ωL
KH

:= ωL+1
KH

14: end if
15: if ρ2h,K + ζ2h,K is marked then
16: h|KH

:= h|KH
/2

17: end if
18: end for
19: end while

6. Numerical examples. We present some numerical experiments where the
converge of the method as well as the performance of the adaptive algorithm is inves-
tigated.

6.1. Convergence. We consider the model problem (2.1)–(2.2) on the L-shaped
domain constructed by removing the lower right quadrant in the unit square, with
forcing function f = 1. We consider a coarse quadrilateral mesh of size H = 2−4.
Furthermore, each coarse element K ∈ KH is further subdivided using two uniform
refinements to construct the fine mesh. The error is measured in the relative energy
norm, (2.12), where uh is the DG solution on the fine mesh i.e., there is only a
truncation error (due to the fine scale patch size) between the multiscale solution and
the DG solution. The permeabilities One and SPE 1, illustrated in Figure 6.1, are
used. In One, we have A = 1, and in SPE the data is taken from the tenth SPE
comparative solution project and is projected into the fine mesh. Exponential decay
is observed with respect to the number of layers for the different permeabilities One
and SPE, until the patches covers the whole domain when L = 8; this is illustrated
in Figure 6.2. As expected, when L = 8, only round off error between the multiscale
solution and the reference solution is observed. Note that, by including the right-hand
side fine scale correction, convergence of U to uh itself is observed.

6.2. Adaptivity for a problem with analytic solution. Let us consider the
model problem (2.1)–(2.2) on a unit square, using the permeability A = 1 and the

forcing function f = 4a2(1 − ar2)e−ar2 , for some a > 0. Using a = 400, the analytic

solution can be approximated sufficiently well by the Gaussian pulse u = ae−ar2 ,
centred in the middle of the domain. We consider a coarse quadrilateral mesh of size

1Data is taken from the tenth SPE comparative solution project http://www.spe.org/web/csp/
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Figure 6.1. Permeability structure of One and SPE in log scale on a L-shaped domain.
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Figure 6.2. Convergence in relative energy norm (2.12), on a L-shaped domain when the
number of layers are increased using the different permeabilities One and SPE.

H = 2−4, and a fine mesh of size h = 2−6. The adaptive algorithm (Algorithm 1) with
10% refinement level is used. The starting values for L and h used are L = 3 layers,
and the fine scale mesh is uniformly refined two times. Figure 6.3 show the error and
the error indicators decay after each iteration of the adaptive algorithm, while Figure
6.4 shows the locations where the adaptive algorithm has chosen to concentrate the
computational effort, which indeed coincides with the position of the pulse.

6.3. Adaptivity on an L-shaped domain. Consider the model problem and
the same data as in Section 6.1. The solution produced by the adaptive algorithm is
compared to a reference solution computed with the standard (one scale) DG method
on a uniform quadrilateral mesh with mesh-size h = 2−9, see Figure 6.3. Consider a
coarse mesh consisting of a uniform quadrilateral mesh of size H = 2−4. The starting
values in the adaptive algorithm (Algorithm 1) are L = 3 and the fine scale mesh is
derived by two uniform refinements of the coarse mesh. In each iteration, a refinement
level of 30% is used. Figure 6.3 shows the error decays after each iteration of the adap-
tive algorithm. Also, the adaptive algorithm chooses to increase the patches in the
beginning since the error from the truncation is initially larger than the discretization
error and after a few iterations it is starting to refine the fine scale mesh more and
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Figure 6.3. Convergence in relative energy norm (2.12), using the adaptive algorithm on the
unit square with Gaussian pulse in the middle.

Figure 6.4. The level of refinement and the size of the patches L illustrated in the left, resp.
right plots, using the adaptive algorithm on a unit square with Gaussian pulse in the middle. White
is where most refinements, resp. bigger L, are used and black is where least refinements, resp.
smallest patches, are used.

more. When the patch sizes are increased the error, due to truncation, decays expo-
nentially independent of the regularity of the solution as shown theoretically in [17].
This is not true for the discretization error. This motivates the use of an adaptive
algorithm which tune the error between the truncation and discretization. Figure 6.7
shows where the adaptive algorithm put most computational effort.

6.4. Adaptivity for a porous media flow problem. We consider the problem
(2.1)–(2.2) on the unit square Ω = [0, 1]2, with forcing function f = −1 in the lower
left corner {0 ≤ x, y ≤ 1/128}, f = 1 in the upper right corner {127/128 ≤ x, y ≤ 1},
and f = 0 otherwise. The following permeabilities SPE11 and SPE21 are used
and projected into a mesh with 64× 64 elements; see Figure 6.8. The computational
domain Ω is split into 32×32 coarse square elements KH ∈ KH . The error is measured
in the relative energy norm, with the reference solution uh being the DG solution
computed on a 512× 512-element mesh. The adaptive algorithm (Algorithm 1) with
refinment level 30% is used. In Iteration 1 the multiscale problem is solved using two
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Figure 6.5. Reference solution for the different permeabilities computed onto a mesh with size
h = 2−9 and projected onto a mesh with size h = 2−6.
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Figure 6.6. The relative energy norm error for the multiscale solution using the adaptive algo-
rithm; ρL denotes the truncation error indicator, �K and ζK are the discretization error indicators.
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Figure 6.7. The level of refinement and size of the patches illustrated in the upper resp. lower
plots for the different permeability One (left) and SPE (right). White is where most refinements
resp. larger patch are used and black is where least refinements resp. smallest patches are used.

(a) SPE11, αmax/αmin = 6.1765e− 5. (b) SPE21, αmax/αmin = 5.0193e− 5

Figure 6.8. Permeabilities projection in log scale.

refinements on each coarse element and each fine scale problem is solved with L = 3,
and so on. Even though complicated permeabilities with αmax/αmin ∼ 105 are used,
the proposed adaptive algorithm is able to reduce relative error considerably; this is
shown in Figure 6.9.

7. Concluding remarks. An adaptive multiscale method based on discontin-
uous Galerkin discretization has been proposed and assessed in practice. There are
several different advantages for using the proposed multiscale method. The possibility
to allow a global underling reference grid (using the DG framework including hanging
nodes) is crucial. This does not only account for cancellation of the error between
different fine scale problems in the a posteriori error bound, it also fits the method
into the convergence framework presented in [17]. It admits a local conservation of the
state variable, which is crucial in many applications e.g. porous media flow. The mul-
tiscale method and the adaptive algorithm admit naturally parallel implementation,
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Figure 6.9. Relative in error broken energy norm against the number of iterations using the
adaptive algorithm for flow in porous media.

which results in further savings in computational time.

An adaptive algorithm for which the coarse scale, the fine scale, and the size of
the different patches are taken into account, based on an energy norm a posteriori
bound has been proposed. Using the proposed multiscale method, together with the
adaptive algorithm, leads to substantial computational savings, while maintaining a
good performance when applied to challenging benchmark problems.
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CONVERGENCE OF A
DISCONTINUOUS GALERKIN MULTISCALE METHOD

DANIEL ELFVERSON†¶, EMMANUIL H. GEORGOULIS‡ , AXEL MÅLQVIST†¶, AND

DANIEL PETERSEIM§‖

Abstract. A convergence result for a discontinuous Galerkin multiscale method for a second or-
der elliptic problem is presented. We consider a heterogeneous and highly varying diffusion coefficient
in L∞(Ω,Rd×d

sym) with uniform spectral bounds and without any assumption on scale separation or
periodicity. The multiscale method uses a corrected basis that is computed on patches/subdomains.
The error, due to truncation of corrected basis, decreases exponentially with the size of the patches.
Hence, to achieve an algebraic convergence rate of the multiscale solution on a uniform mesh with
mesh size H to a reference solution, it is sufficient to choose the patch sizes as O(H| log(H−1)|). We
also discuss a way to further localize the corrected basis to element-wise support leading to a slight
increase of the dimension of the space. Improved convergence rate can be achieved depending on
the piecewise regularity of the forcing function. Linear convergence in energy norm and quadratic
convergence in L2-norm is obtained independently of the forcing function. A series of numerical
experiments confirms the theoretical rates of convergence.

Key words. multiscale method, discontinuous Galerkin, a priori error estimate, convergence

AMS subject classifications. 65N12, 65N30

1. Introduction. This work considers the numerical solution of second order
elliptic problems with heterogeneous and highly varying (non-periodic) diffusion co-
efficient. The heterogeneities and oscillations of the coefficient may appear on several
non-separated scales. More specifically, let Ω ⊂ R

d be a bounded Lipschitz domain
with polygonal boundary Γ. The boundary Γ may be partitioned into some non-
empty closed subset ΓD (the Dirichlet boundary) and its complement ΓN := Γ \ ΓD

(the, possibly empty, Neumann boundary). We assume that the diffusion matrix
A ∈ L∞ (

Ω,Rd×d
sym

)
has uniform spectral bounds 0 < α, β < ∞, defined by

0 < α := ess inf
x∈Ω

inf
v∈Rd\{0}

(A(x)v) · v
v · v ≤ ess sup

x∈Ω
sup

v∈Rd\{0}

(A(x)v) · v
v · v =: β < ∞. (1.1)

Given f ∈ L2(Ω), we seek the weak solution of the boundary-value problem

−∇ ·A∇u = f in Ω,

u = 0 on ΓD,

ν ·A∇u = 0 on ΓN ,

i.e., we seek u ∈ H1
D(Ω) := {v ∈ H1(Ω) | v|ΓD

= 0 in the sense of traces}, such that

a (u, v) :=

∫
Ω

A∇u · ∇v dx =

∫
Ω

fv dx =: F (v) for all v ∈ H1
D(Ω). (1.2)

Many methods have been developed in recent years to overcome the lack of per-
formance of classical finite element methods in cases where A is rough, meaning that
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A has discontinuities and/or high variation; we refer to [4, 2, 11, 9, 6] amongst oth-
ers. Common to all the aforementioned approaches is the idea to solve the problems
on small subdomains and to use the results to construct a better basis for some
Galerkin method or to modify the coarse scale operator. However, apart from the
one-dimensional setting, the performance of those methods correlates strongly with
periodicity and scale separation of the diffusion coefficient.

Other approaches [5, 16, 3] perform well without any assumptions of periodicity
or scale separation in the diffusion coefficient at the price of a high computational
cost: in [5, 16] the support of the modified basis functions is large and in [3] the
computation of the basis functions involves the solutions of local eigenvalue problems.

Only recently in [14], a variational multiscale method has been developed that
allows for textbook convergence with respect to the mesh size H, ‖u− uH‖H1(Ω) ≤
Cf,β/αH with a constant Cf,β/α that depends on f and the global bounds of the
diffusion coefficient but not its variations. This result is achieved by an operator-
dependent modification of the classical nodal basis based on the solution of local
problems on vertex patches of diameter O(H| log(H−1)|). The method in [14] is an
extension of the method presented in [13, 15].

In this work, we present a discontinuous Galerkin (dG) multiscale method with
similar performance. The method is a slight variation of the method [8], in the sense
that the boundary conditions for the local problems are now of Dirichlet type. The
dG finite element method admits good conservation properties of the state variable,
and also offers the use of very general meshes due to the lack of inter-element continu-
ity requirements, e.g., meshes that contain several different types of elements and/or
hanging nodes. Both those features are crucial in many applications. In the context
of multiscale methods the discontinuous formulation allows for more flexibility in the
construction of the basis function e.g., allowing more general boundary conditions [8].
Although the error analysis presented in this work is restricted to regular simplicial
or quadrilateral/hexahedral meshes, we stress that all the results appear to be ex-
tendable for the case of irregular meshes (i.e., meshes containing hanging nodes). We
refrained from presenting these extensions here for simplicity of the current presenta-
tion. Under these assumptions, we provide a complete a priori error analysis of this
method including errors caused by the approximation of basis functions.

In this dG multiscale method and in previous related methods [14, 8], the accuracy
is ensured by enlarging the support of basis functions appropriately. Hence, supports
of basis functions overlap and the communication is no longer restricted to neighboring
elements but is present also between elements at a certain distance. We will prove
that resulting overhead is acceptable in the sense that it scales only logarithmically
in the mesh size.

In order to retain the dG-typical structure of the stiffness matrix, we discuss the
possibility of localizing the multiscale basis functions to single elements. Instead of
havingO(1) basis functions per element withO(H| log(H−1)|) support, we would then
have O(| log(H−1)|) basis functions per element with element support. The element-
wise application of a singular value decomposition easily prevents ill-conditioning of
the element stiffness matrices, while simultaneously achieving further compression of
the multiscale basis.

