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1. Introduction

The focus of this thesis is twofold: we consider both partial differential equa-
tions (PDE) where the solution varies on several different scales, multiscale
problems, and PDEs with uncertain data, uncertainty quantification. Model-
ing and simulation of this type of problems are very challenging and appear
in most areas of science and engineering. A prominent example is flow in a
porous medium. To apply standard one scale numerical methods and Monte
Carlo (MC) simulation for multiscale and uncertainty quantification problems
is in many cases intractable and in other cases impossible due to the immense
cost. We will discuss how to address the difficulties in multiscale and uncer-
tainty quantification problems separately.

Standard (one scale) numerical methods applied to multiscale problems fail
to perform when the data is rough or the finest scale features of the data are
not resolved by the underlying mesh. We will consider both when the co-
efficients and the computational domain have multiscale features. The main
challenge in constructing numerical methods for multiscale problems is to re-
duce the computational complexity and still remain accurate. We propose a
multiscale method where the coarse basis functions spanning the trial and/or
test spaces are corrected using fine scale computations. Using a corrected ba-
sis the multiscale method has the same order of accuracy as a standard one
scale method for smooth problems. The corrector problems are global, how-
ever the correctors decay exponentially away from the support of the coarse
basis and the computation can be localized to patches. The size of the patches
is chosen such that the accuracy is not affected. The corrector problems can be
computed independently of each other, which makes them perfectly suited for
parallel computation. The correctors can also be reused in e.g. time stepping
and nonlinear iterations. For further discussion regarding numerical methods
for multiscale problems see Section 3.

We consider applications where the model parameters are uncertain and
random. We want to compute statistical properties of a quantity of interest of
the solution of the PDE, in particular p-quantiles and failure probability. Fail-
ure probability is defined as the probability that a given functional or quantity
of interest of the model solution is below some predetermined value. The es-
timation of p-quantiles is the inverse problem, i.e., determine the value such
that a given functional of the solution is below that value with the predeter-
mined probability p. Since we are interested in problems with high stochastic
dimension, we consider sample based methods. When considering this type
of problems we have two error sources: the numerical discretization of the
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model and the stochastic sampling. To efficiently estimate p-quantiles or fail-
ure probability the two error sources need to be balanced. In this thesis we
use spatial a posteriori error estimates within variance reductions techniques
to reduce the computational cost and to balance the two error sources. For
further discussion regarding failure probability see Section 4.

The main results of this thesis are the following:
• Adaptivity and convergence analysis for a Discontinuous Galerkin mul-

tiscale method.
• Multiscale methods in Petrov-Galerkin formulation.
• Extension of multiscale analysis to complex geometries.
• Improvment of Monte Carlo methods for p-quantiles and multilevel Monte

Carlo method for failure probability, using selective refinement.
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2. Model problem

In this chapter we present some notations, a model problem, and give a short
introduction to the finite element method (FEM) and discontinuous Galerkin
(DG) method.

2.1 The Poisson equation
We consider the boundary value problem

−∇ ·A∇u = f in D,

u = 0 on ∂D,
(2.1)

where D is a spatial domain with boundary ∂D, f is an external forcing, and A
is a diffusion matrix. For multiscale problems A, ∂D, and f varies over several
different scales that are not necessarily resolved by the computational mesh.
For uncertainty quantification A = A(ω) and f = f (ω) are realizations from
a given sample space Ω. In subsurface flow the physical interpretation of A is
permability, illustrated in Figure 2.1.

Figure 2.1. Examples of the permability in subsurface flow simulations.

Two function spaces which will be frequently used are L2(D) and H1(D).
Both of the spaces are Hilbert spaces [2], i.e., both are complete inner product
spaces with their inner products defined as

(u,v)L2(D) =
∫

D
uvdx and (u,v)H1(D) = (∇u,∇v)L2(D)+(u,v)L2(D), (2.2)

respectively. We will denote

‖v‖L2(D) =
√
(v,v)L2(D) and ‖v‖H1(D) =

√
(v,v)H1(D), (2.3)
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the L2(D) and H1(D) norms induced by their inner products. Let us consider
the function space V0 = {v ∈ H1(D) | v|∂D = 0}, i.e., all functions in H1(D)
that vanishes on the boundary ∂D. The weak form of (2.1) reads: find u ∈V0
such that

a(u,v) :=
∫

D
A∇u ·∇vdx =

∫
D

f vdx =: F(v) for all v ∈V0. (2.4)

By the Lax-Milgram lemma, there exists a unique solution u ∈ V0 to (2.4) if
the bilinear form a(·, ·) is coercive and continuous and the forcing function
F(·) is a bounded linear functional. For a bilinear form to be coercive and
continuous it has to fulfill

a(v,v)≥C1‖v‖2
H1(D), and |a(v,w)| ≤C2‖v‖H1(D)‖w‖H1(D), (2.5)

for all v,w ∈V0.

2.2 The finite element method
Since there typically is no closed form solution to (2.4) it needs to be approx-
imated by a numerical method. A powerful numerical method is the FEM
which has a strong mathematical foundation from functional analysis, that can
be used to derive analytic error estimates/bounds [6].

The FEM seeks the solution in a finite dimensional subset Vh ⊂ V of con-
tinuous piecewise polynomials defined on a mesh Th covering the computa-
tional domain. The mesh typically consists of triangles/quadrilaterals in 2D
and tetrahedras/prisms in 3D. Let h : Ω→ R be a mesh-size function defined
elementwise as h|T = diam(T ), i.e., the diameter of smallest circle containing
T . The FEM approximation reads: find uh ∈Vh such that

a(uh,v) = F(v) for all v ∈Vh. (2.6)

For the solution uh to be a good approximation of u, the space Vh needs to
resolve the variation in A. For many realistic problems this assumption is very
computationally demanding to fulfill.

There are two main classes of error estimates or bounds for the FEM, a
priori and a posteriori. The a priori error bound depends on the data and
smoothness of the exact solution u, i.e.,

|||u−uh||| := ‖A1/2
∇(u−uh)‖L2(D) ≤Chs−1|u|Hs(D), (2.7)

where h = maxT∈Th h|T and Hs(D) is a function space containing all functions
with bounded weak derivatives of total degree s in L2(D). To achieve linear
convergence the smoothness constraint u ∈ H2(D) must be fulfilled. Higher
order convergence can be obtain if both higher order polynomials are used and
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the exact solution is smoother, s > 2. However even if u ∈ H2(D), |u|H2(D)
depends on the variation of the coefficient A and there is a pre-asymptotic
regime where no convergence occur until the variations are resolved. The a
posteriori error bound depends on the data and the numerical solution. Hence,
a posteriori error bounds can be used in an adaptive algorithm to improve the
numerical solution iteratively. For the standard FEM the a posteriori error
bounds have the form

|||u−uh|||2 ≤C ∑
T∈Th

(
h|2K‖ f +∇ ·A∇uh‖2

L2(T )

+h|K‖ν · [A∇U ]‖2
L2(∂T )

)
,

(2.8)

where [·] is the jump in function value and ν is a unit normal on ∂T .

2.3 The discontinuous Galerkin method
An interesting alternative to the standard (conforming) FEM is the DG method.
In DG methods there is no continuity constraint imposed on the approximation
spaces. Instead the continuity is imposed weakly in the bilinear form, i.e., the
DG method allows for jumps in the numerical solution between different ele-
ments in the mesh. The first DG method was introduced in [34] for numerical
approximations of first order hyperbolic problems and analyzed in [26, 24].
For some early work for DG method for elliptic problems see [38, 8, 3]. See
also [30] for some preliminary work and [18, 33, 35] for a literature review.

We will use the same notation for the bilinear form, energy norm, and for
the discrete function spaces for the DG method as for the FEM, however, with
different definitions. The approximation space for the DG method, Vh, is the
space of piecewise polynomials, i.e., DG methods uses a non-conforming
ansatz Vh 6⊂ V . The DG method has a higher number of degrees of free-
dom than the standard (conforming) FEM, but has the advantages that non-
conforming meshes can be used and that it does not suffer from stability is-
sues for first order or convection dominated PDEs. Also, the DG method is
perfectly suited for hp-adaptivity, where both the mesh size and the order of
the polynomial’s degree can vary over the domain, see e.g. [21]. Since the DG
method seeks the solution in a space which consists of piecewise polynomials
without any continuity constraints, a modified bilinear form has to be used.
In the bilinear form the continuity is imposed weakly, i.e., there is a penalty
which forces the jump in the approximate solution to decrease when the mesh-
size decreases. Let Th be a given mesh and Eh be the skeleton of the mesh,
i.e., the set of all edges of the elements in Th. For two elements T+ and T−

sharing a common edge, e := T+∩T−, the jump and average on e are defined
as

{v}= 1
2
(v|T+ + v|T−) and [v] = v|T+− v|T− (2.9)
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in the interior and as {v} = [v] = vT on the boundary. We let νe be the unit
normal pointing from T+ to T− and σe be an edge-wise constant depending
on A. The bilinear form for the DG method is defined as

a(u,v) = ∑
T∈Th

∫
T

A∇u ·∇vdx

− ∑
e∈Eh

∫
e

(
νe · {A∇u}[v]+νe · {A∇v}[u]− σe

h
[u][v]

)
ds.

(2.10)

where σe is chosen large enough to make the bilinear form coercive in the
standard DG energy norm, which is defined as

|||v|||2 =

(
∑

T∈Th

‖A1/2
∇v‖2

L2(T )+ ∑
E∈Eh

σe

h
‖[v]‖2

L2(e)

)1/2

. (2.11)

The DG method reads: find uh ∈Vh such that

a(uh,v) = F(v) for all v ∈Vh. (2.12)

Discontinuous Galerkin methods, as well as conforming finite element meth-
ods, perform badly when the smallest length scale of the data is not resolved.
However, DG methods have the advantage in treating discontinuous coeffi-
cients, convection dominated problems, mass conservation, and flexibility of
the underling mesh, all which are crucial issues in many multiscale problems,
including e.g. porous media flow.
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3. Multiscale problems

For multiscale problems standard numerical techniques fail to perform when
the data is not resolved by the computational mesh [4]. A remedy for this,
when the roughness is local in space, is adaptive techniques [37]. However,
this is not the case for many multiscale problems. We will consider both when
there are multiscale features in the coefficients and in the computational do-
main. In particular we consider multiscale diffusion, domains with cracks, and
rough boundaries.

In the last two decades there have been a lot of research on multiscale meth-
ods treating some of these difficulties, see e.g. [20, 19, 13, 12, 9, 10, 11, 22,
23, 25, 27, 28]. Common for this these approaches is that local problems are
solved on subgrid patches which resolves the data variation. The solutions to
the subproblems are then used to modify a coarse scale space or equation.

We consider the local orthogonal decomposition method (LOD) first pre-
sented in [28]. See [25, 27, 23] for some preliminary work and [14, 15, 29, 32]
for further development. In the LOD method the test and trial space are de-
composed into coarse and fine scale subspaces using a quasi-interpolation op-
erator. The coarse space is then corrected using fine scale information such
that the corrected basis takes the fine scale behavior of the data into account.
The corrected basis is constructed to be orthogonal to the kernel of the quasi-
interpolation operator in the scalar product induced by the bilinear form.

3.1 Multiscale methods
In this section we will not explicitly define the function spaces and bilinear
form, instead we use an abstract formulation that fits both the FEM and the
DG method. We let VH and Vh, where H,h are mesh-size functions, be the
finite dimensional spaces where VH does not and Vh does resolve the data. We
assume that VH ⊂ Vh and H > h. The space Vh is referred to as the reference
space and the reference solution uh solves: find uh ∈Vh such that

a(uh,v) = F(v) for all v ∈Vh. (3.1)

We assume uh to be a sufficiently good approximation of u. We split the refer-
ence space Vh into a coarse and a fine scale contribution. Let IH : L2(Ω)→VH
be a quasi-interpolation operator onto the coarse space VH with range(IH) =
VH , i.e., VH = IHVh. To simplify the analysis, we will only consider when
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IH is a projection, I 2
H = IH . The interpolation operator needs to satisfy the

following local approximation and stability estimate. For any K ∈ TH and
v ∈Vh

‖A1/2H−1(v−IHv)‖L2(K) +‖A1/2∇IHv‖L2(K) ≤C|||v|||ωK
, (3.2)

holds, where ωK = int{S ∈ TH | S∩K �= 0} and |||·|||ωK
is the energy norm

restricted to ωK . We define a fine correction space to be the kernel of the
interpolation operator

V f = (1−IH)Vh = {v ∈Vh |IHv = 0}. (3.3)

Any function vh ∈Vh can be decomposed into a coarse contribution, vH ∈VH ,
and fine scale remainder, vf ∈ V f, i.e., vh = vH + vf where vH = IHvH and
vf = (1−IH)vh. Choosing VH as the coarse space the fine scale remainder vf

is large and oscillatory and does not decay until the variations in the data are
resolved. A remedy is to correct the space VH such that the coarse basis takes
the fine scale into account. We define the corrected space by V ms

H = (1+Q)VH
where Q : VH →V f is defined as: given vH ∈VH find Q(vH) ∈V f such that

a(Q(vH),w) =−a(vH ,w) for all w ∈V f. (3.4)

We can write the reference space as the direct sum Vh =V ms
H ⊕V f. By correct-

ing the basis functions spanning the space VH = span{ϕi}we can write the cor-
rected space as the span of corrected basis function V ms

H = span{ϕi +Q(ϕi)}.
To compute the correctors is a global computation which is as expensive as
solving the original reference problem. Instead, each of the correctors of the
basis ϕi are computed on localized patches

ω0
i := int(∪(T̄ ∈TH | T̄ ∩{x} �= /0))∩Ω,

ω�
i := int

(
∪(T̄ ∈TH | T̄ ∩ ω̄�−1

T �= /0)
)
∩Ω, for �= 1, . . . ,L.

(3.5)

See Figure 3.1 for a graphical illustration of a localized patch. Let us define

Figure 3.1. An example of 0, 1, and 2 level patches, i.e., ω0
i , ω0

i , and ω2
i .

the localized corrected space by V ms,L
H = span{ϕi +QL(ϕi)} where QL solves:

given φi find Q(φi) ∈V f(ωL
i ) = {v ∈V f(ωL

i ) | v|D\ωL
i =0} such that

a(QL(φi),w) =−a(φi,w) for all v ∈V f(ωL
i ). (3.6)
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The multiscale method posed in V ms,L
H reads: find ums,L

H ∈V ms,L
H such that

a(ums
H ,v) = F(v) for all v ∈V ms,L

H . (3.7)

The solution ums,L
H fulfills the a priori error estimate

|||u−ums
H ||| ≤ |||u−uh|||+CH, (3.8)

choosing L = O(log(H−1)), where H is the coarse mesh size and C is a con-
stant independent of the mesh sizes h,H and the variations in A. We have that
diam(ωL

i ) =O(H log(H−1)). See Paper II and IV for a more elaborate discus-
sion and Paper III for a generalization toward convection-diffusion problems.

3.2 Continuous and discontinuous Galerkin method
The difference between the continuous and discontinuous Galerkin multiscale
method is the choice of reference space Vh, bilinear form a(·, ·), and quasi-
interpolation IH . The choices we make for the reference space and bilinear
form are given in Section 2.2 for the FEM (continuous Galerkin) and in Sec-
tion 2.3 for the DG multiscale method. The choice for the quasi-interpolation
is not unique and different operators can be chosen depending on the applica-
tion. Let TH be the coarse mesh on which VH is defined and N be the set of
all vertices in TH .

For the continuous Galerkin method we choose I cG
H : L2(D)→ VH to be

defined by
I cG

H v = ∑
x∈N

(Pxv)(x)ϕx (3.9)

where Pxu ∈VH |ω0
x

solves

(Pxu,v)L2(ω0
x )
= (u,v)L2(ω0

x )
for all v ∈VH |ω0

x
. (3.10)

The space VH |ω0
x

is the restriction of VH to the patch ω0
x . See Paper V for a

more elaborate discussion and Paper IV for an other choice of quasi-interpolation
operator.

For the discontinuous Galerkin method we choose an elementwise L2-projection
I dG

H : L2(D)→VH defined by

I dG
H v = ∑

T∈TH

ΠT v (3.11)

where ΠT u ∈VH |T solves

(ΠT u,v)L2(T ) = (u,v)L2(T ) for all v ∈VH |T . (3.12)

See Paper II for a more elaborate discussion.
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3.3 Complex domain
So far most of the work in multiscale community has been focused for treating
multiscale coefficients and less on treating complex domains. However, many
multiscale applications involve voids, cracks, and rough interfaces. We extend
the analysis for multiscale methods when there are multiscale features in the
domain that are not resolved by the mesh. For simplicity we consider the
case A = 1 in a complex domain. Then it is only necessary to compute the
corrector problems close to the complex boundary and not in the entire domain
D, see Figure 3.2. In Figure 3.2 the domain boundary cuts some of the coarse
elements, however this does not affect the convergence and conditioning of
the multiscale method. The condition number κ of the linear system obtained

Figure 3.2. Example of complex domain embedded in a coarse mesh. The fine scale
correctors only needs to be computed in the gray area. The dark Gray elements mark
a 1-layer and the light gray a 2-layer patch of element round the complex boundary.

from (3.7) scales like
κ ≤CH−2, (3.13)

in the coarse mesh size H where C is a constant independent on the mesh-size
and how the elements are cut by the domain boundary. See Paper V for a more
elaborate discussion.