The outline of the paper is as follows. In Section 2, we recall the dG finite element
method. Section 3 defines our multiscale method, which is then analyzed in Section 4.
Section 5 presents numerical experiments confirming the theoretical developments.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces is
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employed. Let 0 ≤ C < ∞ be any generic constant that neither depends on the mesh
size nor the diffusion matrix A; a � b abbreviates an inequality a ≤ C b and a ≈ b
abbreviates a � b � a. Also, let the constant Cβ/α depend on the minimum and
maximum bound bound (α and β) of the diffusion matrix A in (1.1).

2. Fine scale discretization.

2.1. Finite element meshes and spaces. Let T denote a subdivision of Ω
into (closed) regular simplices or into quadrilaterals (for d = 2) or hexahedra (for
d = 3), i.e., Ω̄ = ∪T∈T T . We assume that T is regular in the sense that any two
elements are either disjoint or share exactly one face or share exactly one edge or
share exactly one vertex.

Let E denote the set of edges (or faces for d = 3) of T ; E(Ω) denotes the set
of interior edges, E(Γ), E(ΓD) and E(ΓN )) refer to the set of edges on the boundary
of Ω, on the Dirichlet and on the Neumann boundary, respectively. Let T̂ , denote
the reference simplex or (hyper)cube and let Pp(T̂ ) and Qp(T̂ ) denote the spaces of
polynomials of degree less than or equal to p in all or on each variable, respectively.
Then, we define the set of piecewise polynomials

Pp(T ) := {v : Ω → R | ∀T ∈ T , v|T ◦ FT ∈ Rp(T̂ )},

with Rp ∈ {Pp,Qp}, where FT : T̂ → T , T ∈ T is a family of element maps. Let
also Πp(T ) : L2(Ω) → Pp(T ) denote the L2-projection onto T -piecewise polynomial
functions of order p. In particular, we have (Π0(T )f)|T = |T |−1

∫
T
f dx, T ∈ T for

all f ∈ L2(Ω). Note that v ∈ Pp(T ) does not necessarily belong to H1(Ω). The
T -piecewise gradient ∇T v, with (∇T v)|T = ∇(v|T ) for all T ∈ T , is well-defined and
∇T v ∈ (Pp−1(T ))d.

For any interior edge/face e ∈ E(Ω) there are two adjacent elements T− and T+

with e = ∂T− ∩ ∂T+. We define ν to be the normal vector of e that points from T−

to T+. For boundary edges/faces e ∈ E(Γ) let ν be the outward unit normal vector
of Ω.

Define the jump of v ∈ Pk(T ) across e ∈ E(Ω) by [v] := v|T− − v|T+ and define
[v] := v|e for e ∈ E(Γ). The average of v ∈ Pp(T ) across e ∈ E(Ω) is defined by
{v} := (v|T− + v|T+)/2 and for boundary edges e ∈ E(Γ) by {v} := v|e.

In the remaining part of this work, we consider two different meshes: a coarse mesh
TH and a fine mesh Th, with respective definitions for the edges/faces EH and Eh. We
denote the TH -piecewise gradient by ∇Hv := ∇TH

v and, respectively, ∇hv := ∇Th
v

for the Th-piecewise gradient . We assume that the fine mesh Th is the result of
one or more refinements of the coarse mesh TH . The subscripts h,H refer to the
corresponding mesh sizes; in particular, we have H ∈ P0(TH) with H|T = diam(T ) =:
HT for all T ∈ TH , He = diam e, for all e ∈ EH , h ∈ P0(Th), with h|T = diam(T ) =: hT

for all T ∈ Th, and he = diam e for all e ∈ Eh. Obviously, h ≤ H.

2.2. Discretization by the symmetric interior penalty method. We con-
sider the symmetric interior penalty method (SIP) discontinuous Galerkin method
[7, 1, 10]. We seek an approximation in the space Vh := P1(Th). Given some positive
penalty parameter σ > 0, we define the symmetric bilinear form ah : Vh ×Vh → R by

ah(u, v) :=(A∇hu,∇hv)L2(Ω) −
∑

e∈Eh(Ω)∪Eh(ΓD)

(
({ν ·A∇u}, [v])L2(e)

+ ({ν ·A∇v}, [u])L2(e) −
σ

he
([u], [v])L2(e)

)
.

(2.1)
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The jump-seminorm associated with the space Vh, is defined by

| • |2h :=
∑

e∈Eh(Ω)∪Eh(ΓD)

σ

he
‖[•]‖2L2(e), (2.2)

while the energy norm in Vh is then given by

||| • |||h := (‖A1/2∇h • ‖2L2(Ω) + | • |2h)1/2. (2.3)

If the penalty parameter is chosen sufficiently large, the dG bilinear form (2.1) is
coercive and bounded with respect to the energy norm (2.3). Hence, there exists a
(unique) dG approximation uh ∈ Vh, satisfying

ah(uh, v) = F (v) for all v ∈ Vh. (2.4)

We assume that (2.4) is computationally intractable for practical problems, so we
shall never seek to solve for uh directly. Instead, uh will serve as a reference solu-
tion to compare our coarse grid multiscale dG approximation with. The underlying
assumption is that the mesh Th is chosen sufficiently fine so that uh is sufficiently
accurate. The aim of this work is to devise and analyse a multiscale dG discretization
with coarse scale H, in such a way that the accuracy of uh is preserved up to an O(H)
perturbation independent of the variation of the coefficient A.

3. Discontinuous Galerkin multiscale method. As mentioned above, the
choice of the reference mesh Th is not directly related to the desired accuracy, but
is instead strongly affected by the roughness and variation of the coefficient A. The
corresponding coarse mesh TH , with mesh width function H ≥ h, is assume to be
completely independent of A. To encapsulate the fine scale information in the coarse
mesh, we shall design coarse generalized finite element spaces based on TH .

3.1. Multiscale decompositions. We introduce a scale splitting for the space
Vh. To this end, let ΠH := Π1(TH) and define VH := ΠHVh = P1(TH) and

V f := (1−ΠH)Vh = {v ∈ Vh | ΠHv = 0}.

Lemma 1 (L2-orthogonal multiscale decomposition). The decomposition

Vh = VH ⊕ V f ,

is orthogonal in L2(Ω).
Proof. The proof is immediate, as any v ∈ Vh can be decomposed uniquely into

a coarse finite element function vH := ΠHv ∈ VH and a (possibly highly oscillatory)
remainder vf := (1−ΠH)v ∈ V f , with ‖v‖2L2(Ω) = ‖vH‖2L2(Ω) + ‖vf‖2L2(Ω).

We now orthogonalize the above splitting with respect to the dG scalar product
ah; we keep the space of fine scale oscillations V f and simply replace VH with the
orthogonal complement of V f in Vh. We define the fine scale projection F : Vh → V f

by

ah(Fv, w) = ah(v, w) for all w ∈ V f . (3.1)

Using the fine scale projection, we can define the coarse scale approximation space by

Vms
H := (1− F)VH .
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Lemma 2 (ah-orthogonal multiscale decomposition). The decomposition

Vh = Vms
H ⊕ V f ,

is orthogonal with respect to ah, i.e., any function v in Vh can be decomposed uniquely
into some function vms

H ∈ Vms
H plus vf ∈ V f with |||v|||2h ≈ |||vms

H |||2h + |||vf |||2h. The
functions vms

H ∈ Vms
H and vf ∈ V f are the Galerkin projections of v ∈ Vh onto the

subspaces Vms
H and V f , i.e.,

ah(v
ms
H , w) = ah(v, w) = F (w) for all w ∈ Vms

H ,

ah(v
f , w) = ah(v, w) = F (w) for all w ∈ V f .

The unique Galerkin approximation ums
H ∈ Vms

H of u ∈ V solves

ah(u
ms
H , v) = F (v) for all v ∈ Vms

H . (3.2)

We shall see in the error analysis (cf. Theorem 8) that the orthogonality yields error
estimates for the Galerkin approximation ums

H ∈ Vms
H of (3.2) that are independent of

the regularity of the solution and of the diffusion coefficient A. However, the space
Vms
H is not suitable for practical computations as a local basis for this space is not

easily available. Indeed, given a basis of VH , e.g., the element-wise Lagrange basis
functions {λT,j | T ∈ TH , j = 1, . . . , r} where r = (1 + d) for regular simplices or
r = 2d for quadrilaterals/hexahedra. The space Vms

H may be spanned by the corrected
basis functions (1 − F)λT,j , T ∈ TH , j = 1, . . . , r. Although λT,j has local support
suppλT,j = T , its corrected version (1 − F)λT,j may have global support in Ω, as
(3.1) is a variational problem on the whole domain Ω. Fortunately, as we shall prove
later, the corrector functions φT,j decay quickly away from T (cf. previous numerical
results in [8] and a similar observation for the corresponding conforming version of the
method [14]). This decay motivates the local approximation of the corrector functions,
at the expense of introducing small perturbations in the method’s accuracy.

3.2. Discontinuous Galerkin multiscale method. The localized approxima-
tions of the corrector functions are supported on element patches in the coarse mesh
TH .

Definition 3. For all T ∈ TH , define element patches with size L as

ω1
T := int(T ),

ωL
T := int(∪{T ′ ∈ TH | T ′ ∩ ω̄L−1

T �= ∅}), k = 1, 2, . . . .

We refer to Figure 3.2 for an illustration. We introduce a new discretization param-
eter L > 0 ∈ N and define localized corrector functions φL

T,j ∈ V f(ωL
T ) := {v ∈ V f |

v|Ω\ωL
T
= 0} by

ah(φ
L
T,j , w) = ah(λT,j , w) for all w ∈ V f(ωL

T ). (3.3)

Further, we define the multiscale approximation space

Vms,L
H = span{λT,j − φL

T,j | T ∈ TH , j = 1, . . . , r}.

The dG multiscale method seeks ums,L
H ∈ Vms,L

H such that

ah(u
ms,L
H , v) = F (v) for all v ∈ Vms,L

H . (3.4)
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Figure 1. Example of a one layer patch ω1
T , two layer patch ω2

T , and a three layer patch ω3
T ,

on a quadrilateral mesh.

Since Vms,L
H ⊂ Vh, this method is a Galerkin method in the Hilbert space Vh (with

scalar product ah) and, hence, inherits well-posedness from the reference discretization
(2.4).

Moreover, the proposed basis {λT,j − φL
T,j | T ∈ TH , j = 1, . . . , r} is stable with

respect to the fine scale parameter h, as we shall see in Lemma 7 below.

3.3. Compressed discontinuous Galerkin multiscale method. The basis
functions in the above multiscale method have enlarged supports (element patches)
when compared with standard dG methods (elements). We can decompose the cor-
rector functions into its element contributions

φL
T,j =

∑
T ′∈TH :T ′⊂ωL

T

φL
T,jχT ′ ,

where χT ′ is the indicator function of the element T ′ ∈ TH .
This motivates the coarse approximation space

Wms,L
H =span

(
{λT,j |T ∈ TH , j = 1, . . . , r}

∪ {φL
T,jχT ′ |T, T ′ ∈ TH , T ′ ⊂ ωL

T , j = 1, . . . , r},

This space offers the advantage of a known basis with element-wise support which
leads to improved (localized) connectivity in the corresponding stiffness matrix. This
is at the expense of a slight increase in the dimension of the space

dim(Wms,L
H ) ≈ Ld dim(Vms,L

H ).

The corresponding localized dG multiscale method seeks wms,L
H ∈ Wms,L

H such
that

ah(w
ms,L
H , v) = F (v) for all v ∈ Wms,L

H . (3.5)

Since Vms,L
H ⊂ Wms,L

H ⊂ Vh, Galerkin orthogonality yields

|||uh − wms,L
H |||h ≤ |||uh − ums,L

H |||h, (3.6)

i.e., the new localized version (3.5) is never worse than the previous multiscale approx-
imation in terms of accuracy. However, it may lead to very ill-conditioned element
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stiffness matrices (cf. Lemma 10 which shows that φL
T,jξT ′ may be very small if the

distance between T and T ′ relative to their sizes is large).
To circumvent ill-conditioning, one may choose a reduced local approximation

space on the basis of a singular value decomposition. Since the dimension of the local
approximation space is small (at most proportional to Ld), the cost for this additional
preprocessing step is comparable with the cost for the solution of the local problems
for the corrector functions.

To determine an acceptable level of truncation of the localized basis functions, we
can use the the a posteriori error estimator contribution of the local problem from [8],
which is an estimation of the local fine scale error. This procedure may additionally
lead to large reduction of the dimension of the local approximation spaces.

4. Error analysis. We present an a priori error analysis for the proposed multi-
scale method (3.4). In view of (3.6), this analysis applies immediately to the modified
versions presented in Section 3.3. The error analysis will be split into a number of
steps. First, in Section 4.1, we present some properties of the coarse scale projec-
tion operator ΠH . In Section 4.2, an error bound for dG multiscale method ums

H

from (3.2) (Theorem 8) is shown, whereby the corrected basis functions are solved
globally. Results for the decay of the localized corrected basis function (Lemma 10
and Lemma 11) are shown, along with an error bound for the dG multiscale method

ums,L
H from (3.4) (Theorem 12) ,where the corrected basis functions are solved locally

on element patches. Finally, in Section 4.3, we show an error bound given a quantity
of interest (Theorem 14), leading to an error bound in L2-norm (Corollary 15).

We shall make use of the following (semi)norms. The jump-seminorm and energy
norms, associated with the coarse space VH , are defined by

| • |2H :=
∑

e∈EH(Ω)∪EH(ΓD)

σ

He
‖[•]‖2L2(e),

||| • |||H := (‖A1/2∇H • ‖2L2(Ω) + | • |2H)1/2,

respectively, along with a localized version of the local jump and energy norms (2.2)
and (2.3) on a patch ω ⊆ Ω, where ω is aligned with the mesh Th, given by

| • |2h,ω :=
∑

e∈E(Ω)∪E(ΓD):
e∩ω̄ �=0

σ

he
‖[•]‖2L2(e),

||| • |||h,ω := (‖A1/2∇h • ‖2L2(ω) + | • |2h,ω)1/2.

The shape-regularity assumptions hT ≈ he for all e ∈ ∂T : T ∈ Th and HT ≈ He for
all T ∈ ∂T : T ∈ TH will also be used.

4.1. Properties of the coarse scale projection operator ΠH . The following
lemma gives stability and approximation properties of the operator ΠH .

Lemma 4. For any v ∈ Vh, the estimate

H−1‖v −ΠHv‖L2(T ) � α−1/2|||v|||h,T ,

is satisfied for all T ∈ TH . Moreover, it holds

β−1/2|||ΠHv|||H + ‖H−1(v −ΠHv)‖L2(Ω) � α−1/2|||v|||h.
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Proof. Theorem 2.2 in [12], implies that for each v ∈ Vh, there exists a bounded
linear operator Ic

h : Vh → Vh ∩H1(Ω) such that

β−1/2‖A1/2∇H(v − Ic
hv)‖L2(Ω) + ‖h−1(v − Ic

hv)‖L2(Ω) � α−1/2|v|h. (4.1)

Split v = vc+vd ∈ Vh into a conforming, vc = Ic
hv, and non-conforming, vd = v−Ic

hv,
part. We obtain

H−1‖v −ΠHv‖L2(T ) ≤ H−1(‖vc −ΠHvc‖L2(T ) + ‖vd −ΠHvd‖L2(T ))

� ‖∇hv‖+ ‖∇h(v − vc)‖L2(T ) +H−1‖vd‖L2(T ))

� α−1/2|||v|||h,T
(4.2)

using the triangle inequality, stability of the L2-projection, and (4.1). Also,

|||ΠHv|||2H =
∑

T∈TH

‖
√
A∇(ΠHv −Π0(TH)v)‖2L2(T ) +

∑
e∈Γ

σ

H
‖[vc −ΠHv]‖2L2(e)

�
∑

T∈TH

β

(
1

H2
‖v −Π0(TH)v‖2L2(T ) +

1

H2
‖vc −ΠHv‖2L2(T )

)

�C2
β/α|||v|||2h,

using the triangle inequality, (4.1), and (4.2) which concludes the proof.
The operator ΠH is surjective. The next lemma shows that, given some vH ∈ VH

in the image of ΠH there exists a H1-conforming pre-image v ∈ Π−1
H vH ⊂ Vh with

comparable support.
Lemma 5. For each vH ∈ VH , there exists a v ∈ Vh∩H1(Ω) such that ΠHv = vH ,

|||v|||h � Cβ/α|||vH |||H , and supp(v) ⊆ supp(vH).
Proof. Using (4.1) but on space VH gives, for each v ∈ VH , there exists a bounded

linear operator Ic
H : VH → VH ∩H1(Ω) such that

β−1/2‖A1/2∇H(v − Ic
Hv)‖L2(Ω) + ‖H−1(v − Ic

Hv)‖L2(Ω) � α−1/2|v|H . (4.3)

We define

v := Ic
HvH +

∑
T∈TH , j=1,...,r

(vH(xj)− Ic
HvH(xj)) θT,j ,

where θT,j ∈ Vh ∩ H1
0 (T ) are bubble functions, supported on each element T , with

ΠHθT,j = λT,j and |||θT,j |||2h � βHd−2. Observe that supp(v) ⊆ supp(vH). The
interpolation property follows from

ΠHv = Ic
HvH +ΠH

∑
T∈TH , j=1,...,r

(vH(xj)− Ic
HvH(xj)) θj ,

= Ic
HvH + vH − Ic

HvH = vH .

To prove stability, we estimate |||v|||h as follows:

|||v|||2h ≤ ‖A1/2∇Ic
HvH‖2L2(Ω) +

∑
T∈TH , j=1,...,r

|vH(xj)− Ic
HvH(xj)|2 |||θj |||2h

� ‖A1/2∇HIc
HvH‖2L2(Ω) + β‖H−1(vH − Ic

HvH)‖2L2(Ω)

� C2
β/α|||vH |||2H
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using the inverse estimate ‖v‖L∞(T ) ≤ H−d/2‖v‖L2(T ) for all v ∈ VH , and the estimate
(4.3).

Remark 6. Note that θT,j ∈ Vh ∩H1
0 (T ) for all T ∈ TH (fulfilling the conditions

in Lemma 5) can be constructed using two (or more) refinements of the coarse scale
parameter H. We can let θT,j ∈ Vh′ ∩ H1

0 (T ) where Vh′ ⊂ Vh and h ≤ h′ ≤ 2−2H.
This does not put a big restriction on h since the mesh Th is assumed to be sufficiently
fine to resolve the variation in the coefficient A, while the parameter H does not need
to resolve A.

The following lemma says that the corrected basis is stable with respect to the
fine scale parameter h in the energy norm (2.3), this is not a trivial result since the
basis function {λT,j |T ∈ TH , j = 1, . . . , r} are discontinuous.

Lemma 7 (Stability of the corrected basis functions). For all, T ∈ TH , j =
1, . . . , r and L > 0 ∈ N, the estimate

|||λT,j − φL
T,j |||h � Cβ/α|||λT,j |||H ,

is satisfied, independently of the fine scale parameter h.
Proof. For any T ∈ TH , j = 1, . . . , r, by Lemma 5 there exists a b such that

v = λT,j − b ∈ Vf
h (ω

L
T ), and |||b|||h � Cβ/α|||λT,j |||H . We have

|||λT,j − φL
T,j |||2h � ah(λT,j − φL

T,j , λT,j − φL
T,j) = ah(λT,j − φL

T,j , λT,j − v),

� ah(λT,j − φL
T,j , b) � Cβ/α|||λT,j − φL

T,j |||h|||λT,j |||H ,

which concludes the proof.

4.2. A priori estimates. The following theorem gives an error bound for the
idealized dG multiscale method, whereby the correctors for the basis are solved glob-
ally.

Theorem 8. Let uh ∈ Vh solve (2.4) and ums
H ∈ Vms

H solve (3.4), then the
estimate

|||uh − ums
H |||h ≤ C1α

−1/2||H(f −ΠHf)||L2(Ω),

is satisfied, where C1 neither depends on the mesh (h or H) size nor the diffusion
matrix A.

Proof. Let e := uh − ums
H = uf ∈ V f , then

|||e|||2h � ah(e, e) = (f, e)L2(Ω) = (f −ΠHf, e−ΠHe)L2(Ω)

≤ ||H(f −ΠHf)||L2(Ω)||H−1(e−ΠHe)||2L2(Ω)

� 1√
α
||H(f −ΠHf)||L2(T )|||e|||h,

using Lemma 2, Lemma 1, Cauchy-Schwarz inequality, and Lemma 4, respectively.
Definition 9. The cut off functions ζd,DT ∈ P0(Th) are defined by the conditions

ζd,DT |ωd
T
= 1,

ζd,DT |Ω\ωD
T
= 0,

‖[ζd,DT ]‖L∞(T ) �
hT

(D − d)HT
for all T ∈ TH ,

and that ζd,DT is constant on the boundary ∂(ωD
T \ ωd

T ).
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The next lemma shows the exponential decay in the corrected basis, which is a
key result in the analysis.

Lemma 10. For all T ∈ TH , j = 1, . . . , r, the estimate

|||(λj − φT,j)− (λj − φL
T,j)|||h = |||φT,j − φL

T,j |||h ≤ C3γ
L|||φT,j − λ|||h,

is satisfied, with C3 = CC3
β/α, 0 < γ < 1 given by γ := (C2

� )
k−1
2� , C2 = C ′C2

β/α, and

L = k�, k, � ≥ 2 ∈ N, noting that C and C ′ are positive constants that are independent
of the mesh (h or H), of the patch size L, and of the diffusion matrix A.

Proof. Define e := φT,j − φL
T,j = φT,j − φ�k

T,j . We have

|||e|||2h � ah(e, φT,j − φ�k
T,j) = ah(e, φT,j − v) � |||e|||h · |||φT,j − v|||h, (4.4)

for v ∈ Vf
h (ω

�k
T ). Let ζ := ζ�k−1,�k

T ; then by Lemma 5 there exists a b such that v =

ζφT,j − b ∈ Vf
h (ω

�k
T ), ΠHb = ΠHζφT,j , |||b|||h � Cβ/α|||ΠHζφT,j |||H , and supp(b) ⊆

supp(ΠHζφT,j). Then, we have

|||φT,j − v|||h = |||φT,j − (ζφT,j − b)|||h
≤ |||φT,j − ζφT,j |||h + |||b|||h
� |||φT,j − ζφT,j |||h + Cβ/α|||ΠH(ζφT,j − φT,j)|||H
� C2

β/α|||φT,j − ζφT,j |||h.

(4.5)

Furthermore, using the properties of ζ we have

‖
√
A∇h(1− ζ)φT,j‖L2(Ω) ≤ ‖

√
A∇hφT,j‖L2(Ω\ω�k−1

T ), (4.6)

and

|(1− ζ)φT,j |2h =
∑

e∈E(Ω)∪E(ΓD)

σ

he
‖[(1− ζ)φT,j ]‖2L2(e)

≤
∑

e∈E(Ω)∪E(ΓD)

σ

he

(
‖{1− ζ}[φT,j ]‖2L2(e) + ‖{φT,j}[1− ζ]‖2L2(e)

)

≤
∑

e∈E(Ω)∪E(ΓD):

e∩Ω\ω�k−1
T �=0

(
σ

he
‖[φT,j ]‖2L2(e) +

σh2
T

heH2
T

‖{φT,j}‖2L2(e)

)

≤
∑

e∈E(Ω)∪E(ΓD):

e∩Ω\ω�k−1
T �=0

σ

he
‖[φT,j ]‖2L2(e) +

σ

H2
T

‖φT,j −ΠHφT,j‖2L2(Ω\ω�k−1
T )

� C2
β/α|||φT,j |||h,Ω\ω�k−1

T
,

(4.7)

using a trace inequality and Lemma 4, respectively. Combining (4.4), (4.5), (4.6), and
(4.7) yields

|||φT,j − ζφT,j |||h � C3
β/α|||φT,j |||h,Ω\ω�k−1

T
. (4.8)

To simplify notation, let m := �(k− 1)− 1 and M := �k− 1. For ηT := 1− ζm,M
T , we

obtain

|||φT,j |||2h,Ω\ωM
T

≤ |||ηTφT,j |||2h � ah(ηTφT,j , ηTφT,j), (4.9)
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where

ah(ηTφT,j , ηTφT,j) = (A∇hηTφT,j ,∇hηTφT,j)L2(Ω)

+
∑

e∈E(Ω)∪E(ΓD)

(
−2({ν ·A∇ηTφT,j}, [ηTφT,j ]) +

σ

he
([ηTφT,j ], [ηTφT,j ])

)
.