3.4 Petrov-Galerkin formulation
It is also possible to use a Petrov-Galerkin (P-G) formulation of the proposed
multiscale method, i.e., using different test and trial spaces. The P-G formula-
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tion reads: find ums,L
H ∈V ms,L

H such that

a(ums
H ,v) = F(v) for all v ∈VH . (3.14)

The P-G formulation still has the same convergence rate as the standard sym-
metric formulation. If global patches are used for the fine scale computations
the two version are identical up to a perturbation of the right hand side,

a(ums
H ,v) = a(ums

H ,v+QL(v)) (3.15)

for v ∈VH . However, the P-G formulation can reduce the computational com-
plexity since no communication between the correctors is needed when as-
sembling the matrices for the corrected coarse problem, i.e., the assembling is
a(ϕi +QL(ϕi),ϕ j) for the P-G formulation and a(ϕi +QL(ϕi),ϕ j +QL(ϕ j))
for the standard symmetric formulation. See Paper IV for a more elaborate
discussion.

3.5 Adaptivity for discontinuous Galerkin multiscale
method.

For porous media flow problems the permeability in the ground can vary with
several orders of magnitudes over the entire domain. This motivates the use
of an adaptive multiscale method to tune the method parameters in order to
obtain an efficient and reliable solution. For adaptive multiscale methods, see
e.g. [25, 31, 17, 1]. Given a uniform or possibly an adaptive coarse mesh
TH , the adaptive discontinuous Galerkin multiscale method balances the error
caused by truncation of the patches and the fine scale discretization error. The
a posteriori error bound takes the form

|||u−ums
H ||| ≤C1

(
∑

S∈Th

ρ
2
S (u

ms
H )

)1/2

+C2

(
∑

T∈TH

ρ
2
ωT

(ums
H )

)1/2

, (3.16)

where ρ2
S and ρ2

ωT
are error indicators which measure the effect of the fine

scale mesh size and of the truncated patches, respectively. Since using general
nonconforming meshes is allowed using DG, it is easy to construct a global
reference grid for the localized fine scale computations. This takes advantage
of the error cancellation between different fine scale patches. See Paper I for
a more elaborate discussion.
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4. Uncertainty quantification

We consider PDEs with uncertain data which have high stochastic dimension.
More specifically, we consider the estimation of failure probability and p-
quantiles. Given some physical model

M (ω,u) = 0 (4.1)

where ω is a random parameter, let X = X(u) be a quantity of interest of the
model solution u= u(ω), i.e., X : ω→R. The estimation of failure probability
reads: given y ∈ R find p ∈ [0,1] such that

p = Pr(X ≤ y) (4.2)

holds. The estimation of p-quantiles is the inverse problem: given p ∈ [0,1]
find y ∈ R such that (4.2) holds. For simplicity we will only consider failure
probabilitiy here, for p-quantiles see Paper VI. Because of the high stochas-
tic dimension we consider MC approaches using different variance reduction
techniques. The curse of dimensionality does not effected MC based meth-
ods. This is a consequence of the central limit theorem which states that mean
value of a sequence consisting of independent and identically distributed ran-
dom variables with size n, where the random variables have mean value µ and
variance σ2, tends to the normal distribution with mean µ and variance σ2/n,
independent of the stochastic dimension [36].

The key idea is to use a posteriori error estimates/bounds to improve ex-
isting MC methods and variance reduction techniques for MC methods. We
will consider the MC method and multilevel Monte Carlo method (MLMC)
[16, 5, 7].

4.1 Selective refinement
We want to estimate the probability that a quantity of interest X is below a
critical value y. Let us define Q = 1(X ≤ y) where 1(true) = 1 and 1(false) =
0. Then the failure probability can be expressed as the expected value of Q,
i.e., p = E [Q]. Since the quantity of interest X is a functional of the model
solution it needs to be approximated using some numerical method. We will
make the following assumption on the numerical approximation X` of X . Let
X` satisfy

|X−X`| ≤
(

1
2

)`

or |X−X`| ≤ |X`− y|, (4.3)
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for all `. The approximation of Q reads

Q` = 1(X` ≤ y). (4.4)

The Monte Carlo estimator using selective refinement reads

Q̂MC =
1
N

N

∑
i=1

QL(ωi) (4.5)

where ωi is a realization of the model data and L is fixed. Compared to a
standard Monte Carlo estimator where all samples are solved to the same tol-
erance, the selective refinement estimator only refines samples, to the finest
tolerance level, that are close to the failure, see Figure 4.1. This can sig-
nificantly reduce the cost since most samples are computed on coarse model
resolution and hence at smaller cost than for the standard Monte Carlo estima-
tor. See Paper VI for a discussion towards estimating p-quantiles and Paper
VII for more elaborate discussion towards failure probability.

y

(1
2

)`
X`

Error, |X−X`|

|X−X`| ≤
(1

2

)`
|X−X`|< |X`− y|

Figure 4.1. Illustration of the selective refinement condition (4.3). The numerical
error is allowed to be larger far away from y.

4.2 Multilevel Monte Carlo with selective refinement
The MLMC method is a variance reduction technique that splits the estimator
into different levels. On low levels many samples are used where the sam-
ples are cheap to compute and on high levels few samples are used where the
samples are more expensive. The multilevel Monte Carlo estimator reads

Q̂ML =
L

∑
`=1

1
N`

N`

∑
i=1

(Q`(ωi)−Q`−1(ωi)) , (4.6)
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where Q0(ω) = 0. Note that

E[Q̂ML] =
L

∑
`=1

1
N`

N`

∑
i=1

(E[Q`(ωi)]−E[Q`−1(ωi)]) =E[QL(ωi)] (4.7)

because of the telescopic sum. The variance of the multilevel Monte Carlo
estimator is

V[Q̂ML] =
L

∑
`=1

1
N`
V[Q`(ωi)−Q`−1(ωi)]. (4.8)

The level dependent approximation Q` of the random variable Q satisfy

|E[Q`−Q]| ≤C1

(
1
2

)`

,

V[Q`−Q`−1]≤C2

(
1
2

)`
(4.9)

if (4.3) holds. For the root mean square error to satisfy

e(Q̂ML) =
(
V[Q̂ML]+ (E[Q̂ML−Q])2

)1/2
≤ ε, (4.10)

for some tolerance ε , the total cost required to compute the MLMC estimator
with selective refinement is

Cost
(

Q̂ML
)
≤C

{
N q < 2,
Cost(QL) q > 2.

(4.11)

where C is a generic constant independent of ε and q. The constant q typically
depends on the dimension of the problem, convergence rate of the numerical
approximation, and the linear solvers. This is a huge improvement compared
to the standard Monte Carlo estimator which has the cost N ·Cost(QL), i.e.,
the computational complexity for the MLMC estimator is either solving all
problems att cost 1 or one problem at the highest cost. See Paper VII for a
more elaborate discussion.
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5. Future works

There is a rapid development in numerical techniques for both multiscale and
uncertainty quantification problems. Some natural extension of the work con-
sidered in this thesis is the following.
• Combine the multiscale and uncertainty quantification algorithms. Many

uncertainty quantification problems has multiscale structure.
• Use the selective refinement to create a multilevel subset simulation for

rare event estimation, i.e., a small failure probabilities.
• Apply and extend the analysis to more realistic engineering problems.

The numerical experiments in this thesis are based on model problems.
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6. Summary of papers

6.1 Paper I
D. Elfverson, E. H. Georgoulis and A. Målqvist. An Adaptive Discontinuous
Galerkin Multiscale Method for Elliptic Problems. Multiscale Model. Simul.
11(3), 747–765 (2013).
In this paper we present an adaptive discontinuous Galerkin multiscale method
driven by an energy norm a posteriori error bound. In the multiscale method
the problem is split into a coarse and fine scale, Vh = V ms

H ⊕V f . Localized
fine scale problems to correct the coarse basis are solved on truncated patches
of the domain and are used to construct the coarse space, V ms

H . The coarse
space has considerably less degrees of freedom than the fine scale reference
problem. The a posteriori error bound is used within an adaptive algorithm to
tune the critical parameters,

|||u−ums
H ||| ≤C1

(
∑

S∈Th

ρ
2
h (u

ms
H )

)1/2

+C2

(
∑

T∈TH

ρ
2
ωT

(ums
H )

)1/2

, (6.1)

i.e., the error indicator of the refinement level ρ2
h and of the patch sizes ρ2

ωT
on

which the truncated fine scale problems are solved. The fine scale computa-
tions are completely parallelizable, since no communication between different
processors is required when computing the basis for the multiscale space.

Contribution: The author of this thesis was main responsible for the analysis,
writing, and performed all the numerical experiment. The idea was developed
in close collaboration between the authors.

6.2 Paper II
D. Elfverson, E. H. Georgoulis, A. Målqvist, and D. Peterseim. Conver-
gence of a Discontinuous Galerkin Multiscale Method. SIAM J. Numer. Anal.
51(6), 3351–3372 (2013).

In this paper we derive a convergence result for a discontinuous Galerkin mul-
tiscale method for second order elliptic problems. We consider a heteroge-
neous and highly varying diffusion matrix in L∞(Ω,Rd×d

sym ) with uniform spec-
tral bounds without any assumption on scale separation or periodicity. The
multiscale method uses a space V ms

H spanned by corrected basis that is con-
structed by correcting a coarse basis on truncated patches. The error, due to
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truncation of the corrected basis, decreases exponentially with the size of the
patches. Hence, we achieve the linear convergence rate

|||u−ums
H ||| ≤ H, (6.2)

in energy norm of the multiscale solution on a uniform mesh with mesh size
H, by choosing the patch sizes to be O(H| logH|). Improved convergence rate
can be achieved depending on the piecewise regularity of the forcing function.
Also, quadratic convergence

||u−ums
H ||L2(D) ≤ H2, (6.3)

in the L2-norm is obtained for arbitrary forcing function in L2.

Contribution: The author of this thesis was main responsible for the analysis,
writing, and performed all the numerical experiment. The idea was developed
in close collaboration between the authors.

6.3 Paper III
D. Elfverson. A Discontinuous Galerkin Multiscale Method for Convection-
Diffusion Problems. Available as arXiv:1509.03523 e-print (submitted).

In this paper we consider convection-diffusion problems with rough, hetero-
geneous, and highly varying coefficients. We propose a generalization of the
discontinuous Galerkin multiscale method presented Paper II to convection-
diffusion problems. The properties of the multiscale method and the dis-
continuous Galerkin method allow us to better cope with multiscale features
as well as interior/boundary layers in the solution. The coarse trial and test
spaces are corrected using fine scale computation on localized patches of size
O(H log(H−1)), where H is the mesh size. For convection-diffusion it is better
to have directed patches, i.e., increase them in the direction of the convection.
Linear convergence in energy norm,

|||u−ums
H ||| ≤ H, (6.4)

is obtain under the assumption that the ratio between the size of the convection
and diffusion coefficients scales like

O

(
‖Hb‖L∞(Ω)

‖A−1‖L∞(Ω)

)
≤ 1, (6.5)

where b is the convection and A is the diffusion coefficient. However the
convergence rates are independent of the variation in the coefficients.

Contribution: The author of this thesis is the sole author.
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6.4 Paper IV
D. Elfverson, V. Ginting, and P. Henning. On Multiscale Methods in Petrov-
Galerkin Formulation, Numer. Math. (2015).

In this work we investigate the advantages of multiscale methods in P-G for-
mulation in a general framework which both fit multiscale methods based on
the continuous and discontinuous Galerkin method. The framework splits the
high dimensional reference space into a low dimensional corrected coarse
space and high dimensional corrector space. The high dimensional correc-
tor space only contains negligible fine scale information. The corrected coarse
space V ms

H can then be used to obtain accurate Galerkin approximations in P-G
formulation: find ums

H ∈V ms
H such hat

a(ums
H ,v) = F(v) for all v ∈VH . (6.6)

Thus a Petrov-Galerkin formulation preservs the convergence rate,

|||u−ums
H ||| ≤ H, (6.7)

with only a slightly lager constant compared to original symmetric multiscale
method. However, P-G method can decrease the computational complexity
significantly, allowing for more efficient solution algorithms. This makes the
P-G method more preferable compared to the symmetric method. We prove
inf-sup stability of a P-G continuous and a discontinuous Galerkin multi-
scale method. As another application of the framework, we show how the
Petrov-Galerkin framework can be used to construct a locally mass conserva-
tive solver for two-phase flow simulation that employs the Buckley-Leverett
equation. To achieve this, we couple a Petrov-Galekin discontinuous Galerkin
finite element method with an upwind scheme for a hyperbolic conservation
law.

Contribution: The author of this thesis was main responsible for the analysis,
writing, numerical experiments regarding the discontinuous Galerkin part of
the multiscale method.

6.5 Paper V
D. Elfverson, M. G. Larson, and A. Målqvist. Multiscale Methods for Prob-
lems with Complex Geometry. Available as arXiv:1509.03991 e-print (submit-
ted).

In this paper we extend the analysis for the LOD to problems on complex
domains, i.e., domains with voids, cracks, and complicated boundaries. The
multiscale method uses a corrected test and trial space V ms

H , where correctors
for the basis function are computed on truncated patches. The correctors do
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only need to be computed close to the boundary. We achieve linear conver-
gence rate

|||u−ums
H ||| ≤ H, (6.8)

in energy norm for the multiscale solution, even if the computational mesh
does not resolve the fine features of the domain D. The conditioning of the
multiscale method is not affected by how the domain boundary cuts the ele-
ments in the mesh.

Contribution: The author of this thesis was main responsible for the analysis,
writing, and performed all the numerical experiments. The idea was developed
in close collaboration between the authors.

6.6 Paper VI
D. Elfverson, D. J. Estep, F. Hellman, and A. Målqvist. Uncertainty Quan-
tification for Approximate p-Quantiles for Physical Models with Stochastic
Inputs. SIAM/ASA J. Uncertainty Quantification, 2(1), 826–850 (2014).

In this paper we consider the estimation of p-quantiles for a given functional
evaluated on numerical solutions of a deterministic model in which model
input is subject to stochastic variation. We derive upper and lower bounding
estimators of the p-quantile, i.e., given p and 0< β < 1 find the computational
bounds y− and y+ such that

Pr(y ∈ [y−,y+])> 1−β . (6.9)

The main idea is to perform an a posteriori error analysis for the p-quantile
estimators that takes into account the effects of both the stochastic sampling
error and the deterministic numerical solution error. We propose a selective re-
finement algorithm for computing an estimate of the p-quantile with a desired
accuracy in a computationally efficient fashion. In the selective refinement
only samples that can effect the p-quantile are refined, i.e., different samples
are solved to different accuracy. Only a relatively small subset of samples sig-
nificantly affects the accuracy of a p-quantile estimator and need to be solved
to full accuracy. The algorithm leads to significant computational gain. For
instance, if the numerical model is a first order discretization of a partial dif-
ferential equation with spatial dimension greater than one, the reduction in
computational work (compared to standard Monte Carlo using n samples) is
asymptotically proportional to n1/2.

Contribution: The author of this thesis did the writing and performed the nu-
merical experiment in close collaboration with the third author. The analysis
was done in close collaboration with the author of this thesis, the third, and
the fourth author. The idea was developed in close collaboration between all
the authors.
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6.7 Paper VII
D. Elfverson, F. Hellman, and A. Målqvist. A Multilevel Monte Carlo method
for Computing Failure Probabilities. Available as arXiv:1408.6856 e-print
(submitted).

In this paper we propose and analyze a method for computing failure probabil-
ities of systems modeled as numerical deterministic models (e.g., PDEs) with
uncertain input data. Failure probability is defined as the probability that a
functional of the solution to the model is below some critical value, i.e., given
y find p such that

p = Pr(X < y) (6.10)

where X is a quantity of interest. By combining selective refinement with a
multilevel Monte Carlo method we develop a method which reduces computa-
tional cost without loss of accuracy compared to the standard multilevel Monte
Carlo method. We prove how the computational cost of the method relates
to the root mean square error of the failure probability and is asymptotically
proportional to solving a single accurate realization of the numerical model
(independent of the number of samples) or a standard Monte Carlo method
where all samples have cost 1 (independent of the numerical cost) which is the
optimal rate.

Contribution: The author of this thesis did the analysis, writing, and per-
formed the numerical experiment in close collaboration with the second au-
thor. The idea was developed in close collaboration between the authors.
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7. Summary in Swedish

I denna avhandling fokuserar vi både på partiella differentialekvationer med
data som varierar över flera olika skalor i rummet, multiskalproblem, samt som
har osäkerhet i datat, osäkerhetskvantifiering. Modellering och simulering av
denna typ av problem är mycket utmanande och förekommer i de flesta om-
råden inom vetenskap och teknik. Några exempel är flöden i porösa medier
och kompositmaterial. Vanliga numeriska metoder, t.ex enskaliga numeriska
metoder samt Monte Carlo simuleringar för multiskal och osäkerhetkvantifier-
ingsproblem är i många fall olämpliga och i andra fall omöjligt att använda på
grund av deras höga kostnad. I denna avhandling behandlar vi problemen som
dyker upp i multiskal- och osäkerhetskvantifieringsproblem separat.