(4.10)
For the first term on the right-hand side of (4.10), we have

(A∇hηTφT,j ,∇hηTφT,j)L2(Ω) = (A∇hφT,j ,∇hη
2
TφT,j)L2(Ω), (4.11)

since ηT is constant on each element T ∈ Th; for the other terms we use (A.3) and
(A.4) (with v = ηT , w = ν ·A∇φT,j and u = φT,j). We can, thus, arrive to

|||φT,j |||2h,Ω\ωM
T

≤ ah(ηTφT,j , ηTφT,j) = ah(φT,j , η
2
TφT,j)

+
∑

e∈E(Ω)

(
1/2({ν ·A∇φT,j}, [ηT ]2[φT,j ])L2(e) − 1/4([ν ·A∇φT,j ], [ηT ]

2{φT,j})L2(e)

− σ

4he
([ηT ]

2, [φT,j ]
2)L2(e) +

σ

he
([ηT ]

2, {φT,j}2)L2(e)

)
,

(4.12)
using (4.9), (4.10), and (4.11). Note that,

∑
e∈E(Ω)

(
1/2({ν ·A∇φT,j}, [ηT ]2[φT,j ])L2(e) − 1/4([ν ·A∇φT,j ], [ηT ]

2{φT,j})L2(e)

− σ

4he
([ηT ]

2, [φT,j ]
2)L2(e) +

σ

he
([ηT ]

2, {φT,j}2)L2(e)

)

�
∑

e∈E(Ω):

e∩ωM
T \ωm

T �=0

h2
T

�2H2
T

(
‖{ν ·A∇φT,j}‖L2(e)‖[φT,j ]‖L2(e) + ‖[ν ·A∇φT,j ]‖L2(e)‖{φT,j}‖L2(e)

+
σ

he

(
‖[φT,j ]‖2L2(e) + ‖{φT,j}‖2L2(e)

))

�
∑

e∈E(Ω):

e∩ωM
T \ωm

T �=0

( hT

�2H2
T

‖A∇φT,j‖L2(T+∪T−)‖φT,j‖L2(T+∪T−) +
σ

�2H2
T

‖φT,j‖2L2(T+∪T−)

)

� β�−2‖H−1
T (φT,j −ΠHφT,j)‖2L2(ωM

T \ωm
T ) ≤ C2

β/α�
−2|||φT,j |||2h,ωM

T \ωm
T
.

(4.13)
Now we bound the term

ah(φT,j , η
2
TφT,j) = ah(φT,j , η

2
TφT,j − b) + ah(φT,j , b) = ah(φT,j , b)

� |||φT,j |||h,ωM
T \ωm

T
|||b|||h,ωM

T \ωm
T

≤ Cβ/α|||φT,j |||h,ωM
T \ωm

T
|||ΠHη2TφT,j |||H,ωM

T \ωm
T
.

(4.14)
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Furthermore, we have that

|||ΠHη2TφT,j |||2H,ωM
T \ωm

T
= |||ΠH(η2T −Π0(TH)η2T )φT,j |||2H,ωM

T \ωm
T

= ‖
√
A∇HΠH(η2T −Π0(TH)η2T )φT,j‖2L2(ωM

T \ωm
T )

+
∑

e∈E(Ω)∪E(ΓD):

e∩ωM
T \ωm

T �=0

σ

He
‖[ΠH(η2T −Π0(TH)η2T )φT,j ]‖2L2(e)

� β‖H−1
e ΠH(η2T −Π0(TH)η2T )φT,j‖2L2(ωM

T \ωm
T )

� β‖H−1
e (η2T −Π0(TH)η2T )‖L∞(T )‖φT,j‖2L2(ωM

T \ωm
T )

� β�−2‖H−1
e (φT,j −ΠHφT,j)‖2L2(ωM

T \ωm
T )

� C2
β/α�

−2|||φT,j |||2h,ωM
T \ωm

T
,

(4.15)

using a trace inequality, inverse inequality, and Lemma 4, respectively. Combining
the inequalities (4.12), (4.13), (4.14), and (4.15) yields

|||φT,j |||2h,Ω\ωM
T

≤ C2

�
|||φT,j |||2h,ωM

T \ωm
T

≤ C2

�
|||φT,j |||2h,Ω\ωm

T
.

where C2 = C ′C2
β/α. Substituting back to � and k and using a cut off function with

a slightly different argument, yields

|||φT,j |||2h,Ω\ω�k−1
T

≤ C2

�
|||φT,j |||2h,Ω\ω�(k−1)−1

T

≤ (
C2

�
)2|||φT,j |||2h,Ω\ω�(k−2)−1

T

≤ · · · ≤ (
C2

�
)k−1|||φT,j |||2h,ω�\ω�−1

T

,

which concludes the proof together with (4.8).

Lemma 11. For all, T ∈ TH , j = 1, . . . , r, the estimate

|||
∑

T∈TH , j=1,...,r

vj(φT,j − φL
T,j)|||2h ≤ C4L

d
∑

T∈TH , j=1,...,r

|vj |2|||φT,j − φL
T,j |||2h,

is satisfied, with C4 = CC3
β/α and C positive constant independent of the mesh (h or

H), of the patch size L, and of the diffusion matrix A.

Proof. Let w =
∑

T∈TH , j=1,...,r vj(φT,j − φL
T,j), and note that

ah(φT,j − λT,j , w − ζTw + bT ) = 0,

ah(φ
L
T,j − λT,j , w − ζTw + bT ) = 0,

(4.16)

where ζT := ζL+1,L+2
T , using Lemma 5 and the property of the cut-off function. We



CONVERGENCE OF A DISCONTINUOUS GALERKIN MULTISCALE METHOD 13

obtain

|||
∑

T∈TH , j=1,...,r

vj(φT,j − φL
T,j)|||h �

∑
T∈TH , j=1,...,r

vjah(φT,j − φL
T,j , w)

=
∑

T∈TH , j=1,...,r

vjah(φT,j − φL
T,j , ζTw − bT )

�
∑

T∈TH , j=1,...,r

|vj | · |||φT,j − φL
T,j |||h (|||ζTw|||h + |||bT |||h)

�
∑

T∈TH , j=1,...,r

|vj | · |||φT,j − φL
T,j |||h

(
|||ζTw|||h + Cβ/α|||ΠHζTw|||H

)

�
∑

T∈TH , j=1,...,r

|vj | · |||φT,j − φL
T,j |||hC2

β/α|||ζTw|||h.

(4.17)

From (4.6) and (4.7), we have

|||ζTw|||h = |||ζTw|||h,ωL+2
T

� Cβ/α|||w|||h,ωL+2
T

. (4.18)

Then, further estimation of (4.17) can be achieved using (4.18) and the discrete
Cauchy-Schwarz inequality:

|||
∑

T∈TH , j=1,...,r

vj(φT,j − φL
T,j)|||h

≤ C3
β/α

⎛
⎝ ∑

T∈TH , j=1,...,r

|vj |2|||φT,j − φL
T,j |||2h

⎞
⎠
1/2⎛
⎝ ∑

T∈TH , j=1,...,r

|||w|||2
h,ωL+2

T

⎞
⎠
1/2

≤ C3
β/αL

d/2 ·

⎛
⎝ ∑

T∈TH , j=1,...,r

|vj |2|||φT,j − φL
T,j |||2h

⎞
⎠

1/2

· |||w|||h.

Dividing by w on both sides concludes the proof.
The following theorem gives an error bound for the dG multiscale method.
Theorem 12. Let u ∈ H1

D(Ω) solve (1.2) and ums,L
H ∈ Vms,L

H solve (3.4). Then,
the estimate

|||u− ums,L
H |||h ≤|||u− uh|||h + C1α

−1/2||H(f −ΠHf)||L2(Ω)

+ C5‖H−1‖L∞(Ω)L
d/2γL‖f‖L2(Ω),

is satisfied, with 0 < γ < 1, L from Lemma 10, C1 from Theorem 8, C5 = CC2
β/αC

1/2
4 C3

where C3 is from Lemma 10 and C4 is from Lemma 11. C a positive constant in-
dependent of the mesh (h or H), of the patch size L, and of the diffusion matrix
A.

Remark 13. To counteract the factor ‖H−1‖L∞(Ω) in the error bound in Theo-
rem 12, we can choose the localization parameter as L = �C log(||H−1||L∞(Ω))�. On
adaptively refined meshes it is recommended to choose L = �C log(H−1)�.

Proof. We define ũms,L
H :=

∑
T∈TH , j=1,...,r u

ms
H,T (xj)φ

L
T,j . Then, we obtain

|||u− ums,L
H |||h ≤ |||u− ũms,L

H |||h
≤ |||u− uh|||h + |||uh − ums

H |||h + |||ums
H − ũms,L

H |||h
≤ |||u− uh|||h + |||uh − ums

H |||h + |||
∑

T∈TH , j=1,...,r

ums
H,T (xj)(φT,j − φL

T,j)|||h.
(4.19)
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Now, estimating the terms in (4.19), we have

|||uh − ums
H |||h ≤ C1α

−1/2‖H(f −ΠHf)‖L2(Ω),

using Theorem 8, and

|||
∑

T∈TH , j=1,...,r

ums
H,T (xj)(φT,j − φL

T,j)|||2h

≤ C4L
d

∑
T∈TH , j=1,...,r

|ums
H,T (xj)|2|||φT,j − φL

T,j |||2h.

≤ C4C
2
3L

dγ2L
∑

T∈TH , j=1,...,r

|ums
H,T (xj)|2|||φT,j − λj |||2h,

(4.20)

using Lemma 11 and Lemma 10, respectively. Further estimation, using Lemma 7,
yields

∑
T∈TH , j=1,...,r

|ums
H,T (xj)|2|||φT,j − λT,j |||2h

� C2
β/α

∑
T∈TH , j=1,...,r

|ums
H,T (xj)|2|||λT,j |||2H

� C2
β/αβ

∑
T∈TH , j=1,...,r

|ums
H,T (xj)|2H−2

T ‖λT,j‖2L2(T )

= C2
β/αβ

∑
T∈TH , j=1,...,r

‖H−1
T ums

H,T (xj)λT,j‖2L2(T )

� C2
β/αβ‖

∑
T∈TH , j=1,...,r

H−1
T ums

H,T (xj)λT,j‖2L2(Ω).

(4.21)

Furthermore, using a Poincare-Friedrich inequality for piecewise H1 functions, we
deduce

‖
∑

T∈TH , j=1,...,r

H−1
T ums

H,T (xj)λT,j‖2L2(Ω)

� ‖
∑

T∈TH , j=1,...,r

H−1
T ums

H,T (xj)ΠH(λT,j − φT,j)‖2L2(Ω)

� α−1|||H−1ums
H |||2h

� α−1‖H−1‖2L∞(Ω)‖f‖2L2(Ω).

(4.22)

Combining (4.20), (4.21) and (4.22), we arrive to

|||ums
H − ums,L

H |||h � C2
β/αC

1/2
4 C3‖H−1‖L∞(Ω)L

d/2γL‖f‖L2(Ω).

4.3. Error in a quantity of interest. In engineering applications, we are often
interested in a quantity of interest, usually a functional g ∈ L2(Ω) of the solution. To
this end, consider the dual reference solution (2.4): find φh ∈ Vh such that

ah(v, φh) = g(v) for all v ∈ Vh, (4.23)
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and the dual multiscale solution (3.4): find φL
H,h ∈ VL

H,h such that

ah(v, φ
ms,L
H,h ) = g(v) for all v ∈ VL

H,h. (4.24)

Theorem 14. Let u ∈ H1
D(Ω) solve (1.2), ums,L

H ∈ Vms,L
H solve (3.4), and let

g ∈ L2(Ω) be the quantity of interest. Then, the estimate

|g(u)− g(uL
H,h)| � |g(u)− g(uh)|+ |||uh − ums,L

H |||h|||φh − φms,L
H |||h,

is satisfied.
Proof. From (4.23) and (4.24), we obtain the Galerkin orthogonality

ah(v, φh − φms,L
H ) = 0 for all v ∈ Vms,L

H . (4.25)

Using the triangle inequality, we have

|g(u)− g(ums,L
H )| ≤ |g(u)− g(uh)|+ |g(uh)− g(ums,L

H )|.

Finally, observing that

|g(uh − uL
h,H)| = |ah(uh − uL

h,H , φh)|
= |ah(uh − uL

h,H , φh − φL
H,h)|

� |||uh − uL
h,H |||h|||φh − φL

H,h|||h,

using (4.25), concludes the proof.
Corollary 15. For g(v) = (uh − uL

H,h, v)L2(Ω), the following L2-norm error
estimates hold:

‖u− uL
H,h‖L2(Ω) � ‖u− uh‖L2(Ω) + |||uh − ums,L

H |||1/2h |||φh − φms,L
H |||1/2h ,

and

‖u− uL
H,h‖L2(Ω) � ‖u− uh‖L2(Ω) +H|||uh − ums,L

H |||h, (4.26)

for L = �C log(H−1)� with C sufficiently large positive constant independent of the
mesh parameters.

Remark 16. As expected, if we are interested in a smoother functional, a higher
convergence rate is obtained for |g(uh −ums,L

H )|. For example, given the forcing func-
tion for the primal problem f ∈ Hm(TH), a quantity of interest g ∈ Hn(TH) (with
H0(TH) denoting the standard L2(Ω) space), and choosing L = �C log(H−1)� with
large enough C, gives

|g(u− ums,L
H )| � |g(u)− g(uh)|+H2+m+n(

∑
T∈TH

|f |Hm(T ))(
∑

T∈TH

|g|Hn(T )).