Standardmetoderna för numeriska beräkningar fungerar dåligt för multi-
skalproblem när man har snabbt varierande data och när den finskaliga in-
formationen i data inte löses upp av beräkningsnätet. Vi behandlar problem
där både koefficienterna och beräkningsdomänen har multiskalstruktur. Den
huvudsakliga utmaningen i att konstruera numeriska metoder för multiskal-
problem är att minska beräkningskomplexiteten utan att förlora noggrannhet i
lösningen. Vi utvecklar en multiskalmetod där grova basfunktioner som spän-
ner upp lösningen korrigeras med hjälp av lokaliserade finskaliga beräkningar.
Lösningen för multiskalmetoden har samma konvergenshastighet som stan-
dard metoderna har för problem utan multiskaldata. De finskaliga korrektion-
sproblemen avtar exponentiell bort från stödet av den ursprungliga basfunk-
tionen och beräkningarna kan därför lokaliseras till små områden. Storleken
av beräkningsområderna kan väljas så att konvergensen för multiskalmetoden
inte påverkas. Korrektionsproblemen kan lösas helt oberoende av varandra,
vilket gör metoden perfekt lämpad för parallella beräkning. Det är också
möjligt att återanvända de finskaliga beräkningarna i t.ex. tidsstegning och
icke-linjära iterationer.

I osäkerhetkvantifiering fokuserar vi på tillämpningar där modellparame-
trarna beror på stokastiska variationer. Vi vill beräkna statistiska egenskaper
hos en kvantitet av lösningen till modellen, mer exakt så vill vi beräkna p-
kvantiler och felsannolikheter. Felsannolikheter definieras som sannolikheten
att en given kvantiteten av lösningen till modellen är mindre än något kritiskt
värde. Uppskattningen av p-kvantiler är det inversa problemet, dvs bestäm
värdet så att en givna kvantiteten av lösningen är större eller mindre än ett
givet värde med sannolikhet p. Beräkningar av den här typen av problem
har två felkällor, ett numeriskt fel från diskretiseringen av modellen och ett
statistiskt fel från ett ändligt antal stickprov. För att uppskatta p-kvantiler eller
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felsannolikheter effektivt så måste de båda felkällorna balanseras. Vi utveck-
lar tekniker för att uppskatta/beräkna det nummeriska felet tillammans med
existerande variansreducerande metoder för att minska beräkningskostnaden
samt för att balansera de båda felkällorna.
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AN ADAPTIVE DISCONTINUOUS GALERKIN
MULTISCALE METHOD FOR ELLIPTIC PROBLEMS∗

DANIEL ELFVERSON† , EMMANUIL H. GEORGOULIS‡ , AND AXEL MÅLQVIST†

Abstract. An adaptive discontinuous Galerkin multiscale method driven by an energy norm
a posteriori error bound is proposed. The method is based on splitting the problem into a coarse
and fine scale. Localized fine scale constituent problems are solved on patches of the domain and
are used to obtain a modified coarse scale equation. The coarse scale equation has considerably
less degrees of freedom than the original problem. The a posteriori error bound is used within
an adaptive algorithm to tune the critical parameters, i.e., the refinement level and the size of the
different patches on which the fine scale constituent problems are solved. The fine scale computations
are completely parallelizable, since no communication between different processors is required for
solving the constituent fine scale problems. The convergence of the method, the performance of
the adaptive strategy, and the computational effort involved are investigated through a series of
numerical experiments.

Key words. multiscale, discontinuous Galerkin, a posteriori error bound
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1. Introduction. Problems involving features on several different scales, usu-
ally termed multiscale problems, can be found in many branches of the engineering
sciences. Examples include the modeling of flow in a porous medium and of compos-
ite materials. Multiscale problems involving partial differential equations are often
impossible to simulate with an acceptable accuracy using standard (single mesh) nu-
merical methods. A different approach, usually coming under the general term of
multiscale methods, consists of considering coarse and fine scale contributions to the
solution, with the fine scale contributions approximated on localized patches. The
fine scale contributions are then used to upscale the problem in order to obtain an
approximation to the global multiscale solution.

1.1. Previous work. Numerous multiscale methods have been developed dur-
ing the last three decades; see, e.g., [8, 7] for early works, or [16, 29, 15] and the
references therein for exposition and recent developments. An important develop-
ment is the Multiscale Finite Element Method (MsFEM) by Hou and Wu [21], which
was further developed in [12], with the introduction of oversampling to reduce reso-
nance effects. Another approach is the so-called Variational Multiscale method (VMS)
of Hughes and co-workers [22, 23]. The idea in VMS is to decompose the solution
space into coarse and fine scale contributions. A modified coarse scale problem is then
solved (using a finite element approach), so that the fine scale contribution is taken
into account. To maintain the conformity of the resulting modified finite element
space, homogeneous Dirichlet boundary conditions are imposed on each fine-problem
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patch boundary. The Adaptive variational multiscale method (AVMS) using the VMS
framework, introduced by Larson and Målqvist [27], makes use of multiscale-type a
posteriori error bound to adapt the coarse and fine scale mesh sizes as well as the
fine-problem patch-sizes automatically. A priori error analysis can be found in [30].

An interesting alternative to conforming finite element methods is the class of
discontinuous Galerkin (DG) methods, whereby the approximation spaces are ele-
mentwise discontinuous; the continuity of the underlying exact solutions is imposed
weakly. DG methods appeared in the 1970s and in the early 1980s [32, 28, 9, 5, 24]
and have recently received renewed interest; we refer to the volumes [13, 14, 20, 33]
and the references therein for a literature review. DG methods admit good conser-
vation properties of the state variable and, due to the lack of interelement continuity
requirements, are ideally suited for application to complex and/or irregular meshes.
Also, there has been work to better cope with the case of high contrast diffusion;
see e.g., [19] where a DG method based on weighted average is proposed and an-
alyzed. Discontinuous Galerkin methods for solving multiscale problems have been
discussed using the framework of the MsFEM [1] and of the Heterogeneous Multiscale
Method (HMM) [2]; see also [37, 36, 35, 34]. An a priori error analysis for the class of
discontinuous Galerkin multiscale method studied in this paper can be found in [17].

1.2. New contributions. In this work, we propose an Adaptive Discontinuous
Galerkin MultiScale method (ADG-MS) using the framework of VMS. The under-
lying DG method is based on weighted averages across the element interfaces. The
adaptivity is driven by energy norm a posteriori error bounds. The multiscale method
is based on solving localized problems on patches, which are then upscaled to solve
a coarse scale equation. The lack of any interelement continuity requirements of the
approximate solution allows for very general meshes, which is very common in multi-
scale applications; i.e., meshes that contain several types of elements and/or hanging
nodes. The split between the coarse and fine scale is realized using the elementwise
L2-projection onto the coarse mesh. This is more natural in a multiscale setting
than, e.g., using the nodal interpolant as in [27]. It is also much easier and efficient
to construct an L2 orthogonal split using DG as opposed to conforming multiscale
methods. The ADG-MS inherits a local conservation property from DG on the coarse
scale, which is crucial in many applications such as porous media flow. The fine scale
problems can be solved independently with localized right-hand sides, and it is known
that the solutions decay exponentially [17], which allows for small patches. In this
case the ADG-MS converges to the reference solution, thereby taking full advantage
of cancellation between patches; this is not the case for the original AVMS [27] since
hanging nodes are not allowed. In the a posteriori error bound, the error is bounded
in terms of the size of the different fine-scale patches and on both the fine-scale and
the coarse-scale mesh sizes. An adaptive algorithm to tune all these parameters au-
tomatically is proposed. The numerical experiments show good performance of the
algorithm for a number of benchmark problems.

1.3. Outline. The rest of this work is structured as follows. Section 2 is devoted
to setting up the model problem, the basic DG discretization, and some notation.
A general framework for multiscale problems along with the discontinuous Galerkin
multiscale method is derived in section 3, and the a posteriori error bound is derived
in section 4. The implementation of the method and the adaptive algorithm are
discussed in section 5. In section 6, a number of numerical experiments are presented,
and finally some conclusions are drawn in section 7.
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2. Preliminaries. In this section we define some notations and the underlying
DG method is presented.

2.1. Notation. Let ω ⊆ R
d, d = 2, 3, be an open polygonal domain. Denote the

L2(ω)-inner product by (·, ·)L2(ω), and the corresponding norm by ‖ · ‖L2(ω). Also,

let H1(ω) be the Sobolev space with norm ‖ · ‖H1(ω) := (‖ · ‖2L2(ω) + ‖∇ · ‖2L2(ω))
1/2,

and let Hs(ω) be the standard Hilbertian Sobolev space of index s ∈ R. We shall
also make use of the space L∞(ω) consisting of almost everywhere bounded functions,
with norm ‖·‖L∞(ω) := ess supω| · |; see, e.g., [3] for details. Finally, the d-dimensional
Lebesgue measure will be denoted by μd(·).

2.2. The model problem. Let Ω ⊂ R
d be an open polygonal domain with

Lipschitz boundary ∂Ω, d = 2, 3, and consider the elliptic boundary value problem
find u ∈ {v ∈ H1(Ω) : v|∂Ω = 0} fulfilling

−∇ · A∇u = f, u ∈ Ω,(2.1)

u = 0, u ∈ ∂Ω,(2.2)

with f ∈ L2(Ω) and A ∈ L∞(Ω,Rd,d
sym) such that A has uniform spectral bounds,

bounded below by α > 0 ∈ R almost everywhere.

2.3. Discretization and subdivision. The domain Ω is subdivided into a par-
tition K = {K} of shape-regular and closed elements K with boundaries ∂K; i.e.,
Ω̄ = ∪K∈KK̄. On the partition K, let h : ∪K∈KK → R be a mesh-function defined
elementwise by h|K := diam(K), K ∈ K. The partition is allowed to be irregular (i.e.,
hanging nodes are allowed) and it is locally quasi uniform in the sense that the ratio
of the mesh function h for neighboring elements is uniformly bounded from above and
below. Let ΓB be the set of all boundary edges, and let ΓI be the set of all interior
edges (or faces when d = 3) such that Γ = ΓB ∩ ΓI is the set of all edges in the par-
tition K. Associated with the diffusion tensor, we consider the elementwise constant
functions A0, A0 : ∪K∈KK → R defined by the biggest and smallest eigenvalue of A,
respectively, on each element K. For Ki,Kj ∈ K, with μd−1(∂Ki ∩ ∂Kj) > 0, let
Ki,Kj be denoted by K+ and K−, where K+ is the element with the higher index.
On interior element interfaces e ∈ ΓI we shall make use of the shorthand notation
v+ := v|K+ , v− := v|K− ; on boundary edges we set v+ := v|K . We also define the
weighted mean value by

(2.3) {v}w := wK+(e)v
+ + wK+(e)v

−,

where

(2.4) wK+(e) :=
A0|K−

A0|K+ +A0|K−
, wK−(e) :=

A0|K+

A0|K+ +A0|K−

for each e ∈ ΓI and

(2.5) wK+(e) = 1, wK+(e) = 0

for e ∈ ΓB. Further, the jump across element interfaces is defined by

(2.6) [v] := v+ − v− for e ∈ ΓI and [v] := v+ for e ∈ ΓB,

and the harmonic mean value γe by

(2.7) γe :=
2A0|K+ · A0|K−

A0|K+ +A0|K−
.
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Also, n will denote the outward unit normal to ∂K+ when μd−1(∂K
+ ∩ ∂K−) > 0.

When μd−1(∂K ∩ ∂Ω) > 0, n will be the outward unit normal to ∂Ω.

2.4. The discontinuous Galerkin method. For a nonnegative integer r, we
denote by Pr(K̂) the set of all polynomials on K̂ of total degree at most r if K̂ is
the reference d-simplex, or of degree at most r in each variable if K̂ is the reference
d-hypercube.

Consider the space V := Vh + H1+ε(Ω) with ε > 0 but arbitrary small, and let
the discontinuous finite element space be given by

(2.8) Vh := {v ∈ L2(Ω) : v ◦ FK |K ∈ Pr(K̂), K̂ ∈ K},

where FK : K̂ → K is the respective elemental map for K ∈ K, which is allowed to
be nonaffine, provided its Jacobian remains nonsingular and uniformly bounded from
above and below with respect to all meshes.

The discontinuous Galerkin method then reads as follows: find uh ∈ Vh such that

(2.9) a(uh, v) = �(v) ∀v ∈ Vh,

where the bilinear form a(·, ·) : V ×V → R and the linear form �(·) : V → R are given
by

a(v, z) :=
∑
K∈K

(A∇v,∇z)L2(K) −
∑
e∈Γ

(
(n · {AΠ∇v}w, [z])L2(e)(2.10)

+ (n · {AΠ∇z}w, [v])L2(e) −
σeγe
he

([v], [z])L2(e)

)
,

�(v) := (f, v)L2(Ω),(2.11)

respectively. Here Π : (L2(Ω))d → (Vh)d denotes the orthogonal L2-projection oper-
ator onto (Vh)d, he := diam(e), and σe ∈ R is a positive constant. The bilinear form
(2.11) is coercive with respect to the natural energy norm,

(2.12) |||v||| =
(∑

K∈K
‖A1/2∇v‖2L2(K) +

∑
e∈Γ

σeγe
he
‖[v]‖2L2(e)

)1/2

if σe is chosen to be large enough. We refer, e.g., to [14, 6] and the references therein for
details on the analysis of DG methods for elliptic problems. Discontinuous Galerkin
methods with weighted averages were introduced in [10, 19].

Remark 2.1. For all v ∈ Vh, we have Π∇v = ∇v; therefore, the bilinear form
(2.10) with v, z ∈ Vh is reduced to the more familiar form

a(v, z) =
∑
K∈K

(A∇v,∇z)L2(K) −
∑
e∈Γ

(
(n · {A∇v}w, [z])L2(e)

+ (n · {A∇z}w, [v])L2(e) −
σeγe
he

([v], [z])L2(e)

)
.(2.13)

3. The multiscale method. In the VMS framework, the finite element solution
space Vh is decoupled into coarse and fine scale contributions, viz., Vh = VH ⊕ Vf ,
with VH ⊂ Vh. To this end, let ΠH : L2(Ω)→ VH be the (orthogonal) L2-projection
onto the coarse mesh. The split between the coarse and fine scales is then determined
by VH := ΠHVh and Vf := (I−ΠH)Vh = {v ∈ Vh : ΠHv = 0}, where I is the identity
operator.
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The multiscale map T : VH → Vf from the coarse to the fine scale is defined as

(3.1) a(T vH , vf ) = −a(vH , vf ) ∀vH ∈ VH and ∀vf ∈ Vf .

The next step is to decompose uh and v in (2.9) into coarse and fine scale components.
In particular, we have

(3.2) uh = uH + T uH + uf ,

and v = vH + vf , with uH , vH ∈ VH and T uH , vf ∈ Vf for some uf ∈ Vf . Equation
(2.9) is equivalent to the following problem: find uH ∈ VH and vf ∈ Vf such that

(3.3) a(uH + T uH + uf , vH + vf ) = �(vH + vf ) ∀vH ∈ VH and ∀vf ∈ Vf .

The fine scale component uf can be computed by letting vH = 0 in (3.3) and using
the multiscale map (3.1). We obtain the fine scale problem driven by the right-hand
side data f : find uf ∈ Vf such that

a(uf , vf ) = �(vf ) ∀vf ∈ Vf .(3.4)

The coarse scale solution is obtained by letting vf = 0 in (3.3): find uH ∈ VH such
that

(3.5) a(uH + T uH , vH) = �(vH)− a(uf , vH) ∀vH ∈ VH .

In (3.5), T vH and uf are unknown and obtained by solving (3.1) and (3.4). Note that
the linear system (3.5) has dim(VH) unknowns.

3.1. Localization and discretization. The bilinear form is characterized by
more local behavior in Vf than in Vh [30, 17]. This motivates us to solve the fine scale
equations on (localized) overlapping patches, instead of the whole domain Ω. The
patches are chosen large enough to ensure sufficiently accurate computations of T vH
and uf . The computations of the fine scale components of the solution can be done
in parallel with localized right-hand sides. To define the coarse space VH , we begin
by fixing a coarse mesh KH . Then, VH is defined as

(3.6) VH := {v ∈ L2(Ω) : v ◦ FK |K ∈ Pr(K̂), K̂ ∈ KH}.

Definition 3.1. For all K ∈ KH , define element patches of size L patch as

(3.7)
ω1
K = int(K),

ωL
K = int(∪{K ′ ∈ KH | K ′ ∩ ω̄L

K}), L = 2, 3, . . . .

The patch ωL
K will be refered to as a L-layer patch. This is illustrated in Figure 1.

On each L-layer patch, we let K(ωL
K) be a restriction of K to ωL

K , such that
∪K∈K(ωL

K) = ω̄L
K . Also let ΓI(ωL

K) and ΓB(ωL
K) be the interior, respectively, boundary

edges on K(ωL
K). Moreover, we assume that KH |ωL

K
and K(ωL

K) are nested; that is,

every coarse elementKH ∈ KH |ωL
K
coincides with a union of fine elementsK ∈ K(ωL

K).

Also, the fine test spaces Vf (ωL
K) are defined by

(3.8) Vf(ωL
K) := {v ∈ Vf : v|Ω\ωL

K
= 0}.

Finally, let the indicator function be χK = 1 on element K and 0 otherwise, and let
MK be the index set of all basis functions φj ∈ VH that have support on K; i.e.,
χK =

∑
j∈MK

φj .
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Fig. 1. Example of one ω1
K , two ω2

K , and three ω3
K layer patches around element T in a

quadrilateral mesh.

3.2. The discontinuous Galerkin multiscale method. For each K ∈ KH

the following local problems need to be solved: find T̃ φj ∈ Vf (ωL
K) ∀j ∈ MK and

Uf,K ∈ Vf (ωL
K) such that

a(T̃ φj , vf ) = −a(φj , vf ) ∀vf ∈ Vf (ωL
K),(3.9)

a(Uf,K , vf ) = �(χKvf ) ∀vf ∈ Vf (ωL
K).(3.10)

The modified coarse scale problem is formulated as follows: find UH ∈ VH such that

(3.11) a(UH + T̃ UH , vH) = �(vH)− a(Uf , vH), ∀vH ∈ VH ,

where Uf :=
∑

K∈KH
Uf,K . The approximate solution to the multiscale problem is

given by

(3.12) U = UH + T̃ UH + Uf .

The above procedure will be referred to as the discontinuous Galerkin multiscale
method.

We note that the approximation U is not equal to uh, in general, since the do-
mains of the fine scale problems are truncated. However, as discussed above, it is
expected that U is a good approximation to uh, due to the decaying nature of the fine
scale solutions away from the respective patch. For the approximation U to converge
to the exact solution u of (2.1) in the limit, the support of the local problems should
be gradually extended to both the whole computational domain and the fine scale
meshsize h should converge to 0. The multiscale method proposed here differs from
the one proposed in [17] in that a right-hand side correction is present. Using the for-
mulation without the presence of a right-hand side correction, the multiscale solution
converges to an H-perturbation of the exact solution u, uniformly with respect to the
diffusion coefficient structure.

Remark 3.2. Note that for a nonuniform mesh K (and/or KH), the convergence
results presented in [17] still hold if the corrected basis functions are computed on
patches of a common reference mesh K. On the other hand, if the adaptive algorithm
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is used so that the overlap between different corrected basis functions are computed
on different meshes (cf., e.g., [27]), less cancellation of the error will occur and con-
vergence can no longer be guaranteed by the argument in [17].

3.3. Local conservation property. The DG methods are known to have good
local conservation properties in that the normal fluxes are conservative. The ADG-
MS inherits this property on the coarse scale. To see this, we introduce the normal
fluxes on element KH ∈ KH as

(3.13) σ̂(U) := ({n · A∇U}w − σeγeh−1
e [U ])[χKH ], e ∈ ∂KH ,

where U = UH + T̃ UH +Uf , χKH = 1 on element KH and χKH = 0 otherwise ([χKH ]
is either 1 or −1), and each interface e is a face of a fine scale element K ∈ K, i.e.,
the number of edges can exceed the number of faces for each element KH . By setting
w ∈ VH to be w = χKH in (2.10), (2.11), and by using the discrete normal fluxes
defined in (3.13), we arrive to the discrete elementwise conservation law

(3.14) (f, 1)L2(KH) + (σ̂(U), 1)L2(∂KH) = 0

for all KH ∈ KH .

4. A posteriori error bound in energy norm. Let the constant 0 ≤ C <∞
be any generic constant neither depending on H , h, L, nor A; let a � b abbreviate
the inequality a ≤ Cb. The following approximation results will be used frequently
throughout this section. Let π be the orthogonal L2-projection operator onto element-
wise constant functions. Then π satisfies the following approximation properties: for
an element K, we have

||v − πv||L2(K) �
hK√
A0

||A1/2∇v||L2(K) ∀v ∈ H1(K),(4.1)

||v − πv||L2(∂K) �
√
hK
A0
||A1/2∇v||L2(K) ∀v ∈ H1(K).(4.2)

Lemma 4.1. Let Ich : Vh → Vh ∩ H1(Ω) be a averaging interpolation operator
defined pointwise as

(4.3) Ichvh(x̃) =
1

|Kx̃|
∑

K∈Kx̃

vh(x̃)|K ,

where Kx̃ is the set of elements in K for which x̃ belong, with the cardinal |Kx̃|. Then,

||vh − Ichvh||2L2(K) � ||
√
he[vh]||2L2(∂K),(4.4)

||A1/2∇(vh − Ichvh)||2L2(K) � A0

∣∣∣∣∣∣∣∣ 1√
he

[vh]

∣∣∣∣∣∣∣∣2
L2(∂K)

(4.5)

holds for all vh ∈ Vh and K ∈ K.
The proof, omitted here, follows closely that of [25]. Lemma 4.1 can also be

extended to irregular meshes. There a hierarchical refinement of the mesh is performed
to eliminate the hanging nodes; we refer to [26] for details. For irregular meshes the
constant in the bounds of Lemma 4.1 also depends on the number of hanging nodes
on each face.
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Remark 4.2. The result in Lemma 4.1 can be sharpened if the diffusion tensor
is isotropic and a locally quasi-monotone [31] distribution is assumed to hold. Then
A0|K can be replaced by the harmonic mean value γe on face e; see [11].

First we derive a posteriori error bound for the underlying (one scale) DG method.
Theorem 4.3. Let u, uh be given by (2.1)–(2.2) and (2.9), respectively. Also let

Ichuh ∈ Vh∩H1(Ω) be given by (4.3). Moreover, let E := Ec+Ed, where Ec := u−Ichuh
and Ed := Ichuh − uh. Then

(4.6) |||E||| �
(∑

K∈K
�2K

)1/2

+

(∑
K∈K

ζ2K

)1/2

,

where

�K =
hK√
A0

||(1−Π)(f +∇ · A∇uh)||L2(K)(4.7)

+

√
hK
A0

(
||(1− wK(e))n · [A∇uh]||L2(∂K\ΓB) +

∣∣∣∣∣∣∣∣σeγehe
[uh]

∣∣∣∣∣∣∣∣
L2(∂K)

)
,

ζ2K = ||A1/2∇(uh − Ichuh)||2L2(K) +

∣∣∣∣∣∣∣∣√σeγe
he

[uh]

∣∣∣∣∣∣∣∣2
L2(∂K)

.(4.8)

Remark 4.4. Using Ichuh as the conforming part of uh, we arrive to an a poste-
riori bound whereby Ichuh can either be evaluated directly or bounded using Lemma
4.1. Another possible choice is a weighted averaging interpolation operator with the
weights depending on the diffusion tensor [4].

Remark 4.5. Concerning the lower efficiency bounds, the term (4.7) is robust
with respect to the diffusion tensor; see [18]. But to prove that (4.8) is robust with
respect to the diffusion tensor, to the best of the authors’ knowledge, the diffusion
tensor has to be isotropic and satisfy a locally quasi-monotone property [31, 11].

Proof. Note that

(4.9) |||E||| ≤ |||Ec|||+ |||Ed|||,

where the first part can be bounded by

(4.10) |||Ec|||2 � a(Ec, Ec) = a(E , Ec)− a(Ed, Ec) � a(E , Ec) + |||Ed||||||Ec|||.

Let πh be the L2-orthogonal projection onto the elementwise constant functions and
define η := Ec − πhEc. We then have

(4.11) a(E , Ec) = a(u, Ec)− a(uh, Ec) = �(Ec)− a(uh, Ec) = �(η)− a(uh, η),

which implies

(4.12) |||Ec|||2 = a(Ec, Ec) =
(
�(η)− a(uh, η)

)
− a(Ed, Ec).

Upon integration by parts and using the identity [vw] = {v}w[w] + {w}w̄[v], where w̄
is the skew-weighted average given by

(4.13) {v}w̄ := wK−(e)v
+ + wK+(e)v

−,
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the first term on the right-hand side of (4.12) yields

�(η)− a(uh, η)

=
∑
K∈K

(f +∇ ·A∇uh, η)L2(K) +
∑
e∈Γ

(
− (n · [A∇uh], {η}w̄)L2(e\ΓB)(4.14)

+ (n · {AΠ∇η}w, [uh])L2(e) − σγeh−1
e ([uh], [η])L2(e)

)
.

The first term on the right-hand side of (4.14) can be bounded as follows:∑
K∈K

(f+∇·A∇uh, η)L2(K) �
∑
K∈K

hK√
A0

||(1−Π)(f+∇·A∇uh)||L2(K)||A1/2∇Ec||L2(K),

using (4.1). The second term on the right-hand side of (4.14) gives∑
e∈Γ\ΓB

(n · [A∇uh], {η}w̄)L2(e)(4.15)

�
∑
K∈K

√
hK
A0
||(1 − wK(e))n · [A∇uh]||L2(∂K\ΓB)||A1/2∇Ec||L2(K)

using (4.2). For the third term on the right-hand side of (4.14), noting that∇η = ∇Ec,
we deduce that∑

e∈Γ

(n · {AΠ∇Ec}w, [Ed])L2(e) �
∑
K∈K

1√
hKA0

||γe[Ed]||L2(∂K)||A1/2∇Ec||L2(K),

using an inverse estimate and the L2-stability of Π. For the last term on the right-hand
side of (4.14), we have

∑
e∈Γ

σeγe
he

([uh], [η])L2(e) �
∑
K∈K

√
hK
A0

∣∣∣∣∣∣∣∣σeγehe
[uh]

∣∣∣∣∣∣∣∣
L2(∂K\ΓB)

||A1/2∇Ec||L2(K).

The last term on the right-hand side of (4.12) is bounded using the continuity of the
bilinear form. Combining all of the above bounds and using Lemma 4.1 to bound the
nonconforming part, the result follows.

A posteriori error estimate for the ADG-MS is given below.
Theorem 4.6. Let u, U be defined in (2.1)–(2.2) and (3.12), respectively, and

set IchU ∈ H1(Ω). Set E := Ec+Ed, where Ec := u−IchU and Ed := IchU −U . Define

UKH :=
∑

j∈MKH
Uj(φj + T̃ φj) +Uf,KH , where Uj are the nodal values calculated by

(3.11) for all KH . Then, E satisfies the estimate

(4.16) |||E ||| �
(∑

K∈K
�2K

)1/2

+

(∑
K∈K

ζ2K

)1/2

+

⎛⎝ ∑
KH∈K̃H

ρ2ωL
KH

⎞⎠1/2

,

where

(4.17) ρ2ωL
KH

=
∑

e∈ΓB(ωL
KH

)

(
H2

KO
H

hKOA0|KO
H

)(
||n · {A∇Ui}w||L2(e) +

σeγe
he
||[Ui]||L2(e)

)2
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measures the effect of the truncated patches, KO,KO
H are from outside of ωL

KH
, and

�K =
hK√
A0

||(1 −Π)(f +∇ · A∇U)||L2(K)(4.18)

+

√
hK
A0

(
||(1 − wK(e))n · [A∇U ]||L2(∂K) +

∣∣∣∣∣∣∣∣σeγehe
[U ]

∣∣∣∣∣∣∣∣
L2(∂K)

)
,

ζ2K = ||
√
A∇(U − IchU)||2L2(K) +

∣∣∣∣∣∣∣∣√σeγe
he

[U ]

∣∣∣∣∣∣∣∣2
L2(∂K)

(4.19)

measuring the refinement level of the fine scale.
Remark 4.7. One possible adaptive strategy would be to refine the coarse mesh

as much one can afford, using a standard a posteriori error bound (e.g., using Theorem
4.3), and then further improve the approximation using Theorem 4.6. Note that fine
scale problems do not have to be solved everywhere.

Remark 4.8. For the estimator ρωL
KH

to retain its optimality with respect to

the mesh-sizes, one should assume that H2
KH

� hK . We note that this is not an
unreasonable requirement, for, otherwise, each fine scale problem would be more
expensive to solve than the coarse scale problem.

Proof. Using the same idea as in Theorem 4.3. We first note that

(4.20) |||Ec|||2 = a(Ec, Ec) = a(E , Ec)− a(Ed, Ec).

Then, using (2.9) and the fine scale equations (3.9)–(3.10), we have

a(E , Ec) = �(Ec)− a(U,Ec)(4.21)

= �(Ec − vH)− a(U, Ec − vH)(4.22)

= �(Ec − vH − vf )− a(U,Ec − vH − vf ) + �(vf )− a(U, vf )(4.23)

for any vH ∈ VH and vf ∈ Vf . Note that,

�(vf )− a(U, vf) =
∑

KH∈K̃H

�(χKHvf )− a(UKH , vf )(4.24)

=
∑

KH∈K̃H

∑
e∈ΓB(ωL

KH
)

(
(n · {A∇Ui}w, [ξLKH

vf ])L2(e)(4.25)

+ (n · {A∇ξLKH
vf}w, [Ui])L2(e) −

σeγe
he

([Ui], [ξ
L
KH

vf ])L2(e)

)
,

where ξLKH
= 0 on ωL

KH
and ξLKH

= 1 otherwise; that is, vf = ξLKH
vf + (1 − ξLKH

)vf ,

where (1− ξLKH
)vf ∈ Vf (ωL

KH
). Then, applying (4.25), we deduce

a(E , Ec) =
(
�(Ec − vH − vf )− a(U, Ec − vH − vf )

)
(4.26)

+
∑

KH∈K̃H

∑
e∈ΓB(ωL

KH
)

(
(n · {A∇Ui}w, [ξLKH

vf ])L2(e)

+ (n · {A∇ξLKH
vf}w, [Ui])L2(e) −

σeγe
he

([Ui], [ξ
L
KH

vf ])L2(e)

)
= : I + II.
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Term I can be estimated as in the proof of Theorem 4.3, upon selecting vH := πHEc

and vf = πf (Ec − πHEc) = πfEc, where πH and πf are the elementwise constant L2-
orthogonal projections onto the coarse space VH on the fine space Vf , respectively.
We note that, by construction, πfπHv = 0 ∀v ∈ Vh.

Since vf is chosen to be piecewise constant the second term in II is equal to zero.
For each K ∈ K, and for each e ∈ ΓB(ωL

KH
)\ΓB, we have

(4.27)

∣∣∣(n · {A∇Ui}w, [ξLKH
vf ])L2(e) −

σeγe
he

([Ui], [ξ
L
KH

vf ])L2(e)

∣∣∣
�
(
||n · {A∇Ui}w||L2(e) +

σeγe
he
||[Ui]||L2(e)

)
||[ξLKH

vf ]||L2(e)

using (4.28) and the Cauchy–Schwarz inequality, for e ∈ ΓB, the first term in (4.27)
disappears. Note that, ||[ξLKH

vf ]||L2(e) is either ||[v+f ]||L2(e) or ||[v−f ]||L2(e) depending

on ξLKH
. To bound the term involving vf , for simplicity let vf be either v+f or v−f . We

note that

||vf ||L2(e) �
1√
hK
‖vf‖L2(K) �

1√
hK
‖vf‖L2(KH)

� 1√
hK
||Ec − πHEc||L2(KH) �

HKH√
hK
||∇Ec||L2(KH)

� HKH√
hKA0

||
√
A∇Ec||L2(K)(4.28)

using a trace inequality and the L2-stability of πf , viz., ||πfv||L2(KH) ≤ ||v||L2(KH).
Combining the above and summing over all patches, using the discrete version of

the Cauchy–Schwarz inequality, the proof is concluded.

5. Implementation and adaptivity. The system of equations arising from the
discretization of the modified coarse multiscale problem (3.11) is given by

KU = b− d,(5.1)

where Ki,j = a(φj + T̃ φj , φi), bi = �(φi), and di = a(Uf , φi). To assemble the right-

and left-hand sides of (5.1), T̃ φi and Uf,i need to be computed for all i ∈ N . This
can be done in parallel since no communication is required between the different fine
scale problems. For each fine scale problem it is also possible to assemble Ki,j =

a(φj + T̃ φj , φi), bi = �(φi), and di =
∑

j∈N a(Uf,j , φi) for a fixed i and for all j
such that μd(supp(φj) ∩ ω̄K) > 0. The constraints needed on the fine scale test

spaces to solve T̃ φi and Uf,i are Vf = {v ∈ Vh : ΠHv = 0}, which are implemented
using Lagrange multipliers. The spaces Vf and VH are orthogonal with respect to the
L2-inner product.

Let VH = span{φi} and Vf = span{ϕi}. Then, the system of equations to be
solved on the fine scale is given by

(5.2)

(
K PT

P 0

)
ξ =

(
b
0

)
,

where

(5.3) P =

⎛⎜⎜⎜⎝
(φ1, ϕ1) (φ1, ϕ2) . . . (φ1, ϕN )
(φ2, ϕ1) (φ2, ϕ2) . . . (φ2, ϕN )

...
...

. . .
...

(φM , ϕ1) (φM , ϕ2) . . . (φM , ϕN )

⎞⎟⎟⎟⎠ ,
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with Kk,l = ai(ϕk, ϕl) and b either bk = li(ϕk) for (3.10) or bk = −ai(φi, ϕk) for (3.9).
Using the a posteriori error estimate above, it is possible to design an adaptive

algorithm that automatically tunes the fine mesh size and the size of the patches. In
the numerical experiments below, we have implemented Algorithm 1, which extends
the patches in all directions and uses a uniform mesh refinement of the fine scale on
each coarse element. A more elaborate algorithm, which only extends in the direction
where the error is large and uses adaptive mesh refinement, would be a possible
extension, since the a posteriori indicators above contain local contributions of each
individual patch-boundary face and of each fine scale element residual.

Algorithm 1. Adaptive discontinuous Galerkin multiscale method.

1: Initialize the coarse mesh, KH with mesh function H , and a fine mesh, Kh with
meshfunction h, by using to uniform refinements of KH ; i.e., h = H/4.

2: For all KH let the size of the patches be ω3
KH

.
3: Set the mesh refinement level to X%.
4: while (

∑
K∈K �

2
h,K)1/2 + (

∑
K∈K ζ

2
h,K)1/2 + (

∑
KH∈KH

ρ2
ωL

KH

)1/2 > TOL do

5: for K ∈ K̃H do
6: Solve the fine scale problems (3.1) and (3.10).
7: Compute the matrix and vector entries on the coarse scale (5.1).
8: end for
9: Solve the modified coarse scale problem (3.11).