5. Numerical Experiments. Let Ω where be an L-shaped domain (constructed
by removing the lower right quadrant in the unit square) and let the forcing function
be f = 1 + cos(2πx) cos(2πy) for (x, y) ∈ Ω. The boundary Γ is divided into the
Neumann boundary ΓN := Γ ∩ ({(x, y) : y = 0} ∪ {(x, y) : x = 1}) and the Dirichlet
boundary ΓD = Γ \ ΓN . We shall consider three different permeabilities: constant
A1 = 1, A2 = A2(x), which is piecewise constant with periodic values of 1 and 0.01
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(a) β/α = 102 (b) β/α ≈ 4 · 106

Figure 2. The permeability structure of A2 (a) and A3 (b) in log scale.

with respect to a Cartesian grid of width 2−6 in the x-direction, and A3 = A3(x, y)
which piecewise constant with respect to a Cartesian grid of width 2−6 both in the x-
and y-directions and has a maximum ratio β/α = 4 · 106. The data for A3 are taken
from layer 64 in the SPE benchmark problem, see http://www.spe.org/web/csp/.
The permeabilities A2 and A3 are illustrated in Figure 2. For the periodic problem
many of the corrected basis functions will be identical. For instance, all the local
corrected basis in the interior are solved on identical patches, thereby reducing the
computational effort considerably. In the extreme case of a problem with periodic
coefficients on a unit hypercube, with period boundary conditions, the correctors
φT,j , j = 1, . . . , r, will be identical for all T ∈ TH .

Consider the uniform (coarse) quadrilateral mesh TH with size H = 2−i, i =
1, . . . , 6. The convergence rate −p/2 corresponds to O(Hp) since the number degrees
of freedom ≈ H−2. The corrector functions (3.3) are solved on a subgrid of a (fine)
quadrilateral mesh Th with mesh size 2−8. The mesh Th will also act as a reference
grid for which we shall compute a reference solution uh ∈ Vh (2.4) on. Note that the
mesh Th is chosen so that it resolves the fine scale features for Ai, i = 1, 2, 3, hence
we assume that the solution uh is sufficiently accurate.

5.1. Localization parameter. If f ∈ Hm(TH) we have the bound

||H(f −ΠHf))||L2(Ω) �
∑

T∈TH

Hk+1|f |Hk(T ), (5.1)

where k = 0 for m = 0, k = 1 for m = 1, and k = 2 for m > 1. Hence, to balance
the error in between the terms on the right-hand side of the estimate in Theorem 12,
different constant C has to be used for the localization parameter, L = �C log(H−1)�,
depending on the element-wise regularity of the forcing function f on TH . Figure 3
shows the relative error in the energy norm |||uh − ums,L

H |||h/|||uh|||h and Figure 4

the relative error in the L2-norm ‖uh−ums,L
H ‖L2(Ω)/‖uh‖L2(Ω) between uh and ums,L

H

against the number of degrees of freedom Ndof ≈ O(H−2), using different constants
C = 1, 3/2, 2, 5/2. With the chose C = 5/2, the errors due to the localization can be
neglected compared to the errors from the forcing function, both for the energy- and
for the L2-norm. For f �∈ H1(Th), C = 3/2 is sufficient since (5.1) gives linear con-
vergence. In the following numerical experiments we shall use C = 2, since this value
seems to balance the error sufficiently. Note that the numerical overhead increases
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Figure 3. Diffusion coefficient A1 = 1. Relative energy-norm error against Ndof, for different
values of C for the localisation parameter L.
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Figure 4. Diffusion coefficient A1 = 1. Relative L2-norm error against Ndof, for different
values of C for the localisation parameter L.

with C as the sizes of the patches ωL
T T ∈ TH , increases with L = �C log(H−1)�. This

results in both increased computational effort to compute the corrector functions and
reduced sparseness in the coarse scale stiffness matrix.

5.2. Energy-norm convergence. Let the localization parameter be
L = �2 log(H−1)�. Figure 5 shows the relative error in the energy norm plotted against
the number of degrees of freedom. The different permeabilities Ai, i = 1, 2, 3, and
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the singularity arising from the L-shaped domain do not appear to have a substantial
impact on the convergence rate, which is about 3/2, as expected. We note in passing
that using standard dG on the coarse mesh only admits poor convergence behaviour
for A2 and for A3. This is to be expected, since standard dG on the coarse mesh does
not resolve the fine scale features.
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Figure 5. Relative energy-norm error against Ndof, for C = 2 in the localisation parameter L
for the the diffusion coefficients A1, A2, and A3.

5.3. L2-norm convergence. Again, set L = �2 log(H−1)�. Figure 6 and Fig-
ure 7, shows the relative L2-norm error again the number of degrees of freedom be-
tween, uh and uL

H,h and between uh and ΠHuL
H,h, viz., ‖uh−ΠHums,L

H ‖L2(Ω)/‖uh‖L2(Ω),

respectively. In Figure 6 we see that the L2-norm error between uh and ums,L
H con-

verges at a faster rate than in the energy norm (convergence rate −2 compared to

−3/2, respectively,) as expected from (4.26). In Figure 7 only the coarse part of ums,L
H

is used (i.e. ΠHums,L
H ); nevertheless it appears to have a faster convergence rate than

−1/2, except for the case of the permeability A3.
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Appendix A. Equalities for averages and jump operators. We derive
equalities for averages and jump operators across interfaces where the functions v and
w have discontinuities. Using [vw] = {v}[w]+ [v]{w} and {v}{w} = {vw}−1/4[v][w],
we have

{vw}[vu] ={w}{v}[vu] + 1/4[v][w][vu]

={w}[v2u]− {w}[v]{vu}+ 1/4[v][w][vu]

={w}[v2u]− [v]{w}{v}{u} − 1/4[v]2{w}[u]
+ 1/4[v]2[w]{u}+ 1/4[v]{v}[w][u]

(A.1)

and

{vw}[vu] ={v}{vw}[u] + {vw}[v]{u}
={v2w}[u]− 1/4[v][vw][u] + {vw}[v]{u}
={v2w}[u]− 1/4[v]2{w}[u]− 1/4[v]{v}[w][u]

+ [v]{v}{w}{u}+ 1/4[v]2[w]{u}

(A.2)

Combining (A.1) and (A.2) we obtain

2{vw}[vu] = {w}[v2u] + {v2w}[u] + 1/2[v]2[w]{u} − 1/2[v]2{w}[u] (A.3)

Also,

[vu][vu] =[u]{v}[vu] + [v]{u}[vu]
=[u][v2u]− [v][u]{vu}+ [v]{u}[vu]
=[u][v2u])− [v][u]{v}{u} − 1/4[v][u][v][u]

+ [v]{u}[v]{u}+ [v]{u}{v}[u]
=[u][v2u]− 1/4[v]2[u]2 + [v]2{u}2

(A.4)
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Abstract

We propose an extension of the discontinuous Galerkin multiscale
method, presented in [11], to convection dominated problems with rough,
heterogeneous, and highly varying coefficients. The properties of the mul-
tiscale method and the discontinuous Galerkin method allows us to better
cope with multiscale features as well as boundary layers in the solution.
In the proposed method the trail and test spaces are spanned by a cor-
rected basis calculated on localized patches of size O(H log(H−1)), where
H is the mesh size. We prove convergence rates independent of the vari-
ation in the coefficients and present numerical experiments which verify
the analytical findings.

1 Introduction

In this paper we consider numerical approximation of convection dominated
problems with rough, heterogeneous, and highly varying coefficients, without
assumption on scale separation or periodicity. This class of problems, normally
refereed to as multiscale problem, are know to be very computational demanding
and arise in many different areas of the engineering sciences, e.g., porous media
flow and in composite materials. More precisely, we consider the following
convection-diffusion-reaction equation: find the weak solution u ∈ H1

0 such that

−∇ ·A∇u+ b · ∇u+ cu = f in Ω,

u = 0 on Γ,
(1.1)

with multiscale coefficients A,b, c, which will be specified later.
There are two key issues which make classical conforming finite element

methods perform badly for these kind of problems.

• First, the multiscale features of the coefficient need to be resolved by the
finite element mesh.

†Information Technology, Uppsala University, Box 337, SE-751 05, Uppsala, Sweden.
‡Supported by The Göran Gustafsson Foundation.
§Supported by The Göran Gustafsson Foundation and The Swedish Research Council.
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• Second, strong convection leads to boundary layers in the solution which
also need to be resolved.

To overcome the lack of performance using classical finite element meth-
ods many different so called multiscale methods have been proposed. Some
important contributions are: the multiscale finite element method (MsFEM)
[14, 4, 10, 9]), the heterogeneous multiscale method (HMM) [7, 8]), and the
variational multiscale method (VMS) [16, 17, 22, 25, 26, 23]). Common to all
mentioned approaches is that fine scale problems are solved on localized patches
and the result is used to construct a different basis or a modified coarse scale op-
erator. The analysis for most of these methods rely strongly on scale separation
or periodicity. Recently there was a leap forward in the analysis of multiscale
methods. In [26] a new technique for proving convergence for a class of multi-
scale methods without any assumptions on scale separation or periodicity, was
proposed. The method proposed in [26] uses a trail and test space spanned by
a corrected basis function computed on patches of size O(H log(H−1)). Text-
book convergence with respect the mesh size H was proven. This technique was
furthered generalized to a class of non-conforming multiscale methods based on
the discontinuous Galerkin multiscale method in [11].

There is a vast literature on numerical methods for convection dominated
problems. Two such examples are, the streamline diffusion/Petrov Galerkin
(SUPG) method [19, 15] and Galerkin least square method (GLS) [18]. There
has also been a lot of work on discontinuous Galerkin (dG) methods, we refer
to [27, 24, 2, 20] for some early work and to [5, 13, 28, 6] and references therein
for recent development and a literature review. DG methods exhibit attractive
properties for convection dominated problems, e.g., they have enhanced stability
properties, good conservation property of the state variable, and the use of
complex and/or irregular meshes are admissible. DG multiscale methods has
also been considered, see e.g. [1, 29].

To better coop with convection dominated multiscale problems we extend
the discontinuous Galerkin multiscale method in [11] to convection dominated
problems, in the sense that the convective term is included when calculating
the corrected basis. For problems with weak convection it is not necessary to
include the convective part, see e.g. [12].

The outline of this paper is as follows. In section 2 the discrete setting and
underlying dG method is presented. In section 3 the multiscale decomposition
and the dG multiscale method and the corresponding convergence result are
stated. The proofs for the theoretical results are given in Section 4. Finally, in
Section 5 numerical experiments are presented.

2 Preliminaries

In this section we present some notations and properties frequently used in
the paper. Throughout this paper standard notations of Lebesgue and Sobolev
spaces are used.
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2.1 Setting

Let Ω ⊂ R
d be a polygonal domain with Lipschitz boundary Γ. We assume

that: the diffusion coefficients, A ∈ L∞(Ω,Rd×d
sym), has uniform spectral bounds

0 < α, β < ∞, defined by

0 < α := ess inf
x∈Ω

inf
v∈Rd\{0}

(A(x)v) · v
v · v ≤ ess sup

x∈Ω
sup

v∈Rd\{0}

(A(x)v) · v
v · v =: β < ∞, (2.1)

the convective, b ∈ [W 1
∞(Ω)]d, and reactive, c ∈ L∞(Ω), coefficient fulfill the

condition

(c0(x))
2 = c(x)− 1

2
∇ · b(x) ≥ μ0 a.e. x ∈ Ω, (2.2)

where μ0 ∈ R > 0 is constant. Finally we assume f ∈ L2(Ω).
In the rest of the paper we will consider two different meshes, one coarse

and one fine with mesh function h and H, respectively. Let Tk, for k = {h,H},
denote a shape-regular subdivision of Ω into (closed) regular simplexes or into
quadrilaterals/hexahedra (d = 2/d = 3), given a mesh function k : Tk → R

defined as k := diam(T ) ∈ P0(Tk) for all T ∈ Tk. Also, let ∇kv denote the
Tk-broken gradient defined as (∇v)|T = ∇v|T for all T ∈ Tk. For simplicity
we will also assume that Tk is conforming in the sense that no hanging nodes
are allowed, but the analysis can easily be extend to non-conforming meshes
with a finite number of hanging nodes on each edge. Let Ek denote the set
of edges in Tk, where Ek(Ω) is the set of interior edges and Ek(Γ) is the set of
boundary edges, such that Ek = Ek(Ω)∪Ek(Γ). Let T̂ be the reference simplex or
(hyper)cube. We define Pp(T̂ ) to be the space of polynomials of degree less than

or equal to p if T̂ is a simplex, or the space of polynomials of degree less than or
equal to p, in each variable, if T̂ is a (hyper)cube. The space of discontinuous
piecewise polynomial function is defined by

Pp(Tk) := {v : Ω → R | ∀T ∈ Tk, v|T ◦ FT ∈ Pp(T̂ )}, (2.3)

where FT : T̂ → T , T ∈ Tk is a family of element maps. Also, let Πp(Tk) :
L2(Ω) → Pp(Tk) denote the L2-projection onto Pp(Tk). Let T+ and T− be two
adjacent elements in Tk sharing an edge e = T+ ∩ T− ∈ Ek(Ω), and let νe be
the outer normal pointing from T− to T+, and for e ∈ Ek(Γ) let νe be outward
unit normal of Ω. For any v ∈ Pp(Tk) we denote the value on edge e ∈ E(Ω) as
v± = v|e∩T± . The jump and average of v ∈ Pp(Tk) is defined as, [v] = v− − v+

and {v} = (v− + v+)/2 respectively for e ∈ Ek(Ω), and [v] = {v} = v|e for
e ∈ Ek(Γ).