10: Mark the indicator with X% largest error in {�2h,K + ζ2h,K , ρ
2
L,ωi
}.

11: for KH ∈ KH do
12: if ρ2L,ωi

is marked then

13: ωL
KH

:= ωL+1
KH

14: end if
15: if ρ2h,K + ζ2h,K is marked then
16: h|KH := h|KH/2
17: end if
18: end for
19: end while

6. Numerical examples. We present some numerical experiments where the
converge of the method as well as the performance of the adaptive algorithm is inves-
tigated.

6.1. Convergence. We consider the model problem (2.1)–(2.2) on the L-shaped
domain constructed by removing the lower right quadrant in the unit square, with
forcing function f = 1. We consider a coarse quadrilateral mesh of size H = 2−4.
Furthermore, each coarse element K ∈ KH is further subdivided using two uniform
refinements to construct the fine mesh. The error is measured in the relative energy
norm, (2.12), where uh is the DG solution on the fine mesh; i.e., there is only a
truncation error (due to the fine scale patch size) between the multiscale solution and
the DG solution. The permeabilities One and SPE,1 illustrated in Figure 2, are used.
In One, we have A = 1, and in SPE the data is taken from the tenth SPE comparative
solution project and is projected into the fine mesh. Exponential decay is observed
with respect to the number of layers for the different permeabilities One and SPE,

1Data is taken from the tenth SPE comparative solution project http://www.spe.org/web/csp/.
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Fig. 2. Permeability structure of One and SPE in log scale on an L-shaped domain.
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Fig. 3. Convergence in relative energy norm (2.12), on an L-shaped domain when the number
of layers are increased using the different permeabilities One and SPE.

until the patches cover the whole domain when L = 8; this is illustrated in Figure 3.
As expected, when L = 8, only round off error between the multiscale solution and
the reference solution is observed. Note that, by including the right-hand side fine
scale correction, convergence of U to uh itself is observed.

6.2. Adaptivity for a problem with analytic solution. Let us consider the
model problem (2.1)–(2.2) on a unit square, using the permeability A = 1 and the

forcing function f = 4a2(1 − ar2)e−ar2 for some a > 0. Using a = 400, the analytic

solution can be approximated sufficiently well by the Gaussian pulse u = ae−ar2 ,
centered in the middle of the domain. We consider a coarse quadrilateral mesh of size
H = 2−4, and a fine mesh of size h = 2−6. The adaptive algorithm (Algorithm 1)
with 10% refinement level is used. The starting values for L and h used are L = 3
layers, and the fine scale mesh is uniformly refined two times. Figure 4 shows the error
and the error indicators decay after each iteration of the adaptive algorithm, while
Figure 5 shows the locations where the adaptive algorithm has chosen to concentrate
the computational effort, which indeed coincides with the position of the pulse.
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Fig. 4. Convergence in relative energy norm (2.12), using the adaptive algorithm on the unit
square with Gaussian pulse in the middle.

Fig. 5. The level of refinement and the size of the patches L illustrated in the left, respectively
right plots, using the adaptive algorithm on a unit square with Gaussian pulse in the middle. White is
where the most refinements, respectively bigger L, are used and black is where the least refinements,
respectively smallest patches, are used.

6.3. Adaptivity on an L-shaped domain. Consider the model problem and
the same data as in section 6.1. The solution produced by the adaptive algorithm is
compared to a reference solution computed with the standard (one scale) DG method
on a uniform quadrilateral mesh with mesh-size h = 2−9; see Figure 6. Consider a
coarse mesh consisting of a uniform quadrilateral mesh of size H = 2−4. The starting
values in the adaptive algorithm (Algorithm 1) are L = 3 and the fine scale mesh is
derived by two uniform refinements of the coarse mesh. In each iteration, a refinement
level of 30% is used. Figure 7 shows the error decays after each iteration of the adap-
tive algorithm. Also, the adaptive algorithm chooses to increase the patches in the
beginning since the error from the truncation is initially larger than the discretization
error and after a few iterations it is starting to refine the fine scale mesh more and
more. When the patch sizes are increased, the error, due to truncation, decays expo-
nentially independent of the regularity of the solution as shown theoretically in [17].
This is not true for the discretization error. This motivates the use of an adaptive
algorithm which tunes the error between the truncation and discretization. Figure 8
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Fig. 6. Reference solution for the different permeabilities computed onto a mesh with size
h = 2−9 and projected onto a mesh with size h = 2−6.
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Fig. 7. The relative energy norm error for the multiscale solution using the adaptive algorithm;
ρL denotes the truncation error indicator and �K and ζK are the discretization error indicators.
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Fig. 8. The level of refinement and size of the patches illustrated in the upper, respectively lower
plots, for the different permeability One (left) and SPE (right). White is where most refinements,
respectively larger patch, are used and black is where least refinements, respectively smallest patches,
are used.

(a) SPE11, αmax/αmin = 6.1765e − 5. (b) SPE21, αmax/αmin = 5.0193e − 5.

Fig. 9. Permeabilities projection in log scale.

shows where the adaptive algorithm put the most computational effort.

6.4. Adaptivity for a porous media flow problem. We consider the problem
(2.1)–(2.2) on the unit square Ω = [0, 1]2, with forcing function f = −1 in the lower
left corner {0 ≤ x, y ≤ 1/128}, f = 1 in the upper right corner {127/128 ≤ x, y ≤ 1},
and f = 0 otherwise. The following permeabilities SPE11 and SPE21 are used and
projected into a mesh with 64×64 elements; see Figure 9. The computational domain
Ω is split into 32 × 32 coarse square elements KH ∈ KH . The error is measured
in the relative energy norm, with the reference solution uh being the DG solution
computed on a 512× 512-element mesh. The adaptive algorithm (Algorithm 1) with
refinement level 30% is used. In Iteration 1 the multiscale problem is solved using two
refinements on each coarse element and each fine scale problem is solved with L = 3,
and so on. Even though complicated permeabilities with αmax/αmin ∼ 105 are used,
the proposed adaptive algorithm is able to reduce relative error considerably; this is
shown in Figure 10.
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Fig. 10. Relative in error broken energy norm against the number of iterations using the
adaptive algorithm for flow in porous media.

7. Concluding remarks. An adaptive multiscale method based on discontin-
uous Galerkin discretization has been proposed and assessed in practice. There are
several different advantages in using the proposed multiscale method. The possibil-
ity to allow a global underlying reference grid (using the DG framework including
hanging nodes) is crucial. This does not only account for cancellation of the error
between different fine scale problems in the a posteriori error bound, it also fits the
method into the convergence framework presented in [17]. It admits a local conser-
vation of the state variable, which is crucial in many applications, e.g., porous media
flow. The multiscale method and the adaptive algorithm admit naturally parallel
implementation, which results in further savings in computational time.

An adaptive algorithm for which the coarse scale, the fine scale, and the size of
the different patches are taken into account, based on an energy norm a posteriori
bound has been proposed. Using the proposed multiscale method, together with the
adaptive algorithm, leads to substantial computational savings, while maintaining a
good performance when applied to challenging benchmark problems.
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[29] A. Målqvist, Multiscale methods for elliptic problems, Multiscale Model. Simul., 9 (2011),
pp. 1064–1086.
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CONVERGENCE OF A DISCONTINUOUS GALERKIN
MULTISCALE METHOD∗
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Abstract. We present a discontinuous Galerkin multiscale method for second order elliptic
problems and prove convergence. We consider a heterogeneous and highly varying diffusion coeffi-
cient in L∞(Ω,Rd×d

sym) with uniform spectral bounds without any assumption on scale separation or
periodicity. The multiscale method uses a corrected basis that is computed on patches/subdomains.
The error, due to truncation of the corrected basis, decreases exponentially with the size of the
patches. Hence, to achieve an algebraic convergence rate of the multiscale solution on a uniform
mesh with mesh size H to a reference solution, it is sufficient to choose the patch sizes O(H| logH|).
We also discuss a way to further localize the corrected basis to elementwise support. Improved con-
vergence rate can be achieved depending on the piecewise regularity of the forcing function. Linear
convergence in energy norm and quadratic convergence in the L2-norm is obtained independently of
the forcing function. A series of numerical experiments confirms the theoretical rates of convergence.
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1. Introduction. This work considers the numerical solution of second order
elliptic problems with a heterogeneous and highly varying (nonperiodic) diffusion co-
efficient. The heterogeneities and oscillations of the coefficient may appear on several
nonseparated scales. More specifically, let Ω ⊂ R

d be a bounded Lipschitz domain
with polygonal boundary Γ. The boundary Γ may be partitioned into some subset
ΓD (the Dirichlet boundary) with positive measure and its complement ΓN := Γ \ΓD

(the, possibly empty, Neumann boundary). We assume that the diffusion matrix
A ∈ L∞ (Ω,Rd×d

sym

)
has uniform spectral bounds 0 < α, β <∞, defined by

(1.1) 0 < α := ess inf
x∈Ω

inf
v∈Rd\{0}

(A(x)v) · v
v · v ≤ ess sup

x∈Ω
sup

v∈Rd\{0}

(A(x)v) · v
v · v =: β <∞.

Given f ∈ L2(Ω), we seek the weak solution to the boundary-value problem

−∇ · A∇u = f in Ω,

u = 0 on ΓD,

ν · A∇u = 0 on ΓN ,
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i.e., we seek u ∈ H1
D(Ω) := {v ∈ H1(Ω) | v|ΓD = 0} such that

(1.2) a (u, v) :=

∫
Ω

A∇u · ∇v dx =

∫
Ω

fv dx =: F (v) for all v ∈ H1
D(Ω).

Many methods have been developed in recent years to overcome the lack of per-
formance of classical finite element methods when A is rough, meaning that A has
discontinuities and/or high variation; we refer to [6, 4, 19, 8, 1, 2], among others. Com-
mon to all the aforementioned approaches is the idea to solve problems on small sub-
domains and to use the results to construct a better basis for some Galerkin method
or to modify the coarse scale operator. However, apart from the one-dimensional
setting, the performance of those methods correlates strongly with periodicity and
scale separation of the diffusion coefficient. There has also been work to design a
hierarchical basis such that the multigrid convergence rate does not depended on the
variation in the coefficients, e.g., [29], where they assume that the diffusion coefficient
fulfills a so-called quasi-monotone property.

Other approaches [7, 28, 5, 11, 12] perform well without any assumptions on
periodicity or scale separation in the diffusion coefficient at the price of a high com-
putational cost: in [7, 28] the support of the modified basis functions is large and
in [5, 11, 12] the computation of the basis functions involves the solutions of local
eigenvalue problems.

In the framework of the variational multiscale method (VMS), introduced in [21,
22], the space for which the solution is sought is split into a coarse and a fine scale
contribution. Writing the fine scale contribution in terms of the coarse scale residuals
eliminates it from the coarse scale equation. This was first employed in an adaptive
setting in the adaptive VMS [24], where the basic idea is to split the fine scale residuals
into localized contributions solved on element patches, possibly larger than a single
element, with the Dirichlet boundary condition. Using the solution from the fine scale
patches a modified nonsymmetric (Petrov–Galerkin) formulation is obtained on the
coarse scale. An a posteriori error bound is derived and used within an adaptive
algorithm to automatically tune the coarse and fine mesh size as well as the size of
the patches.

An abstract framework for constructing multiscale methods for elliptic partial
differential equations using the VMS framework is derived in [27]. Both symmetric
and nonsymmetric (Petrov–Galerkin) formulations are considered and an a posteriori
error bound is derived both for convection-diffusion-reaction problems and for the
Poisson’s equations on mixed form.

Only recently in [25] the first rigorous a priori error bound for a VMS was
derived, which allows for textbook convergence with respect to the mesh size H ,
‖u− uH‖H1(Ω) ≤ Cf,β/αH with a constant Cf,β/α that depends on f and the global
bounds of the diffusion coefficient but not on its variations. This result, which is a nat-
ural extension of [24, 27], is achieved using a local orthogonal decomposition technique,
where an operator dependent modification of the classical nodal basis is constructed
using the solution of local problems on vertex patches of diameter O(H | logH |). In
the error analysis, the size of the patches depends on the global bound of the diffusion
coefficient. This indicates that it may not be suited for high contrast (or degenerate)
problems; however, numerical experiments show promising results also for these cases
[25]. The methodology has been extended to semilinear elliptic problems [16] and
(non)linear eigenvalue problems [26, 15]. In [17] it is shown that the approach may
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also be interpreted as a multiscale finite element method, in the sense of [18], with
some novel oversampling strategy.

In this work, we present a discontinuous Galerkin (dG) multiscale method with
similar performance as [25]. We show that the error between the exact solution and
the solution obtained by the dG multiscale method converge as C̃f,β/αH in standard

dG energy norm for f ∈ L2(Ω). Higher convergence rates (up to C̃f,β/αH
3) can be

obtained depending on the elementwise regularity of f . We also give an error bound
for a quantity of interest (a linear functional of the solution) and the convergence rate
C′

f,β/αH
2 (up to C′

f,β/αH
4) in the L2-norm follows. Adaptivity for the dG multiscale

method is considered in [13] and an extension of the a priori analysis to convection
dominated convection-diffusion-reaction problems is considered in [14]. Since the dG
method seeks the solution in a nonconforming space, the elementwise L2-projection
as the split between the coarse and fine contribution is now admissible. This is a more
natural choice than, e.g., the nodal interpolant used in [24] for multiscale applications
and may lead to better performance of the dG-based multiscale method (compared
to conforming variants) for eigenvalue computations [26, 15].

The dG finite element method admits good conservation properties of the state
variable and also offers the use of very general meshes due to the lack of interelement
continuity requirements, e.g., meshes that contain several different types of elements
and/or hanging nodes. Both these features are crucial in many multiscale applications.

Although the error analysis presented in this work is restricted to regular simpli-
cial or quadrilateral/hexahedral meshes, we stress that all the results appear to be
extendable for the case of irregular meshes (i.e., meshes containing hanging nodes).
We refrained from presenting these extensions here for simplicity of the current pre-
sentation. Under these assumptions, we provide a complete a priori error analysis of
this method including errors caused by the approximation of basis functions.

In this dG multiscale method and in previous related methods [25, 13], the ac-
curacy is ensured by enlarging the support of basis functions appropriately. Hence,
supports of basis functions overlap and the communication is no longer restricted to
neighboring elements but is present also between elements at a certain distance. This
overlap leads to a slight decrease of sparsity of the coarse stiffness matrix. We will
show that the overhead is acceptable in the sense that it scales only logarithmically
with respect to the coarse mesh size.

In order to retain the dG-typical sparse structure of the stiffness matrix with
communication restricted to neighboring elements only, we discuss the possibility of
localizing the multiscale basis functions to single elements. Instead of having O(1)
basis functions per element withO(H | logH |) support, we would then haveO(| logH |)
basis functions per element with element support. The elementwise application of
an eigenvalue decomposition easily prevents ill-conditioning of the element stiffness
matrices, while simultaneously offering further compression of the multiscale basis.

The outline of the paper is as follows. In section 2, we recall the dG finite element
method. Section 3 defines our multiscale method, which is then analyzed in section 4.
Section 5 presents numerical experiments confirming the theoretical developments.
Finally, in section 6 we draw some conclusions.

Throughout this paper, standard notation for Lebesgue and Sobolev spaces is
employed. Let 0 ≤ C <∞ be any generic constant that depends on neither the mesh
size nor the diffusion matrix A; a � b abbreviates an inequality a ≤ C b and a ≈ b
abbreviates a � b � a. Also, let the constant Cβ/α depend on the minimum and
maximum bounds (α and β) of the diffusion matrix A in (1.1).
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2. Fine scale discretization.

2.1. Finite element meshes and spaces. Let T denote a subdivision of Ω
into (closed) regular simplices or into quadrilaterals (for d = 2) or hexahedra (for
d = 3), i.e., Ω̄ = ∪T∈T T . We assume that T is conforming in the sense that any two
elements are either disjoint or share exactly one edge or vertex.

Let E denote the set of edges (or faces for d = 3) of T ; E(Ω) denotes the set of
interior edges; and E(Γ), E(ΓD), and E(ΓN ) refer to the set of edges on the boundary
of Ω, on the Dirichlet, and on the Neumann boundary, respectively. Let T̂ , denote
the reference simplex or (hyper)cube and let Pp(T̂ ) and Qp(T̂ ) denote the spaces of
polynomials of degree less than or equal to p in all and on each variable, respectively.
We define the set of piecewise polynomials

Pp(T ) := {v : Ω→ R | for all T ∈ T , v|T ◦ FT ∈ Rp(T̂ )}

with Rp ∈ {Pp,Qp}, where FT : T̂ → T , T ∈ T is a family of element maps. Let also

(2.1) Πp(T ) : L2(Ω)→ Pp(T )

denote the L2-projection onto T -piecewise polynomial functions of order p. In par-
ticular, we have (Π0(T )f)|T = |T |−1

∫
T
f dx, T ∈ T , for all f ∈ L2(Ω). Note that

v ∈ Pp(T ) does not necessarily belong to H1(Ω). The T -piecewise gradient ∇T v,
with (∇T v)|T = ∇(v|T ) for all T ∈ T , is well-defined and ∇T v ∈ (Pp−1(T ))d.

For any interior edge/face e ∈ E(Ω) there are two adjacent elements T− and T+

with e = ∂T− ∩ ∂T+. We define ν to be the normal vector of e that points from T−

to T+. For boundary edges/faces e ∈ E(Γ) let ν be the outward unit normal vector
of Ω.

Define the jump of v ∈ Pk(T ) across e ∈ E(Ω) by [v] := v|T− − v|T+ and define
[v] := v|e for e ∈ E(Γ). The average of v ∈ Pp(T ) across e ∈ E(Ω) is defined by
{v} := (v|T− + v|T+)/2 and for boundary edges e ∈ E(Γ) by {v} := v|e. Also, we
make the shorthand notation E(Ω ∪ Γ) = E(Ω) ∪ E(Γ).

In the remaining part of this work, we consider two different meshes: a coarse mesh
TH and a fine mesh Th, with respective definitions for the edges/faces EH and Eh. We
denote the TH -piecewise gradient by∇Hv := ∇THv and, respectively,∇hv := ∇Th

v for
the Th-piecewise gradient. We assume that the fine mesh Th is the result of one or more
refinements of the coarse mesh TH . The subscripts h,H refer to the corresponding
mesh sizes; in particular, we have H ∈ P0(TH) with H |T = diam(T ) =: HT for all
T ∈ TH , He = diam e for all e ∈ EH , h ∈ P0(Th) with h|T = diam(T ) =: hT for all
T ∈ Th, and he = diam e for all e ∈ Eh. Obviously, h ≤ H . For simplicity we assume
that the discontinuities in A are aligned with the fine mesh Th.

2.2. Discretization by the symmetric interior penalty method. We con-
sider the symmetric interior penalty method (SIP) dG method [9, 3, 20]. We seek
an approximation in the space Vh := P1(Th). Given some positive penalty parameter
σ > 0, we define the symmetric bilinear form ah : Vh × Vh → R by

ah(u, v) := (A∇hu,∇hv)L2(Ω) −
∑

e∈Eh(Ω∪ΓD)

(
({ν · A∇u}, [v])L2(e)(2.2)

+ ({ν ·A∇v}, [u])L2(e) −
σ

he
([u], [v])L2(e)

)
.
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The jump-seminorm associated with the space Vh is defined by

(2.3) | • |2h :=
∑

e∈Eh(Ω∪ΓD)

σ

he
‖[•]‖2L2(e),

while the energy norm in Vh is then given by

(2.4) ||| • |||h := (‖A1/2∇h • ‖2L2(Ω) + | • |2h)1/2.
If the penalty parameter is chosen sufficiently large, the dG bilinear form (2.2) is
coercive and bounded with respect to the energy norm (2.4).

Remark 1. The penalty parameter, σ, depends of the arithmetic mean of diffusion
coefficient on edge e. If a SIP with a weighted average would be used [10], the
penalty parameter, σ, would instead depend on the harmonic average of the diffusion
coefficient. For simplicity of the presentation and since this choice suffices for our
purposes, here we consider the standard SIP dG formulation. Hence, there exists a
(unique) dG approximation uh ∈ Vh, satisfying
(2.5) ah(uh, v) = F (v) for all v ∈ Vh.
We assume that (2.5) is computationally intractable for practical problems, so we
shall never seek to solve for uh directly. Instead, uh will serve as a reference solution
to compare our low dimensional coarse grid multiscale dG approximation with. The
underlying assumption is that the mesh Th is chosen sufficiently fine so that uh is
sufficiently accurate. The aim of this work is to devise and analyze a multiscale dG
discretization with coarse scale H in such a way that the accuracy of uh is preserved
up to an O(H) perturbation independent of the variation of the coefficient A.

3. Discontinuous Galerkin multiscale method. As mentioned above, the
choice of the reference mesh Th is not directly related to the desired accuracy but
is instead strongly affected by the roughness and variation of the coefficient A. The
corresponding coarse mesh TH , with mesh width function H ≥ h, is assumed to be
completely independent of A. In the spirit of [21, 22] the test space is divided into
coarse and fine components, where the fine scale components are computed on the
patches (submeshes) of the reference mesh. To encapsulate the fine scale information
in the coarse mesh, we shall design coarse generalized finite element spaces based
on TH .

3.1. Multiscale decompositions. We introduce a two-scale splitting for the
space Vh. To this end, let ΠH := Π1(TH), from (2.1), and define VH := ΠHVh =
P1(TH) and

V f := (1−ΠH)Vh = {v ∈ Vh | ΠHv = 0}.
Lemma 2 (L2-orthogonal multiscale decomposition). The decomposition

Vh = VH ⊕ V f

is orthogonal in L2(Ω).
Proof. The proof is immediate, as any v ∈ Vh can be decomposed uniquely into

a coarse finite element function vH := ΠHv ∈ VH and a (possibly highly oscillatory)
remainder vf := (1−ΠH)v ∈ V f with ‖v‖2L2(Ω) = ‖vH‖2L2(Ω) + ‖vf‖2L2(Ω).

We now orthogonalize the above splitting with respect to the dG scalar
product ah; we keep the space of fine scale oscillations V f and simply replace VH
with the orthogonal complement of V f in Vh. We define the fine scale projection
F : Vh → V f by
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(3.1) ah(Fv, w) = ah(v, w) for all w ∈ V f .

Using the fine scale projection, we can define the coarse scale approximation space by

Vms
H := (1− F)VH .

Lemma 3 (ah-orthogonal multiscale decomposition). The decomposition

Vh = Vms
H ⊕ V f

is orthogonal with respect to ah, i.e., any function v in Vh can be decomposed uniquely
into some function vms

H ∈ Vms
H plus vf ∈ V f with C−1|||v|||2h ≤ |||vms

H |||2h + |||vf |||2h ≤
C|||v|||2h, where the constant C only depends on the coercivity and continuity con-
stants of the bilinear form. The functions vms

H ∈ Vms
H and vf ∈ V f are the Galerkin

projections of v ∈ Vh onto the subspaces Vms
H and V f , i.e.,

ah(v
ms
H , w) = ah(v, w) for all w ∈ Vms

H ,

ah(v
f , w) = ah(v, w) for all w ∈ V f .

The unique Galerkin approximation ums
H ∈ Vms

H of u ∈ V solves

(3.2) ah(u
ms
H , v) = F (v) for all v ∈ Vms

H .

We shall see in the error analysis (cf. Theorem 9) that the orthogonality yields error
estimates (with respect to a reference solution) for the Galerkin approximation ums

H ∈
Vms
H of (3.2) that are independent of the regularity of the solution and of the variation

in the diffusion coefficient A. However, the space Vms
H is not suitable for practical

computations as a local basis for this space is not easily available. Indeed, given a basis
of VH , e.g., the elementwise Lagrange basis functions {λT,j | T ∈ TH , j = 1, . . . , r},
where r = (1 + d) for regular simplices or r = 2d for quadrilaterals/hexahedra, the
space Vms

H is spanned by the corrected basis functions (1 − F)λT,j , T ∈ TH , j =
1, . . . , r. Although λT,j has local support suppλT,j = T , its corrected version (1 −
F)λT,j has global support in Ω, as (3.1) is a variational problem on the whole domain
Ω. Fortunately, as we shall prove below, the corrector functions φT,j decay quickly
away from T . (See previous numerical results in [13] and a similar observation for a
related conforming method [25].) This decay motivates the local approximation of the
corrector functions at the expense of introducing small perturbations in the method’s
accuracy.

3.2. Localization and computational method. The localized approxima-
tions of the corrector functions are supported on element patches in the coarse
mesh TH .

Definition 4. For all T ∈ TH , define element patches with size L as

ω1
T := int(T ),

ωL
T := int(∪{T ′ ∈ TH | T ′ ∩ ω̄L−1

T �= ∅}), L = 1, 2, . . . .

We refer to Figure 3.1 for an illustration.
We introduce a new discretization parameter 0 < L ∈ N and define localized

corrector functions φLT,j ∈ V f(ωL
T ) := {v ∈ V f | v|Ω\ωL

T
= 0} by

(3.3) ah(φ
L
T,j , w) = ah(λT,j , w) for all w ∈ V f(ωL

T ).
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Fig. 3.1. Example of a one-layer patch ω1
T , a two-layer patch ω2

T , and a three-layer patch ω3
T

on a quadrilateral mesh.

Further, we define the multiscale approximation space

(3.4) Vms,L
H = span{λT,j − φLT,j | T ∈ TH , j = 1, . . . , r}.

The dG multiscale method seeks ums,L
H ∈ Vms,L

H such that

(3.5) ah(u
ms,L
H , v) = F (v) for all v ∈ Vms,L

H .

Since Vms,L
H ⊂ Vh, this method is a Galerkin method in the Hilbert space Vh (with

scalar product ah) and hence inherits well-posedness from the reference discretization
(2.5).

Moreover, the proposed basis {λT,j − φLT,j | T ∈ TH , j = 1, . . . , r} is stable with
respect to the fine scale parameter h, as we shall see in Lemma 8 below.

3.3. Compressed dG multiscale method. The basis functions in the above
multiscale method have enlarged supports (element patches) when compared with
standard dG methods (elements). We can decompose the corrector functions into its
element contributions

φLT,j =
∑

T ′∈TH :T ′⊂ωL
T

φLT,jχT ′ ,

where χT ′ is the indicator function of the element T ′ ∈ TH .
This motivates the coarse approximation space

Wms,L
H = span

(
{λT,j |T ∈ TH , j = 1, . . . , r}

∪ {φLT,jχT ′ |T, T ′ ∈ TH , T ′ ⊂ ωL
T , j = 1, . . . , r}

)
.

This space offers the advantage of a known basis with elementwise support which
leads to improved (localized) connectivity in the corresponding stiffness matrix. This
is at the expense of a slight increase in the dimension of the space

(3.6) dim(Wms,L
H ) ≈ Ld dim(Vms,L

H ).

The corresponding localized dG multiscale method seeks wms,L
H ∈ Wms,L

H such
that

(3.7) ah(w
ms,L
H , v) = F (v) for all v ∈ Wms,L

H .
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Since Vms,L
H ⊂ Wms,L

H ⊂ Vh, Galerkin orthogonality yields

(3.8) |||uh − wms,L
H |||h ≤ |||uh − ums,L

H |||h,

i.e., the new localized version (3.7) is never worse than the previous multiscale approx-
imation in terms of accuracy. However, it may lead to very ill-conditioned element
stiffness matrices. (See Lemma 11, which shows that φLT,jχT ′ may be very small if
the distance between T and T ′ relative to their sizes is large.)

To circumvent ill-conditioning, one may choose a reduced local approximation
space based on an eigendecomposition of the element stiffness matrix. The eigen-
functions which correspond to sufficiently large eigenvalues (principal components)
are used as basis functions for the reduced space. Since the dimension of the element
stiffness matrix is small (at most proportional to Ld × Ld), the cost of this addi-
tional preprocessing step is negligible when compared with the cost of solving the
local problems for the corrector functions.

To determine an acceptable level of truncation of the localized basis functions, we
can use the a posteriori error estimator contribution of the local problem from [13],
which is an estimation of the local fine scale error. Using an adaptive algorithm in
[13] to determine the size of the patches may additionally lead to large reduction of
the dimension of the local approximation spaces (3.6), since in (3.6) all the patches
are assumed to have the same size L.

4. Error analysis. We present an a priori error analysis for the proposed multi-
scale method (3.5). In view of (3.8), this analysis applies immediately to the modified
versions presented in section 3.3. The error analysis will be split into a number of
steps. First, in section 4.1, we present some properties of the coarse scale projection
operator ΠH . In section 4.2, an error bound for dG multiscale method ums

H from
(3.2) (Theorem 9) is shown, whereby the corrected basis functions are solved glob-
ally. Results for the decay of the localized corrected basis function (Lemmas 11 and

12) are shown, along with an error bound for the dG multiscale method ums,L
H from

(3.5) (Theorem 13), where the corrected basis functions are solved locally on element
patches. Finally, in section 4.3, we show an error bound given a quantity of interest
(Theorem 15), leading to an error bound in the L2-norm (Corollary 16).

We shall make use of the following (semi)norms. The jump-seminorm and energy
norms, associated with the coarse space VH , are defined by

| • |2H :=
∑

e∈EH(Ω∪ΓD)

σ

He
‖[•]‖2L2(e),

||| • |||H := (‖A1/2∇H • ‖2L2(Ω) + | • |2H)1/2,

respectively, along with a localized version of the local jump and energy norms (2.3)
and (2.4) on a patch ω ⊆ Ω, where ω is aligned with the mesh Th, given by

| • |2h,ω :=
∑

e∈Eh(Ω∪ΓD):
e∩ω̄ 
=0

σ

he
‖[•]‖2L2(e),

||| • |||h,ω := (‖A1/2∇h • ‖2L2(ω) + | • |2h,ω)1/2.

The shape-regularity assumptions hT ≈ he for all e ∈ ∂T : T ∈ Th and HT ≈ He for
all T ∈ ∂T : T ∈ TH will also be used.
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4.1. Properties of the coarse scale projection operator ΠH . The follow-
ing lemma gives stability and approximation properties of the operator ΠH .

Lemma 5. For any v ∈ Vh, the estimate

H−1‖v −ΠHv‖L2(T ) � α−1/2|||v|||h,T

is satisfied for all T ∈ TH . Moreover, it holds that

β−1/2|||ΠHv|||H + ‖H−1(v −ΠHv)‖L2(Ω) � α−1/2|||v|||h,

where α and β are defined in (1.1).
Proof. Theorem 2.2 in [23] implies that for each v ∈ Vh, there exists a bounded

linear operator Ich : Vh → Vh ∩H1(Ω) such that

(4.1) β−1/2‖A1/2∇H(v − Ichv)‖L2(T ) + ‖h−1(v − Ichv)‖L2(T ) � α−1/2|v|h,T .

We split v = vc + vd ∈ Vh into a conforming, vc = Ichv, and a nonconforming,
vd = v − Ichv, part and obtain

H−1‖v −ΠHv‖L2(T ) ≤ H−1(‖vc −ΠHv
c‖L2(T ) + ‖vd −ΠHv

d‖L2(T ))(4.2)

� ‖∇hv‖+ ‖∇h(v − vc)‖L2(T ) +H−1‖vd‖L2(T ))

� α−1/2|||v|||h,T

using the triangle inequality, stability of the L2-projection, and (4.1). Furthermore,

|||ΠHv|||2H =
∑

T∈TH

‖
√
A∇(ΠHv −Π0(TH)v)‖2L2(T ) +

∑
e∈EH (Ω∪ΓD)

σ

H
‖[vc −ΠHv]‖2L2(e)

�
∑

T∈TH

β

(
1

H2
‖v −Π0(TH)v‖2L2(T ) +

1

H2
‖vc −ΠHv‖2L2(T )

)
� C2

β/α|||v|||2h

using the triangle inequality, (4.1), and (4.2), which concludes the proof.
The operator ΠH is surjective. The next lemma shows that given some vH ∈ VH

in the image of ΠH there exists a H1-conforming preimage v ∈ Π−1
H vH ⊂ Vh with

comparable support.
Lemma 6. For each vH ∈ VH , there exists a v ∈ Vh∩H1(Ω) such that ΠHv = vH ,

|||v|||h � Cβ/α|||vH |||H , and supp(v) ⊆ supp(IchvH). Note that the support of IchvH is
one layer of coarse element larger than the support of vH .

Proof. Using Theorem 2.2 in [23] but on the space VH gives for each v ∈ VH that
there exists a bounded linear operator IcH : VH → VH ∩H1(Ω) such that

(4.3) β−1/2‖A1/2∇H(v − IcHv)‖L2(T ) + ‖H−1(v − IcHv)‖L2(T ) � α−1/2|v|H,T .

We define

v := IcHvH +
∑

T∈TH , j=1,...,r

(vH(xj)− IcHvH(xj)) θT,j ,

where θT,j ∈ Vh∩H1
0 (T ) are coarse scale bubble functions, supported on each element

T , with ΠHθT,j = λT,j and |||θT,j |||2h � βHd−2. Observe that supp(v) ⊆ supp(IchvH).
The interpolation property follows from
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ΠHv = IcHvH +ΠH

∑
T∈TH , j=1,...,r

(vH(xj)− IcHvH(xj)) θT,j ,

= IcHvH +
∑

T∈TH , j=1,...,r

(vH(xj)− IcHvH(xj))λT,j = vH .

To prove stability, we estimate |||v|||h as follows:

|||v|||2h ≤ ‖A1/2∇IcHvH‖2L2(Ω) +
∑

T∈TH , j=1,...,r

|vH(xj)− IcHvH(xj)|2 |||θj |||2h

� ‖A1/2∇HIcHvH‖2L2(Ω) + β‖H−1(vH − IcHvH)‖2L2(Ω)

� C2
β/α|||vH |||2H ,

using the inverse estimate ‖v‖L∞(T ) ≤ H−d/2‖v‖L2(T ) for all v ∈ VH and using the
estimate (4.3).

Remark 7. Note that θT,j ∈ Vh ∩H1
0 (T ) for all T ∈ TH (fulfilling the conditions

in Lemma 6) can be constructed using two (or more) refinements of the coarse scale
parameter H . We can let θT,j ∈ Vh′ ∩ H1

0 (T ), where Vh′ ⊂ Vh and h ≤ h′ ≤ 2−2H .
This does not put a big restriction on h since the mesh Th is assumed to be sufficiently
fine to resolve the variation in the coefficient A, while the parameter H does not need
to resolve A.