Let 0 ≤ C < ∞ denote any generic constant that neither depends on the
mesh size or the variables A, b, and c; then a � b abbreviates the inequality
a ≤ Cb.
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2.2 Discontinuous Galerkin discretization

For simplicity let the bilinear form ak(·, ·) : Vk × Vk → R, given any mesh
function k : Ω → P0(Tk), be split into two parts

ak(u, v) := adk(u, v) + ac-rk (u, v), (2.4)

where adk(·, ·) represents the diffusion part and ac-rk (·, ·) represents the convection-
reaction part. The diffusion part is approximated using a symmetric interior
penalty method, i.e.,

adk(u, v) := (A∇ku,∇kv)L2(Ω) +
∑
e∈Ek

(σe

he
([u], [v])L2(e)

− ({νe ·A∇u}, [v])L2(e) − ({νe ·A∇v}, [u]L2(e))
)
,

(2.5)

where σe is a constant, depending on the diffusion, large enough to make adk(·, ·)
coercive. The convection-reaction part is approximated by

ac-rk (u, v) := (b · ∇ku+ cu, v)L2(Ω) +
∑
e∈Ek

(be[u], [v])L2(e)

−
∑

e∈Ek(Ω)

(νe · b{u}, [v])L2(e) −
∑

e∈Ek(Γ)

1

2
((νe · b)u, v)L2(e),

(2.6)

or equivalently

ac-rk (u, v) := ((c−∇ · b)u, v)L2(Ω) − (u,b · ∇kv)L2(T )

+
∑
e∈Ek

(be[u], [v])L2(e) +
∑

e∈Ek(Ω)

(νe · b{u}, [v])L2(e)

+
∑

e∈Ek(Γ)

1

2
((νe · b)u, v)L2(e),

(2.7)

where upwind is imposed choosing the stabilization term as be = |b · νe|/2, see
e.g. [3]. The energy norm on Vk is given by

|||v|||2k,d = ‖A1/2∇kv‖2L2 +
∑
e∈Ek

σe

k
‖[v]‖2L2(e),

|||v|||2k,c-r = ‖cov‖2L2(Ω) +
∑
e∈Ek

‖b1/2e [v]‖2L2(e),

|||v|||2k = |||v|||2k,d + |||v|||2k,c-r.

(2.8)

From Theorem 2.2 in [21] we have that for each v ∈ Vk, there exist an averaging
operator Ic

k : Vk → Vk ∩H1(Ω) with the following property

β−1/2‖A1/2∇k(v − Ic
kv)‖L2(Ω) + ‖k−1(v − Ic

kv)‖L2(Ω) � α−1/2|||v|||k. (2.9)

4



3 Multiscale method

In this section we present the multiscale decomposition, the multiscale methods,
and the main convergence results.

3.1 Multiscale decomposition

In order to do the multiscale decomposition the problem is divided into a coarse
and a fine scale. To this end, let TH and Th, with the respective mesh function
H and h, denote the two different subdivisions, where Th is constructed using
one or more (possible adaptive) refinements of TH .

The aim of this section is to construct a coarse generalized finite element
space based on TH , which takes the fine scale behavior of the data into account.
That is, we assume that the solution given by: find uh ∈ Vh := P1(Th) such
that

ah(uh, v) = F (v) for all v ∈ Vh, (3.1)

gives a sufficiently good approximation of the weak solution u to (1.1). However,
uh never has to be computed in practice, it only acts as a reference solution.
We introduce a coarse projection operator ΠH := Π1(TH) and let the fine scale
space be defined by the kernel of ΠH , i.e.,

V f := {v ∈ Vh | ΠHv = 0} ⊂ Vh. (3.2)

The next step is to split any v ∈ Vh into some coarse part based on TH , such
that the fine scale reminder in the space V f is sufficiently small. The naive
way to this splitting is to use a L2-orthogonal split. Then the coarse space
is defined by VH := ΠHVh = P1(TH) and is the standard dG space on the
coarse scale. A given basis of VH is the element-wise Lagrange basis functions
{λT,j | T ∈ TH , j = 1, . . . , r} where r = (1 + d) for simplexes or r = 2d for
quadrilaterals/hexahedra. The space VH is known to give poor approximation
properties if TH does not resolve the variable coefficients in (1.1). We will use
another choice, see [26, 11], based on ah(·, ·), to construct a space of corrected
basis functions. To this end, we define a fine scale projection operator F : Vh →
V f by

ah(Fv, w) = ah(v, w) for all v ∈ V f , (3.3)

and let the corrected coarse space be defined as

Vms
H := (1− F)VH . (3.4)

The correctors for the coarse basis are computed as follows: find φT,j ∈ V f such
that

ah(φT,j , v) = ah(λT,j , v) for all v ∈ V f . (3.5)

That is, the space of corrected basis functions is defined by Vms
H := {λT,j−φT,j |

T ∈ TH , j = 1, . . . , r}. Note that, dim(Vms
H ) = dim(VH). From (3.4) we have

that any vh ∈ Vh can be decomposed into a coarse, vms
H ∈ Vms

H , and a fine,
vf ∈ V f , scale contribution, i.e., vh = vms

H + vf .
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3.2 Methods and convergence results

In this section the main results in [11] is extended to convection dominated prob-
lem. For the convenience of the reader a short recap of the different constants
used in the error estimate are stated below:

• Cβ/α = β/α, where α and β is the lower respectively upper spectral bound
of the diffusion matrix A defined in (2.1),

• Cs =
(
C2

β/α + ‖c0‖2L∞(Ω)μ
−2
0 + ‖Hb‖L∞(Ω)α

−1
)1/2

, appear in Lemma 7

which proves stability estimate in energy norm for ΠH and c0, μ0 are
defined in (2.2),

• Cb = Cβ/α + ‖c0‖L∞(Ω)μ
−1
0 , appear in Lemma 8,

• Cc = (1 + ‖Hb‖L∞(Ω)α
−1), appears in Lemma 9 which shows continuity

of the bilinear form on V f × Vh,

• Cζ =
(
C2

β/α + ‖hb‖L∞(Ω)α
−1
)1/2

, appears in Lemma 11 using the stabil-

ity property of the cut off function from Definition 10.

• Cφ = (1+‖Hb‖L∞(Ω)α
−1/2+‖Hc‖L∞(Ω)μ

−1
0 ), appears in Lemma 13 using

stability of the corrected basis functions.

3.2.1 Ideal discontinuous Galerkin multiscale method

An ideal multiscale method seeks ums
H ∈ Vms

H such that

ah(u
ms
H , v) = F (v) for all v ∈ Vms

H . (3.6)

Note that, to seek a solution in the space Vms
H , a variational problem has to

be solved on the whole domain, Ω, for each local basis function, which is not
feasible for real computations. The following theorem shows the convergence of
the ideal multiscale method.

Theorem 1. Let uh ∈ Vh be the to solution to (3.1), and ums
H ∈ Vms

H be the to
solution (3.6), then

|||uh − ums
H ||| � C1||H(f −ΠHf)||L2(Ω) (3.7)

holds, where C1 = CCcα
−1/2 and C is generic constant which do not depend on

the mesh size or the problem data.

Proof. The proof is found in Section 4.
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Figure 1: Example of a patch with size 1, ω1
T , size 2 ω2

T , and size ω3
T , centered

around element T.

3.2.2 Discontinuous Galerkin multiscale method

The fast decay of the corrected basis functions (Lemma 3), motivates us to
solve the corrector functions on localized patches. This introduces a localization
error, but choosing the patch size as O(H log(H−1)) (as seen in Theorem 4) the
localization error has the same convergence rate as the ideal multiscale method
in Theorem 1. The corrector functions are solved on element patches, defined
as follows.

Definition 2. For all T ∈ TH , let ωL
T be a patch centered around element T

and of size L, defined as,

ω1
T := int(T ),

ωL
T := int(∪{T ′ ∈ TH | T ∩ ω̄L−1

T �= 0}), L = 1, 2, . . . .
(3.8)

See Figure 1 for an illustration.

The localized corrector functions are calculated as follows: for all {T ∈
TH , j = 1, . . . , r} find φL

T,j ∈ Vf (ωL
T ) = {v ∈ V f | v|Ω\ωL

T
= 0} such that

ah(φ
L
T,j , v) = ah(λT,j , v), for all v ∈ Vf (ωL

T ). (3.9)

The decay of the corrected basis function is given in the following lemma.

Lemma 3. For all T ∈ TH , j = 1, . . . , r where φT,j is the solution to (3.5) and
φL
T,j is the solution to (3.9), the following estimate

∣∣∣∣∣∣φT,j − φL
T,j

∣∣∣∣∣∣
h
≤ C2γ

L|||λT,j − φL
T,j |||h (3.10)

holds, where L = 
k is the size of the patch, 0 < γ = (
−1C3)
k−1
2�k < 1, C2 =

CCcCζ(1 +CbCs), C3 = C ′(C2
β/α + ‖Hb‖L∞(Ω)α

−1 +CcCb‖b‖L∞(Ω)μ
−1
0 ), and

C, C ′ are generic constants neither depending on the mesh size, the size of the
patches, or the problem data.

7



Proof. The proof is found in Section 4.

The space of localized corrected basis function is defined by Vms,L
H := {φL

T,j−
λT,j | T ∈ TH , r = 1, . . . , r}. The dG multiscale method now reads: find

ums,L
H ∈ Vms,L

H such that

ah(u
ms,L
H , v) = F (v) for all v ∈ Vms,L

H . (3.11)

An error bound for the dG multiscale method using a localized corrected basis
is given in Theorem 4. Also, note that it is only the first term |||u − uh|||h in
Theorem 4 that depends on the regularity of u.

Theorem 4. Let uh ∈ Vh be to solution to (3.1), and ums,L
H ∈ Vms,L

H be to
solution (3.11), then

|||u− ums,L
H |||h ≤|||u− uh|||h + C1‖H(f −ΠHf)‖L2(Ω)

+ C5‖H−1‖L∞(Ω)L
d/2γL‖f‖L2(Ω)

(3.12)

holds, where L is the size of the patches, C1 is a constant defined in Theorem 1,

0 < γ < 1 and C5 = C
1/2
4 C2Cφα

−1/2, where C4 is defined in Lemma 12, and
C2 and γ are defined in Lemma 3.

Proof. The proof is found in Section 4.

Remark 5. Theorem 4 is simplified to,

|||u− ums,L
H |||h ≤ |||u− uh|||h + C1‖H‖L∞(Ω). (3.13)

given that the patch size is chosen as L = �C log(H−1)� with an appropriate C
and ‖f‖L2 = 1.

Remark 6. For |||uh − ums,L
H |||h to decay as O(H), it is sufficient that size of

A and b fulfill the following relation, O(β) = O(‖Hb‖L∞(Ω)). If the convective
part was omitted in the calculation of the corrected basis functions, using the
same relation between the size of A and b, the decay of |||uh − ums,L

H |||h would
be O(1), see [12].

4 Proofs from Section 3

Before proving the the main results, Theorem 1, Lemma 3, and Theorem 4, we
state a some definitions and technical lemmas which will be necessary in the
proofs.

4.1 Some technical lemmas

The following inequalities will frequently be used in the error analysis.
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Lemma 7. For any v ∈ Vh and T ∈ TH , the approximation property

H|−1
T ‖v −ΠHv‖L2(T ) � α−1/2|||v|||h,T , (4.1)

and stability estimate
|||ΠHv|||H � Cs|||v|||h, (4.2)

is satisfied, with

Cs =

(
C2

β/α +
‖c0‖2L∞(Ω)

μ2
0

+
‖Hb‖L∞(Ω)

α

)1/2

. (4.3)

Proof. Using the same procedure as Lemma 4 in [11], the lemma follows.

Lemma 8. For each vH ∈ VH , there exist a v ∈ Vh ∩H1 such that ΠHv = vH ,
‖v‖L2(Ω) � ‖vH‖L2(Ω), |||v|||h � Cb|||vH |||H , supp(v) ⊂ supp(vH), and Cb :=

Cβ/α + ‖c0‖L∞(Ω)μ
−1
0 .

Proof. Using the same procedure as Lemma 5 in [11], the lemma follows.

Continuity of the dG bilinear form for convection-reaction problems are usu-
ally done on a orthogonal subset of Vh. Since the space V f is an orthogonal
subset of Vh we derive the following lemma.