The following lemma says that the corrected basis is stable with respect to the
fine scale parameter h in the energy norm (2.4); this is not a trivial result since the
basis function {λT,j |T ∈ TH , j = 1, . . . , r} is discontinuous.

Lemma 8 (stability of the corrected basis functions). For all T ∈ TH , j =
1, . . . , r, and L > 0 ∈ N, the estimate

|||λT,j − φLT,j |||h � Cβ/α|||λT,j |||H
is satisfied, independently of the fine scale parameter h.

Proof. For any T ∈ TH , j = 1, . . . , r, by Lemma 6 there exists a b such that
v = λT,j − b ∈ Vf

h (ω
L
T ), and |||b|||h � Cβ/α|||λT,j |||H . We have

|||λT,j − φLT,j |||2h � ah(λT,j − φLT,j , λT,j − φLT,j) = ah(λT,j − φLT,j , λT,j − v),
� ah(λT,j − φLT,j , b) � Cβ/α|||λT,j − φLT,j |||h|||λT,j |||H ,

which concludes the proof.

4.2. A priori estimates. The following theorem gives an error bound for the
idealized dG multiscale method, whereby the correctors for the basis are solved glob-
ally.

Theorem 9. Let uh ∈ Vh solve (2.5) and let ums
H ∈ Vms

H solve (3.5); then the
estimate

|||uh − ums
H |||h ≤ C1α

−1/2||H(f −ΠHf)||L2(Ω)

is satisfied, where C1 depends on neither the mesh (h or H) size nor the diffusion
matrix A.

Proof. Let e := uh − ums
H = uf ∈ V f ; then

|||e|||2h � ah(e, e) = (f, e)L2(Ω) = (f −ΠHf, e−ΠHe)L2(Ω)

≤ ||H(f −ΠHf)||L2(Ω)||H−1(e−ΠHe)||L2(Ω)

� 1√
α
||H(f −ΠHf)||L2(T )|||e|||h
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using Lemma 3, Lemma 2, the Cauchy–Schwarz inequality, and Lemma 5,
respectively.

Definition 10. The cutoff functions ζd,DT ∈ P0(Th) are defined by the conditions

ζd,DT |ωd
T
= 1,

ζd,DT |Ω\ωD
T
= 0,

‖[ζd,DT ]‖L∞(Eh(T )) �
hT

(D − d)HT
for all T ∈ TH ,

and ζd,DT is constant on the boundary ∂(ωD
T \ ωd

T ).
The next lemma shows the exponential decay in the corrected basis; this is a key

result in the analysis.
Lemma 11. For all T ∈ TH , j = 1, . . . , r, the estimate

|||(λT,j − φT,j)− (λT,j − φLT,j)|||h = |||φT,j − φLT,j |||h ≤ C3γ
L|||φT,j − λT,j |||h

is satisfied with C3 = CC3
β/α, 0 < γ < 1 given by γ := ( C2

�−1 )
k−1
2� , C2 = C′C2

β/α, and

L = k�, k, � ≥ 2 ∈ N, noting that C and C′ are positive constants that are independent
of the mesh (h or H), of the patch size L, and of the diffusion matrix A.

Proof. Define e := φT,j − φLT,j = φT,j − φ�kT,j . We have

(4.4) |||e|||2h � ah(e, φT,j − φ�kT,j) = ah(e, φT,j − v) � |||e|||h · |||φT,j − v|||h

for v ∈ Vf
h (ω

�k
T ). Let ζ := ζ�k−1,�k

T ; then by Lemma 6 there exists a b such that v =

ζφT,j − b ∈ Vf
h (ω

�k
T ), ΠHb = ΠHζφT,j , |||b|||h � Cβ/α|||ΠHζφT,j |||H , and supp(b) ⊆

supp(IchΠHζφT,j). We have

|||φT,j − v|||h = |||φT,j − (ζφT,j − b)|||h(4.5)

≤ |||φT,j − ζφT,j |||h + |||b|||h
� |||φT,j − ζφT,j |||h + Cβ/α|||ΠH(ζφT,j − φT,j)|||H
� C2

β/α|||φT,j − ζφT,j |||h.
Furthermore, using the properties of ζ we have

‖
√
A∇h(1 − ζ)φT,j‖L2(Ω) ≤ ‖

√
A∇hφT,j‖L2(Ω\ω�k−1

T )(4.6)

and

|(1− ζ)φT,j |2h =
∑

e∈Eh(Ω∪ΓD)

σ

he
‖[(1− ζ)φT,j ]‖2L2(e)

(4.7)

≤
∑

e∈Eh(Ω∪ΓD)

σ

he

(
‖{1− ζ}[φT,j ]‖2L2(e) + ‖{φT,j}[1− ζ]‖2L2(e)

)
≤

∑
e∈Eh(Ω∪ΓD):

e∩Ω\ω�k−1
T 
=0

(
σ

he
‖[φT,j ]‖2L2(e) +

σh2T
heH2

T

‖{φT,j}‖2L2(e)

)

≤
∑

e∈Eh(Ω∪ΓD):

e∩Ω\ω�k−1
T 
=0

σ

he
‖[φT,j ]‖2L2(e) +

σ

H2
T

‖φT,j −ΠHφT,j‖2L2(Ω\ω�k−1
T )

� C2
β/α|||φT,j |||2h,Ω\ω�k−1

T
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using a trace inequality and Lemma 5, respectively. Combining (4.4), (4.5), (4.6), and
(4.7) yields

|||e|||h � C2
β/α|||φT,j − ζφT,j |||h � C3

β/α|||φT,j |||h,Ω\ω�k−1
T

.(4.8)

To simplify notation, let m := �(k − 1)− 1 and M := �k − 1. For ηT := 1− ζm+1,M
T ,

we obtain

(4.9) |||φT,j |||2h,Ω\ωM
T
≤ |||ηTφT,j |||2h � ah(ηTφT,j , ηTφT,j),

where

ah(ηTφT,j , ηTφT,j)(4.10)

= (A∇hηTφT,j ,∇hηTφT,j)L2(Ω)

+
∑

e∈Eh(Ω∪ΓD)

(
−2({ν · A∇ηTφT,j}, [ηTφT,j ]) +

σ

he
([ηTφT,j ], [ηTφT,j ])

)
.

For the first term on the right-hand side of (4.10), we have

(4.11) (A∇hηTφT,j ,∇hηTφT,j)L2(Ω) = (A∇hφT,j ,∇hη
2
TφT,j)L2(Ω)

since ηT is constant on each element T ∈ Th; for the other terms we use (A.3) and
(A.4) (with v = ηT , w = ν ·A∇φT,j and u = φT,j). We can thus arrive at

|||φT,j |||2h,Ω\ωM
T
≤ ah(ηTφT,j , ηTφT,j) = ah(φT,j , η

2
TφT,j)(4.12)

+
∑

e∈Eh(Ω)

(
1/2({ν ·A∇φT,j}, [ηT ]2[φT,j ])L2(e)

− 1/4([ν ·A∇φT,j ], [ηT ]
2{φT,j})L2(e)

− σ

4he
([ηT ]

2, [φT,j ]
2)L2(e) +

σ

he
([ηT ]

2, {φT,j}2)L2(e)

)
using (4.9), (4.10), and (4.11). Note that

∑
e∈Eh(Ω)

(
1/2({ν ·A∇φT,j}, [ηT ]2[φT,j ])L2(e) − 1/4([ν · A∇φT,j ], [ηT ]

2{φT,j})L2(e)

(4.13)

− σ

4he
([ηT ]

2, [φT,j ]
2)L2(e) +

σ

he
([ηT ]

2, {φT,j}2)L2(e)

)
�

∑
e∈Eh(Ω):

e∩ωM
T \ωm+1

T 
=0

h2T
�2H2

T

(
‖{ν · A∇φT,j}‖L2(e)‖[φT,j ]‖L2(e)

+ ‖[ν ·A∇φT,j ]‖L2(e)‖{φT,j}‖L2(e) +
σ

he

(
‖[φT,j ]‖2L2(e) + ‖{φT,j}‖2L2(e)

))
�

∑
e∈Eh(Ω):

e∩ωM
T \ωm+1

T 
=0

(
hT
�2H2

T

‖A∇φT,j‖L2(T+∪T−)‖φT,j‖L2(T+∪T−) +
σ

�2H2
T

‖φT,j‖2L2(T+∪T−)

)

� β�−2‖H−1
T (φT,j −ΠHφT,j)‖2L2(ωM

T \ωm+1
T )

≤ C2
β/α�

−2|||φT,j |||2h,ωM
T \ωm+1

T

.
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Using that there exist a b such that ΠHb = ΠHη
2
TφT,j , |||b|||h � Cβ/α|||ΠHη

2
TφT,j |||H ,

and supp(v) ⊆ supp(IchvH) from Lemma 6, we have

ah(φT,j , η
2
TφT,j) = ah(φT,j , η

2
TφT,j − b) + ah(φT,j , b) = ah(φT,j , b)(4.14)

� |||φT,j |||h,ωM+1
T \ωm

T
|||b|||h,ωM+1

T \ωm
T

≤ Cβ/α|||φT,j |||h,ωM+1
T \ωm

T
|||ΠHη

2
TφT,j |||H,ωM

T \ωm
T
.

Furthermore, we have that
(4.15)
|||ΠHη

2
TφT,j |||2H,ωM

T \ωm
T

= |||ΠH(η2T −Π0(TH)η2T )φT,j |||2H,ωM
T \ωm

T

= ‖
√
A∇HΠH(η2T −Π0(TH)η2T )φT,j‖2L2(ωM

T \ωm
T )

+
∑

e∈Eh(Ω∪ΓD):

e∩ωM
T \ωm

T 
=0

σ

He
‖[ΠH(η2T −Π0(TH)η2T )φT,j ]‖2L2(e)

� β‖H−1
e ΠH(η2T −Π0(TH)η2T )φT,j‖2L2(ωM

T \ωm
T )

≤
∑

T∈Th(ωM
T \ωm

T )

β‖H−1
e (η2T −Π0(TH)η2T )‖2L∞(T )‖φT,j‖2L2(T )

� β�−2‖H−1
e (φT,j −ΠHφT,j)‖2L2(ωM

T \ωm
T )

� C2
β/α�

−2|||φT,j |||2h,ωM
T \ωm

T

using a trace inequality, an inverse inequality, and Lemma 5, respectively. Combining
the inequalities (4.12), (4.13), (4.14), and (4.15) yields

|||φT,j |||2h,Ω\ωM
T
≤ C2

�− 1
|||φT,j |||2h,ωM+1

T \ωm
T

≤ C2

�− 1
|||φT,j |||2h,Ω\ωm

T
,

where C2 = C′C2
β/α. Substituting back to � and k and using a cutoff function with a

slightly different argument yields

|||φT,j |||2h,Ω\ω�k−1
T

≤ C2

�− 1
|||φT,j |||2h,Ω\ω�(k−1)−1

T

≤
(

C2

�− 1

)2

|||φT,j |||2h,Ω\ω�(k−2)−1
T

≤ · · · ≤
(

C2

�− 1

)k−1

|||φT,j |||2h,ω�\ω�−1
T

,

which together with (4.8) concludes the proof.
Lemma 12. For all T ∈ TH , j = 1, . . . , r, the estimate∥∥∥∥∣∣∣∣ ∑

T∈TH , j=1,...,r

vj(φT,j − φLT,j)

∥∥∥∥∣∣∣∣2
h

≤ C4L
d

∑
T∈TH , j=1,...,r

|vj |2|||φT,j − φLT,j |||2h

is satisfied with C4 = CC3
β/α and C being a positive constant independent of the mesh

(h or H), of the patch size L, and of the diffusion matrix A.
Proof. Let w =

∑
T∈TH , j=1,...,r vj(φT,j − φLT,j), and note that

(4.16)
ah(φT,j − λT,j , w − ζTw + bT ) = 0,

ah(φ
L
T,j − λT,j , w − ζTw + bT ) = 0,
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where ζT := ζL+1,L+2
T , using Lemma 6 and the property of the cutoff function. We

obtain

∥∥∥∥∣∣∣∣ ∑
T∈TH , j=1,...,r

vj(φT,j − φLT,j)

∥∥∥∥∣∣∣∣
h

�
∑

T∈TH , j=1,...,r

vjah(φT,j − φLT,j , w)

(4.17)

=
∑

T∈TH , j=1,...,r

vjah(φT,j − φLT,j , ζTw − bT )

�
∑

T∈TH , j=1,...,r

|vj | · |||φT,j − φLT,j |||h (|||ζTw|||h + |||bT |||h)

�
∑

T∈TH , j=1,...,r

|vj | · |||φT,j − φLT,j |||h

×
(
|||ζTw|||h + Cβ/α|||ΠHζTw|||H

)
�

∑
T∈TH , j=1,...,r

|vj | · |||φT,j − φLT,j |||hC2
β/α|||ζTw|||h.

From (4.6) and (4.7), we have

(4.18) |||ζTw|||h = |||ζTw|||h,ωL+2
T

� Cβ/α|||w|||h,ωL+2
T

.

Then, further estimation of (4.17) can be achieved using (4.18) and the discrete
Cauchy–Schwarz inequality:∥∥∥∥∣∣∣∣ ∑

T∈TH , j=1,...,r

vj(φT,j − φLT,j)

∥∥∥∥∣∣∣∣
≤ C3

β/α

⎛⎝ ∑
T∈TH , j=1,...,r

|vj |2|||φT,j − φLT,j |||2h

⎞⎠1/2⎛⎝ ∑
T∈TH , j=1,...,r

|||w|||2
h,ωL+2

T

⎞⎠1/2

≤ C3
β/αL

d/2 ·

⎛⎝ ∑
T∈TH , j=1,...,r

|vj |2|||φT,j − φLT,j |||2h

⎞⎠1/2

· |||w|||h.

Dividing by w on both sides concludes the proof.
The following theorem gives an error bound for the dG multiscale method.
Theorem 13. Let u ∈ H1

D(Ω) solve (1.2) and let ums,L
H ∈ Vms,L

H solve (3.5).
Then, the estimate

|||u− ums,L
H |||h ≤|||u− uh|||h + C1α

−1/2||H(f −ΠHf)||L2(Ω)

+ C5‖H−1‖L∞(Ω)L
d/2γL‖f‖L2(Ω)

is satisfied with 0 < γ < 1, L from Lemma 11, C1 from Theorem 9, and C5 =

CC2
β/αC

1/2
4 C3, where C3 is from Lemma 11 and C4 is from Lemma 12; C is a positive

constant independent of the mesh (h or H), of the patch size L, and of the diffusion
matrix A.

Remark 14. To counteract the factor ‖H−1‖L∞(Ω) in the error bound in
Theorem 13, we can choose the localization parameter as L = �C log(||H−1||L∞(Ω))�.
On adaptively refined meshes it is recommended to choose L = �C log(H−1)�.
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Proof. We define ũms,L
H :=

∑
T∈TH , j=1,...,r u

ms
H,T (xj)φ

L
T,j . Then, we obtain

|||u− ums,L
H |||h ≤ |||u− ũms,L

H |||h(4.19)

≤ |||u− uh|||h + |||uh − ums
H |||h + |||ums

H − ũms,L
H |||h

≤ |||u− uh|||h + |||uh − ums
H |||h + |||

∑
T∈TH , j=1,...,r

ums
H,T (xj)(φT,j − φLT,j)|||h.

Now, estimating the terms in (4.19), we have

|||uh − ums
H |||h ≤ C1α

−1/2‖H(f −ΠHf)‖L2(Ω)

using Theorem 9 and∥∥∥∥∣∣∣∣ ∑
T∈TH , j=1,...,r

ums
H,T (xj)(φT,j − φLT,j)

∥∥∥∥∣∣∣∣2
h

(4.20)

≤ C4L
d

∑
T∈TH , j=1,...,r

|ums
H,T (xj)|2|||φT,j − φLT,j |||2h.

≤ C4C
2
3L

dγ2L
∑

T∈TH , j=1,...,r

|ums
H,T (xj)|2|||φT,j − λj |||2h

using Lemmas 12 and 11, respectively. Further estimation, using Lemma 8, yields∑
T∈TH , j=1,...,r

|ums
H,T (xj)|2|||φT,j − λT,j |||2h(4.21)

� C2
β/α

∑
T∈TH , j=1,...,r

|ums
H,T (xj)|2|||λT,j |||2H

� C2
β/αβ

∑
T∈TH , j=1,...,r

|ums
H,T (xj)|2H−2

T ‖λT,j‖2L2(T )

= C2
β/αβ

∑
T∈TH , j=1,...,r

‖H−1
T ums

H,T (xj)λT,j‖2L2(T )

� C2
β/αβ‖

∑
T∈TH , j=1,...,r

H−1
T ums

H,T (xj)λT,j‖2L2(Ω).

Furthermore, using a Poincaré–Friedrichs inequality for piecewise H1 functions, we
deduce ∥∥∥∥ ∑

T∈TH , j=1,...,r

H−1
T ums

H,T (xj)λT,j

∥∥∥∥2
L2(Ω)

(4.22)

�
∥∥∥∥ ∑

T∈TH , j=1,...,r

H−1
T ums

H,T (xj)ΠH(λT,j − φT,j)

∥∥∥∥2
L2(Ω)

� α−1|||H−1ums
H |||2h

� α−1‖H−1‖2L∞(Ω)‖f‖2L2(Ω).