Lemma 9 (Continuity in (V f × Vh) and (Vh × V f)). For all, (u, v) ∈ V f × Vh,
it holds

a(v, w) � Cc|||v|||h|||w|||h (4.4)

where
Cc = 1 + ‖Hb‖L∞(Ω)α

−1/2. (4.5)

Proof. Since adh is continuous in (Vh × Vh) continuity in (V f × Vh) follows from
V f ⊂ Vh. For the convective part ac-rh , we have

ac-r(v, w) =
∑
T∈Th

(
((c−∇ · b)v, w)L2(T ) − (v,b · ∇w)L2(T )

)

+
∑
e∈Ek

(be[v], [w])L2(e) +
∑

e∈Ek(Ω)

(νe · {bv}, [w])L2(e)

+
∑

e∈Ek(Γ)

((νe · b)v, w)L2(e)

�
∑
T∈Th

(
‖c0v‖L2(T )‖c0w‖L2(T ) + ‖‖b‖L∞(T )v‖L2(T )‖∇w‖L2(T )

)

+
∑
e∈Ek

(
‖‖b‖L∞(e)v‖L2(T+∩T−)h

−1/2‖[w]‖L2(e)

)
.

(4.6)
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Using a discrete Cauchy-Schwartz inequality and summing over the coarse ele-
ments, we have

ac-r(v, w) � |||v|||h|||w|||h + α−1/2‖Hb‖L∞(Ω)‖H−1(v −ΠHv)‖L2(Ω)|||w|||h,
� (1 + ‖Hb‖L∞(Ω)α

−1/2)|||v|||h|||w|||h,
(4.7)

which concludes the proof for (V f × Vh). A similar argument gives the proof of
(Vh × V f).

In the proof Lemma 3, which proves the decay of the corrected basis function,
the following cut off function will be used.

Definition 10. The function ζd,D ∈ Po(Th), for D > d, is a cut off function
fulfilling the following condition

ζd,DT |ωd
T
= 1,

ζd,DT |Ω\ωD
T
= 0,

‖[ζd,DT ]‖L∞(Eh(T )) �
‖h‖L∞(T )

(D − d)H|T
,

(4.8)

and ||[ζd,D]||L∞(∂(ωD
T \ωd

T )) = 0, for all T ∈ TH .

For the cut off function defined in Definition 10, we have the following sta-
bility condition.

Lemma 11. For any v ∈ Vh and ζd,DT from Definition 10, the estimate,

|||ζd,DT v|||h � Cζ |||v|||h,ωD
T
, (4.9)

holds, where Cζ = (C2
β/α + ‖hb‖L∞(Ω))

1/2.

Proof. Let us use the following for the diffusion part in [11],

|||(1− ζd,DT )v|||h,d � Cβ/α|||v|||h,Ω\ωL−1
T

(4.10)
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and focus on the convection-reaction part, where e = S+ ∩ S− ∈ Eh

|||(1− ζd,DT )v|||2h,c-r
≤ ‖c0v‖2L2(Ω\ωL−1

T )
+
∑
e∈Eh

‖b1/2e [(1− ζd,DT )v]‖2L2(e)

≤ ‖c0v‖2L2(Ω\ωL−1
T )

+
∑
e∈Eh:

e∩ωL−1
T �=0

(
‖b1/2e [v]‖2L2(e) +

‖h‖2L∞(T )

‖H‖2L∞(S+∪S−)

‖b1/2e {v}‖2L2(e)

)

� |||v||||2h,Ω\ωL−1 +
∑

T∈TH :
e∩ωL−1

T �=0

‖hb‖L∞(T )

‖H‖2L∞(S+∪S−)

‖v −ΠHv‖2L2(T )

≤ |||v||||2h,Ω\ωL−1 +
‖hb‖L∞(Ω)

α
|||v|||2h,Ω\ωL−1 ,

(4.11)

using [vw] = {v}[w] + {w}[v], the triangle inequality, and a trace inequality.
The proof is concluded using (4.10) and (4.11).

The following lemmas will be necessary in order to prove Theorem 4.

Lemma 12. The following estimate,

|||
∑

T∈TH , j=1,...,r

vj(φT,j − φL
T,j)|||2h ≤ C4L

d
∑

T∈TH , j=1,...,r

|vj |2|||φT,j − φL
T,j |||2h,

(4.12)
holds, where C4 = CC2

cC
2
ζ (1 + CbCs)

2 and C is a generic constant neither
depending on the mesh size, the size of the patches, or the problem data.

Proof. Defining ηT := ζL,L+1
T and let w ∈ V f . From Lemma 8 there exist a bT

such that ΠHbT = ΠH(ηTw) such that |||bT |||h � Cb|||ΠH(ηTw)|||H . We have
the following relation

ah(φT,j − φL
T,j , w − ηTw + bT ) = 0, (4.13)

since w − ηTw + bT ∈ V f with no support in ωL
T . Let

w =
∑

T∈TH , j=1,...,r vj(φT,j − φL
T,j), we obtain

|||w|||2h � ah(w,w)

=
∑

T∈TH , j=1,...,r

vjah(φT,j − φL
T,j , w)

=
∑

T∈TH , j=1,...,r

vjah(φT,j − φL
T,j , ζTw − bT )

= Cc

∑
T∈TH , j=1,...,r

|vj ||||φT,j − φL
T,j |||h (|||ζTw|||h + |||bT |||h) .

(4.14)
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Furthermore, using Lemma 8, Lemma 7, and Lemma 11, we have

|||b|||h � Cb|||ΠHζTw|||H � CbCs|||ζTφh|||h � CbCsCζ |||w|||h,ωL+1
T

(4.15)

and obtain,

|||w|||2h � CcCζ(1 + CbCs)
∑

T∈TH , j=1,...,r

|vj ||||φT,j − φL
T,j |||h|||w|||h,ωL+1

T (4.16)

using (4.14), (4.15), and (4.17). Also, note that∑
T∈TH , j=1,...,r

|||w|||2
h,ωL+1

T

� Ld|||w|||2h. (4.17)

and using a Cauchy-Schwartz inequality for the sum, concludes the proof with
C4 = CC2

cC
2
ζ (1 + CbCs)

2. Where C is a generic constant hidden in ’�’.

Lemma 13 (Stability of the corrected basis function). For all T ∈ TH , j =
1, . . . , r, the following estimate

|||φT,h − λT,j |||h ≤ Cφ‖H−1λT,j‖L2(Ω) (4.18)

holds, where Cφ = C(1 + ‖Hb‖L∞(Ω)α
−1/2 + ‖Hc‖L∞(Ω)μ

−1
0 ) and C is generic

constant neither depending on the mesh size or the problem data.

Proof. Let v = λT,j − bT ∈ V f , where bT ∈ H1
0 (T ) and ΠHbT,j = λT,j from

Lemma 8. We have

|||φT,h − λT,j |||2h � ah(φT,h − λT,j , φT,h − λT,j)

= ah(φT,h − λT,j , v − λT,j) = ah(φT,h − λT,j , bT,j)

= adh(φT,h − λT,j , b) + ac-rh (φT,h − λT,j , bT,j)

= adh(φT,h − λT,j , b) + (b · ∇h(φT,h − λT,j) + c(φT,h − λT,j), bT,j)L2(Ω)

(4.19)

Using that the diffusion part in (4.19) of the bilinear form is continuous in
(Vh × Vh), Lemma 8, and a inverse inequality, we have

adh(φT,h − λT,j , bT,j) � |||φT,h − λT,j |||h|||bT,j |||h
� Cb|||φT,h − λT,j |||h|||λT,j |||H
� Cbβ

1/2|||φT,h − λT,j |||h‖H−1λT,j‖L2(T ).

(4.20)

For the convection-reaction part in (4.19), we have

(b · ∇h(φT,h − λT,j) + c(φT,h − λT,j), bT,j)L2(Ω)

�
(
‖b · ∇h(φT,h − λT,j)‖L2(Ω) + ‖c(φT,h − λT,j)‖L2(Ω)

)
‖bT,j‖L2(Ω)

�
(
‖Hb‖L∞(Ω)‖∇h(φT,h − λT,j)‖L2(Ω)

+ ‖Hc‖L∞(Ω)μ
−1
0 ‖c0(φT,h − λT,j)‖L2(Ω)

)
‖H−1λT,j‖L2(Ω).

(4.21)

We obtain
|||φT,h − λT,j |||h ≤ Cφ‖H−1λT,j‖L2(Ω). (4.22)

where Cφ = C(1+‖Hb‖L∞(Ω)α
−1/2+‖Hc‖L∞(Ω)μ

−1
0 ) and C is generic constant

hidden in ’�’.
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4.2 Proof of main results

We are now ready prove, Theorem 1, Lemma 3, and Theorem 4.

Proof of Theorem 1. Let us decompose uh into a coarse contribution, vms
H ∈

Vms
H , and a fine scale remainder, vf ∈ V f , i.e., uh = vms

H + vf . For vf we have

|||vf |||2h � ah(v
f , vf ) = ah(uh, v

f ) = (f, vf )L2(Ω)

= (f −ΠHf, vf −ΠHvf )L2(Ω)

≤ ‖H(f −ΠHf)‖L2(Ω)‖H−1(vf −ΠHvf )||L2(Ω)

≤ α−1/2‖H(f −ΠHf)‖L2(Ω)|||vf |||h.

(4.23)

Using continuity, we have

|||uh − ums
H |||2h � ah(uh − ums

H , uh − ums
H ) = ah(uh − ums

H , uh − vms
H )

� Cc|||uh − ums
H |||h|||uh − vms

H |||h
(4.24)

which concludes the proof together with (4.23).

Proof of Lemma 3. Define e := φT,j −φL
T,j where φT,j ∈ V f and φL

T,j ∈ Vf (ωL
T ).

We have
|||e|||2h � ah(e, φT,j − φL

T,j) = ah(e, φT,j − v)

� Cc|||e|||h|||φT,j − v|||h.
(4.25)

Furthermore from Lemma 8, there exist a v = ζL−1,L
T φT,j − bT ∈ Vf (ωL

T ) such

that ΠHbT = ΠH(ζL−1,L
T φT,j) and |||bT |||h � Cb|||ΠH(ζL−1,L

T φT,j)|||H , we have

|||e|||h � Cc

(
|||(1− ζL−1,L

T )φT,j |||h + |||bT |||h
)
, (4.26)

where

|||bT |||h � Cb|||ΠHζL−1,L
T φT,j |||H = Cb|||ΠH(1− ζL−1,L

T )φT,j |||H
� CbCs|||(1− ζL−1,L

T )φT,j |||h � CbCsCζ |||φT,j |||h,Ω\ωL−1
T

.
(4.27)

using Lemma 8, Lemma 7, and Lemma 11. We obtain,

|||e|||h � C2|||φT,j |||h,Ω\ωL−1
T

, (4.28)

where C2 = CCcCζ(1 + CbCs) from (4.26) and (4.27). Where C is the generic
constant hidden in ’�’.

The next step in the proof is to construct a recursive relation which will be
used to prove the decay in the correctors. To this end, let 
k = L − 1, and
define another the cut off function, ηmT := (1− ζ�(k−m),�(k−m+1)) and the patch

ω̃m
T := ω

�(k−m+1)
T , for m = 1, . . . , k − 1. Note that ω̃m+1

T ⊂ ω̃m
T . We have

|||φT,j |||h,Ω\ω̄m
T

≤ |||ηmT φT,j |||h � ah(η
m
T φT,j , η

m
T φT,j) (4.29)
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So shorten the proof we refer to the following inequality

ad(ηmT φT,j , η
m
T φT,j) � ad(φT,j , (η

m
T )2φT,j − bT ) +

C2
β/α



|||φT,j |||2h,ωm

T \ω̄m+1
T

.

(4.30)
where (ηmT )2φT,j − bT ∈ V f , in the proof of Lemma 10 in [11]. We focus on the
term convection-reaction term, i.e.,

ac-r(ηmT φT,j , η
m
T φT,j)

=
∑

S∈Th:
S∩(Ω\ω̃m+1

T ) �=0

((γ −∇ · b)ηmT φT,j , η
m
T φT,j)L2(S) − (ηmT φT,j ,b · ∇ηmT φT,j)L2(S)

+
∑
e∈Eh:

e∩(Ω\ω̃m+1
T ) �=0

(be[η
m
T φT,j ], [η

m
T φT,j ])L2(e)

+
∑

e∈Eh(Ω):

e∩(Ω\ω̃m+1
T ) �=0

((νe · {bηmT φT,j}, [ηmT φT,j ])L2(e)

+
∑

e∈Eh(Γ):

e∩(Ω\ω̃m+1
T ) �=0

1

2
((νe · b)ηmT φT,j , η

m
T φT,j)L2(e)

(4.31)
Since the cut of function is piecewise constant it follows that

((γ −∇ · b)ηmT φT,j , η
m
T φT,j)L2(S) − (ηmT φT,j ,b · ∇ηmT φT,j)L2(S)

= (γ −∇ · b)φT,j , (η
m
T )2φT,j)L2(S) − (φT,j ,b · ∇(ηmT )2φT,j)L2(S)

(4.32)

for all S ∈ Th. Using the following equalities from (Appendix A in [11])

{vw}[vw] = {w}[v2w]− [v]{w}{v}{w}+ 1/4[v]{v}[w][w]
[vw][vw] = [w][v2w]− 1/4[v]2[w]2 + [v]2{w}2

(4.33)

and (4.32), we obtain

ac-r(ηmT φT,j , η
m
T φT,j) = ac-r(φT,j , (η

m
T )2φT,j)

+
∑

e∈Eh(Ω):
e∩(ω̃m

T \ω̃m
T ) �=0

(
− (νe · b[ηmT ]{φT,j}, {ηmT }{φ})L2(e)

+ 1/4(νe · b[ηmT ]{φT,j}, {ηmT }[φT,j ])L2(e)

− 1/4(be[η
m
T ]2, [φT,j ]

2)L2(e) + (be[η
m
T ]2, {φT,j}2)L2(e)

)
(4.34)

Next we bound the terms in (4.34) in two steps, first the sum over the edges, and
then the bilinear form. The sum over the edges terms can be bounded by using
that ‖[ηmT ]‖L∞(T ) � ‖h‖L∞(T )/H|T , ‖{ηmT }‖L∞(Ω) � 1, ‖h‖L∞(T )/H|T 
 < 1,
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and a trace inequality. Let e = S+ ∩ S− ∈ Eh, we obtain

∑
e∈Eh(Ω):

e∩(ω̃m
T \ω̃m

T ) �=0

‖b‖L∞(S+∪S−)

‖H‖L∞(S+∩S−)


(
‖h1/2{φT,j}‖L2(e)‖h1/2{φ}‖L2(e)+

‖h1/2{φT,j}‖L2(e)‖h1/2[φT,j ]‖L2(e) + ‖h1/2[φT,j ]‖2L2(e)

+ ‖h1/2{φT,j}‖2L2(e)

)

�
∑

e∈EH(Ω):
e∩(ω̃m

T \ω̃m
T ) �=0

‖b‖L∞(T+∪T−)



‖H−1φT,j‖2L2(T+∪T−)

�
∑

T∈TH :
T∩(ω̃m

T \ω̃m
T ) �=0

‖b‖L∞(T )



‖H−1(φT,j −ΠHφT,j)‖2L2(T )

�
‖Hb‖L∞(Ω)


α
|||φT,j |||2h,(ω̃m

T \ω̃m+1
T )

(4.35)

For the bilinear form, using Lemma 8 there exist a bT with support in ω̃m
T \ω̃m+1

T ,
such that (ηmT )2φT,j − bT ∈ V f and |||bT |||h � Cb|||ΠH((ηmT )2φT,j)|||H . We have

ac-r(φT,j , (η
m
T )2φT,j) = ac-r(φT,j , (η

m
T )2φT,j − bT ) + ac-r(φT,j , bT )

� ac-r(φT,j , (η
m
T )2φT,j − bT )

+ Cc|||φT,j |||a,h,ω̃m
T \ω̃m+1

T
‖c0bT ‖L2(ω̃m

T \ω̃m+1
T )

+ Cc|||φT,j |||a,h,ω̃m
T \ω̃m+1

T
‖c0bT ‖L2(ω̃m

T \ω̃m+1
T )

(4.36)

which can be further estimated, using Lemma 7. For all T ∈ TH the operator
ΠH is stable in the L2(T )-norm, we have

‖bT ‖L2(ω̃m
T \ω̃m+1

T )

� Cb‖Hc0‖L∞(ω̃m
T \ω̃m+1

T )‖H−1ΠH((ηmT )2φT,j)‖L2(ω̃m
T \ω̃m+1

T )

= Cb‖ΠH(((ηmT )2 −Π0(η
m
T )2)H−1φT,j)‖L2(ω̃m

T \ω̃m+1
T )

≤ Cb‖(ηmT )2 −Π0(η
m
T )2‖L∞(ω̃m

T \ω̃m+1
T )‖H−1φT,j‖L2(ω̃m

T \ω̃m+1
T )

� HCb

−1μ−1

0 |||φT,j |||h,ω̃m
T \ω̃m+1

T
.

(4.37)

using Lemma 8 and that ΠHφ = 0. We obtain

|||φT,j |||2h,Ω\ωm
T

�
(
ad(φT,j , (η

m
T )2φT,j − b̃) + ac-r(φT,j , (η

m
T )2φT,j − b̃)

)

+ (C2
β/α + ‖Hb‖L∞(Ω)α

−1 + CcCb‖c0‖μ−1
0 )L∞(Ω)


−1|||φT,j |||2h,ωm
T \ωm+1

T

= C3

−1|||φT,j |||2h,ωm

T \ωm
T

≤ C3

−1|||φT,j |||2h,Ω\ωm+1

T

,

(4.38)
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where C3 = C ′(C2
β/α + ‖Hb‖L∞(Ω)α

−1 + CcCb‖c0‖L∞(Ω)μ
−1
0 ), using (4.30),

(4.36), and (4.37). Where C ′ is the generic constant hidden in ’�’. Implying
that

|||φT,j |||h,Ω\ωm
T

� C3

−1|||φT,j |||h,Ω\ωm+1

T
, for any m = 1, 2, . . . , k − 1. (4.39)

Using (4.39) recursively, we have

|||φT,j |||2h,Ω\ω̃1
T
� (C3


−1)k−1|||φT,j |||2h,Ω\ω̃k
T
= (C3


−1)k−1|||φT,j − λT,j |||2h,Ω
(4.40)

Equation (4.28) together with (4.39), gives

|||φT,j − φL
h |||h ≤ C2(C3


−1)
k−1
2 |||φT,j − λT,j |||h. (4.41)

which concludes the proof is concluded.

Proof of Theorem 4. Using the triangle inequality, we have

|||u− ums,L
H |||h ≤ |||u− uh|||h + |||uh − ums,L

H |||h. (4.42)

Note that, uh ∈ Vh, can be decomposed into a coarse, vms
H ∈ Vms

H , and a fine,

vf ∈ V f , scale contribution, i.e., uh = vms
H + uf . Also, let vms,L

H ∈ Vms,L
H be

chosen such that ΠHvms,L
H = ΠHvms

H . We have

|||uh − ums,L
H |||h � ah(uh − ums,L

H , uh − ums,L
H )

= ah(uh − ums,L
H , uh − vms,L

H )

� Cc|||uh − ums,L
H |||h|||uh − vms,L

H |||h,
(4.43)

and obtain

|||u− ums,L
H |||h ≤|||u− uh|||h

+ Cc

(
|||uh − vms

H |||h + |||vms
H − vms,L

H |||h
)
.

(4.44)

The first term in (4.44) implies that the reference mesh need to be sufficiently
fine to get a sufficient approximation. The second term is approximated using
using (4.23), i.e.

|||uh − vms
H |||h � α−1/2‖H(1−ΠH)f‖L2(Ω), (4.45)

and for the last term in we have,

|||vms
H − vms,L

H |||2h = |||
∑

T∈TH , j=1,...,r

vms
H,T (xj)(φT,h − φL

T,j)|||2h

� C4L
d

∑
T∈TH , j=1,...,r

|vms
H,T (xj)|2|||φT,h − φL

T,j |||2h

� C4C
2
2L

dγ2L
∑

T∈TH , j=1,...,r

|vms
H,T (xj)|2|||φT,h − λT,j |||2h

(4.46)

16



using Lemma 12 and Lemma 3.
We obtain, using Lemma 13, that

∑
T∈TH , j=1,...,r

|vms
H,T (xj)|2|||φT,h − λT,j |||2h

≤ C2
φ

∑
T∈TH , j=1,...,r

|vms
H,T (xj)|2‖H−1λT,j‖2L2(T )

= C2
φ

∑
T∈TH , j=1,...,r

‖H−1vms
H,T (xj)λT,j‖2L2(Ω)

� C2
φ‖

∑
T∈TH , j=1,...,r

H−1vms
H,T (xj)λT,j‖2L2(Ω)

= C2
φ‖

∑
T∈TH , j=1,...,r

H−1vms
H,T (xj)ΠH(λT,j − φT,j)‖2L2(Ω)

≤ C2
φ‖

∑
T∈TH , j=1,...,r

H−1vms
H,T (xj)(λT,j − φT,j)‖2L2(Ω)

≤ C2
φ‖H−1vms

H ‖2L2(Ω)

≤ C2
φ

(
‖H−1uh‖L2(Ω) + ‖H−1uf‖L2(Ω)

)2
≤ C2

φ

(
‖H−1‖L∞(Ω)|||uh|||h + α−1/2|||uf |||h

)2
.

(4.47)

Using (4.23), we have

∑
T∈TH , j=1,...,r

|vms
H,T (xj)|2|||φT,h − λT,j |||2h

� C2
φ

(
‖H−1‖L∞(Ω)‖f‖L2(Ω) + α−1‖H(1−ΠH)f‖L2(Ω))

)2
� C2

φ

(
‖H−1‖2L∞(Ω)‖f‖2L2(Ω) + α−1‖Hf(1−ΠHf)‖2

)
.

(4.48)

which concludes the proof.

5 Numerical experiment

We consider the domain Ω = [0, 1] × [0, 1] and the forcing function f = 1 +
cos(2πx) cos(2πy). The localization parameter, which determine the size of
the patches, is chosen as L = �2 log(H−1)�, i.e., the size of the patches are
2H log(H−1). Consider a coarse quadrilateral mesh, TH , of size H = 2−i,
i = 2, 3, 4, 5. The corrector functions are solved on sub-grids of the quadrilateral
mesh, Th, where h = 2−7. We consider three different permeabilities: A1 = 1,
A2 = A2(y) which is piecewise constant with respect to a Cartesian grid of
width 2−6 in y-direction taking the values 1 or 0.01, and A3 = A3(x, y) which is
piecewise constant with respect to a Cartesian grid of width 2−6 both in the x-
and y-directions, bounded below by α = 0.05 and has a maximum ratio β/α =
4 · 105. The permeability A3 is taken from the 31 layer in the SPE benchmark
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(a) A2 (b) A3

Figure 2: The diffusion coefficients A2 and A3 in log scale.

problem, see http:www.spe.org/web/csp/. The diffusion coefficients A2 and
A3 are illustrated in Figure 2. For the convection term we consider: b = [C, 0],
for different values of C.

To investigate how the error in relative energy-norm, |||uh−ums,L
H |||/|||uh|||,

depends on the magnitude of the convection we consider: A1 and b = [C, 0]
with C = {32, 64, 128}. Figure 3 shows the convergence in energy-norm as a
function of the coarse mesh size H for the different values of C.
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Figure 3: The number degrees of freedom (Ndof ) vs. the relative error in energy-
norm, for different sizes of the convection term, C.

Also, to see the effect of heterogeneous diffusion of the error in the relative
energy-norm, |||uh − ums,L

H |||/|||uh|||, we consider: Figure 4 which shows the
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error in relative energy-norm using A2 and b = [1, 0] and Figure 5 which shows
the error in relative energy-norm using A3 and b = [512, 0].
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Figure 4: The number degrees of freedom (Ndof ) vs. the relative error in energy-
norm, using a high contrast diffusion coefficients A2 and b = [1, 0]. The dotted

line corresponds to N
−3/2
dof .

We conclude that H3 convergence of the dG multiscale method to a refer-
ence solution in the relative energy-norm, |||uh − ums,L

H |||/|||uh|||, is obtained,
independent of the variation in the coefficients or regularity of the underlying
solution.
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methods, volume 69 of Mathématiques & Applications (Berlin) [Mathemat-
ics & Applications]. Springer, Heidelberg, 2012.

[7] W. E and B. Engquist. The heterogeneous multiscale methods. Commun.
Math. Sci., 1:87–132, 2003.

[8] W. E and B. Engquist. Multiscale modeling and computation. Notices
Amer. Math. Soc., 1:1062–1070, 2003.

[9] Y. Efendiev and T. Y. Hou. Multiscale finite element methods, volume 4
of Surveys and Tutorials in the Applied Mathematical Sciences. Springer,
New York, 2009. Theory and applications.

[10] Y. R. Efendiev, T. Y. Hou, and X.-H. Wu. Convergence of a nonconforming
multiscale finite element method. SIAM J. Numer. Anal., 37:888–910, 2000.

[11] D. Elfverson, E. Georgoulis, A. Målqvist, and D. Peterseim. Convergence
of a discontinuous Galerkin multicale method. Submitted for publication,
available as preprint arXiv:1211.5524, 2012.

20
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