Combining (4.20), (4.21), and (4.22), we arrive at

|||ums
H − ums,L

H |||h � C2
β/αC

1/2
4 C3‖H−1‖L∞(Ω)L

d/2γL‖f‖L2(Ω).
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4.3. Error in a quantity of interest. In engineering applications, we are often
interested in a quantity of interest, usually a functional G(v) of the solution. To this
end, consider the dual reference solution (2.5): find φh ∈ Vh such that

(4.23) ah(v, φh) = G(v) for all v ∈ Vh;

and consider the dual multiscale solution (3.5): find φms,L
H ∈ Vms,L

H such that

(4.24) ah(v, φ
ms,L
H ) = G(v) for all v ∈ Vms,L

H .

Theorem 15. Let u ∈ H1
D(Ω) solve (1.2), let ums,L

H ∈ Vms,L
H solve (3.5), and let

G(v) be the quantity of interest. Then, the estimate

|G(u)−G(ums,L
H )| � |G(u)−G(uh)|+ |||uh − ums,L

H |||h|||φh − φms,L
H |||h

is satisfied.
Proof. From (4.23) and (4.24), we obtain the Galerkin orthogonality

(4.25) ah(v, φh − φms,L
H ) = 0 for all v ∈ Vms,L

H .

Using the triangle inequality, we have

|G(u)−G(ums,L
H )| ≤ |G(u)−G(uh)|+ |G(uh)−G(ums,L

H )|.

Finally, observing that

|G(uh)−G(ums,L
H )| = |ah(uh − ums,L

H , φh)|
= |ah(uh − ums,L

H , φh − φms,L
H )|

� |||uh − ums,L
H |||h|||φh − φms,L

H |||h,

using (4.25), concludes the proof.

Corollary 16. For G(v) = (uh − ums,L
H , v)L2(Ω), the following L2-norm error

estimates hold:

‖u− ums,L
H ‖L2(Ω) � ‖u− uh‖L2(Ω) + |||uh − ums,L

H |||1/2h |||φh − φ
ms,L
H |||1/2h

and

(4.26) ‖u− ums,L
H ‖L2(Ω) � ‖u− uh‖L2(Ω) +H |||uh − ums,L

H |||h

for L = �C log(H−1)� with C a sufficiently large positive constant independent of the
mesh parameters.

Remark 17. As expected, if we are interested in a bounded linear functional with
additional smoothness, a higher convergence rate is obtained for |G(uh)−G(ums,L

H )|.
For example, given the forcing function for the primal problem f ∈ Hm(TH), a quan-
tity of interest G(v) = (g, v)L2(Ω), where g ∈ Hn(TH) (with H0(TH) denoting the
L2(Ω) space), and choosing L = �C log(H−1)� with large enough C gives

|G(u)−G(ums,L
H )| � |G(u)−G(uh)|

+H2+m+n

( ∑
T∈TH

|f |2Hm(T )

)1/2( ∑
T∈TH

|g|2Hn(T )

)1/2

for 2 ≥ m,n ∈ N.
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5. Numerical experiments. Let Ω be an L-shaped domain (constructed by
removing the lower right quadrant in the unit square) and let the forcing function
be f = 1 + cos(2πx) cos(2πy) for (x, y) ∈ Ω. The boundary Γ is divided into the
Neumann boundary ΓN := Γ ∩ ({(x, y) : y = 0} ∪ {(x, y) : x = 1}) and the Dirichlet
boundary ΓD = Γ \ ΓN . We shall consider three different permeabilities: constant
A1 = 1, A2 = A2(x), which is piecewise constant with periodic values of 1 and 0.01
with respect to a Cartesian grid of width 2−6 in the x-direction, and A3 = A3(x, y),
which is piecewise constant with respect to a Cartesian grid of width 2−6 in both the
x- and y-directions and has a maximum ratio β/α = 4 ·106. The data for A3 are taken
from layer 64 in the SPE benchmark problem (see http://www.spe.org/web/csp). The
permeabilities A2 and A3 are illustrated in Figure 5.1. For the periodic problem many
of the corrected basis functions will be identical. For instance, all the local corrected
bases in the interior are solved on identical patches, reducing the computational effort
considerably. In the extreme case of a problem with periodic coefficients on a unit
hypercube, with period boundary conditions, the correctors φT,j , j = 1, . . . , r, will be
identical for all T ∈ TH .

Consider the uniform (coarse) quadrilateral mesh TH with size H = 2−i, i =
1, . . . , 6. The convergence rate −p/2 corresponds to O(Hp) since the number of de-
grees of freedom ≈ H−2. The corrector functions (3.3) are solved on a subgrid of
a (fine) quadrilateral mesh Th with mesh size 2−8. The mesh Th will also act as a
reference grid on which we shall compute a reference solution uh ∈ Vh (2.5). Note
that the mesh Th is chosen so that it resolves the fine scale features of Ai, i = 1, 2, 3;
hence we assume that the solution uh is sufficiently accurate.

5.1. Localization parameter. If f ∈ Hm(TH) we have the bound

(5.1) ||H(f −ΠHf))||L2(Ω) �
( ∑

T∈TH

H2k+2|f |2Hk(T )

)1/2

,

where k = 0 for m = 0, k = 1 for m = 1, and k = 2 for m > 1. Hence, to balance
the error between the terms on the right-hand side of the estimate in Theorem 13, a
different constant C has to be used for the localization parameter, L = �C log(H−1)�,
depending on the elementwise regularity of the forcing function f on TH . Figure 5.2
shows the relative error in the energy norm |||uh − ums,L

H |||h/|||uh|||h and Figure 5.3
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Fig. 5.1. The permeability structure of (a) A2 and (b) A3 in log scale.
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Fig. 5.2. Diffusion coefficient A1 = 1. Relative energy-norm error against Ndof for different
values of C for the localization parameter L.
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Fig. 5.3. Diffusion coefficient A1 = 1. Relative L2-norm error against Ndof for different values
of C for the localization parameter L.

the relative error in the L2-norm ‖uh−ums,L
H ‖L2(Ω)/‖uh‖L2(Ω) between uh and ums,L

H

against the number of degrees of freedom Ndof ≈ O(H−2), using different constants
C = 1, 3/2, 2, 5/2. With the choice C = 5/2 the errors due to the localization can be
neglected compared to the errors from the forcing function for both the energy and the
L2-norm. For f �∈ H1(Th), C = 3/2 is sufficient since (5.1) gives linear convergence.
In the remaining numerical experiments we use C = 2, since this value seems to
balance the error sufficiently. Note that the numerical overhead increases with C as
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Fig. 5.4. Relative energy-norm error against Ndof for C = 2 in the localization parameter L
for the the diffusion coefficients A1, A2, and A3.
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Fig. 5.5. Relative L2-norm error against Ndof for C = 2 in the localization parameter L for
the diffusion coefficients A1, A2, and A3.

the sizes of the patches ωL
T , T ∈ TH , increase with L = �C log(H−1)�. This results

in both increased computational cost to compute the corrector functions and reduced
sparseness in the coarse scale stiffness matrix.

5.2. Energy-norm convergence. Let the localization parameter be given by
L = �2 log(H−1)�. Figure 5.4 shows the relative error in the energy norm plotted
against the number of degrees of freedom. The different permeabilities Ai, i = 1, 2, 3,
and the singularity arising from the L-shaped domain do not appear to have a
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Fig. 5.6. Relative L2-norm error against Ndof for C = 2 in the localization parameter L for
the diffusion coefficients A1, A2, and A3.

substantial impact on the convergence rate, which is about −3/2, as expected. We
note in passing that using standard dG on the coarse mesh only admits poor conver-
gence behavior for A2 and for A3. This is to be expected, since standard dG on the
coarse mesh does not resolve the fine scale features.

5.3. L2-norm convergence. Again, set L = �2 log(H−1)�. Figures 5.5 and
5.6 show the relative L2-norm error against the number of degrees of freedom be-
tween uh and ums,L

H and between uh and ΠHu
ms,L
H , viz., ‖uh − ΠHu

ms,L
H ‖L2(Ω)/

‖uh‖L2(Ω), respectively. In Figure 5.5 we see that the L2-norm error between uh

and ums,L
H converges at a faster rate than in the energy norm (convergence rate −2

compared to −3/2, respectively,) as expected from (4.26). In Figure 5.6 only the

coarse part of ums,L
H is used (i.e., ΠHu

ms,L
H ); nevertheless it appears to have a faster

convergence rate than −1/2, except for the case of the permeability A3.

6. Concluding remarks. We present a dG multiscale method for second or-
der elliptic problem with heterogeneous and highly varying diffusion coefficients in
L∞(Ω,Rd×d

sym) with uniform spectral bounds. For f ∈ L2(Ω), the method seeks the

solution ums,L
H (from (3.5)) in a space of corrected basis function (3.4) calculated on

patches of size O(H log(H−1)) (i.e., L = �C log(H−1)�). We have shown the error
bounds

|||u− ums,L
H |||h ≤ |||u− uh|||h + Cα/β,fH

in the energy norm (Theorem 13) and

‖u− ums,L
H ‖L2(Ω) ≤ ‖u− uh‖L2(Ω) + C̃α/β,fH

2

in the L2(Ω)-norm (Corollary 16), where uh (from (2.5)) is the reference solution on
the fine scale and the constants Cα/β,f and C̃α/β,f depend on the forcing function f
and the global bound of the diffusion matrix, but not on its variations. Numerical
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experiments show that choosing the localization parameter as L = �2 log(H−1)� is
sufficient to achieve good convergence for the diffusion coefficients (A1, A2, and A3).

Appendix A. Equalities for averages and jump operators. We derive
equalities for averages and jump operators across interfaces where the functions v and
w have discontinuities. Using [vw] = {v}[w]+ [v]{w} and {v}{w} = {vw}−1/4[v][w],
we have

{vw}[vu] = {w}{v}[vu] + 1/4[v][w][vu](A.1)

= {w}[v2u]− {w}[v]{vu}+ 1/4[v][w][vu]

= {w}[v2u]− [v]{w}{v}{u} − 1/4[v]2{w}[u]
+ 1/4[v]2[w]{u}+ 1/4[v]{v}[w][u]

and

{vw}[vu] = {v}{vw}[u] + {vw}[v]{u}(A.2)

= {v2w}[u]− 1/4[v][vw][u] + {vw}[v]{u}
= {v2w}[u]− 1/4[v]2{w}[u]− 1/4[v]{v}[w][u]
+ [v]{v}{w}{u}+ 1/4[v]2[w]{u}.

Combining (A.1) and (A.2) we obtain

(A.3) 2{vw}[vu] = {w}[v2u] + {v2w}[u] + 1/2[v]2[w]{u} − 1/2[v]2{w}[u].

Also,

[vu][vu] = [u]{v}[vu] + [v]{u}[vu](A.4)

= [u][v2u]− [v][u]{vu}+ [v]{u}[vu]
= [u][v2u])− [v][u]{v}{u} − 1/4[v][u][v][u]

+ [v]{u}[v]{u}+ [v]{u}{v}[u]
= [u][v2u]− 1/4[v]2[u]2 + [v]2{u}2.
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[20] P. Houston, D. Schötzau, and T. P. Wihler, Energy norm a posteriori error estimation of
hp-adaptive discontinuous Galerkin methods for elliptic problems, Math. Models Methods
Appl. Sci., 17 (2007), pp. 33–62.

[21] T. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation,
subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl.
Mech. Engrg., 127 (1995), pp. 387–401.
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A discontinuous Galerkin multiscale method
for convection-diffusion problems

Daniel Elfverson

Abstract

We propose an discontinuous Galerkin local orthogonal decomposi-
tion multiscale method for convection-diffusion problems with rough,
heterogeneous, and highly varying coefficients. The properties of the
multiscale method and the discontinuous Galerkin method allows us
to better cope with multiscale features as well as interior/boundary
layers in the solution. In the proposed method the trail and test spaces
are spanned by a corrected basis computed on localized patches of size
O(H log(H−1)), where H is the mesh size. We prove convergence rates
independent of the variation in the coefficients and present numerical
experiments which verify the analytic findings.

1 Introduction

In this paper we consider numerical approximation of convection-diffusion
problems with possible strong convection and with rough, heterogeneous, and
highly varying coefficients, without assumption on scale separation or period-
icity. This class of problems, normally refereed to as multiscale problem, are
know to be very computational demanding and arise in many different areas
of the engineering sciences, e.g., in porous media flow and composite materi-
als. More precisely, we consider the following convection-diffusion equation:
given any f ∈ L2(Ω) we seek u ∈ H1

0 (Ω) = {v ∈ H1(Ω) | v|Γ = 0} such that

−∇ · A∇u+ b · ∇u = f in Ω, (1)

is fulfilled in a weak sense, where Ω is the computational domain with bound-
ary Γ. The multiscale coefficients A,b will be specified later. There are two
key issues which make classical conforming finite element methods perform
badly for these kind of problems,

• the multiscale features of the coefficient need to be resolved by the
finite element mesh and

1



• strong convection leads to boundary and interior layers in the solution
which need to be resolved.

To overcome the lack of performance using classical finite element meth-
ods in the case of multiscale features in the coefficient many different so called
multiscale methods have been proposed, see [25, 26, 23, 7, 13, 12, 10, 11]
among others, which perform localized fine scale computations to construct
a different basis or a modified coarse scale operator. Common to the afore-
mentioned approaches is that the performance of the method rely strongly
on scale separation or periodicity of the diffusion coefficients. There is also
approaches which perform well without scale separation or periodicity in the
diffusion coefficient but to high computational cost by either having to solve
eigenvalue problems [2] or where the support of the localized patches is large
[37, 4]. See also [38].

In the variational multiscale method (VMS) framework [25, 26] the so-
lution space is split into coarse and fine scale contribution. This idea was
employed for multiscale problems in a adaptive setting for classical finite
element in [31, 34, 32] and to the discontinuous Galerkin (DG) method in
[14]. A further development is the local orthogonal decomposition (LOD)
method, see [36, 20, 19] for classical finite element and [15] for DG meth-
ods. The LOD operates in linear complexity without any assumptions on
scale separation or periodicity and the trail and test spaces are spanned by
a corrected basis function computed on patches of size O(H log(H−1)). The
LOD has e.g. been applied to eigenvalue problems [35], non-linear elliptic
problems [21], non-linear Schrödinger equation [17], and in Petrov-Galerkin
formulation [16].

There is a vast literature on numerical methods for convection dominated
problems, we reefer to [28, 24, 27], among others. There has also been a lot
of work on DG methods, we refer to [39, 33, 3, 29] for some early work and to
[8, 22, 40, 9] and references therein for recent development and a literature
review. DG methods exhibit attractive properties for convection dominated
problems, e.g., they have enhanced stability properties, good conservation
property of the state variable, and the use of complex and/or irregular meshes
are admissible. For multiscale methods for convection-diffusion problems, see
e.g. [1, 41, 18].

In this paper we extended the analysis of the discontinuous Galerkin local
orthogonal decomposition (DG-LOD) [15] to convection-diffusion problems.
For problems with strong convection using the standard LOD won’t suffice,
since convergence can no longer be guarantied. Instead we propose to include
the convective term in the computations of the corrected basis functions. We
prove convergence results under some assumptions of the magnitude of the
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convection and present a series of numerical experiment to verify the analytic
findings. For problems with weak convection it is not necessary to include
the convective part [21].

The outline of this paper is as follows. In section 2 the discrete setting
and underlying DG method is presented. In section 3 the multiscale decom-
position, the DG-LOD, and the corresponding convergence result are stated.
In Section 4 numerical experiments are presented. Finally, the proofs for
some of the theoretical results are given in Section 5.

2 Preliminaries

In this section we present some notations and properties frequently used in
the paper.

2.1 Setting

Let Ω ⊂ Rd for d = 2, 3 be a polygonal domain with Lipschitz boundary Γ.
We assume that: the diffusion coefficients, A ∈ L∞(Ω,Rd×d

sym), has uniform
spectral bounds 0 < α, β <∞, defined by

0 < α := ess inf
x∈Ω

inf
v∈Rd\{0}

(A(x)v) · v
v · v

≤ ess sup
x∈Ω

sup
v∈Rd\{0}

(A(x)v) · v
v · v

=: β <∞, (2)

and the convective coefficient, b ∈ [W 1
∞(Ω)]d, is divergence free

∇ · b(x) = 0 a.e. x ∈ Ω. (3)

We denote CA = (β/α)1/2.
We will consider a coarse and a fine mesh, with mesh function h and H

respectively. Furthermore, we assume that the fine mesh resolve and that
the coarse mesh do not resolve the fine scale features in the coefficients. Let
Tk, for k = {h,H}, denote a shape-regular subdivision of Ω into (closed)
regular simplexes or into quadrilaterals/hexahedras (d = 2/d = 3), given a
mesh function k : Tk → R defined as k := diam(T ) ∈ P0(Tk) for all T ∈ Tk.
Also, let ∇kv denote the Tk-broken gradient defined as (∇v)|T = ∇v|T for all
T ∈ Tk. For simplicity we will also assume that Tk is conforming in the sense
that no hanging nodes are allowed, but the analysis can easily be extend to
non-conforming meshes with a finite number of hanging nodes on each edge.
Let T̂ be the reference simplex or (hyper)cube. We define Pp(T̂ ) to be the

space of polynomials of degree less than or equal to p if T̂ is a simplex, or the
space of polynomials of degree less than or equal to p, in each variable, if T̂
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is a (hyper)cube. The space of discontinuous piecewise polynomial function
is defined by

Pp(Tk) := {v : Ω→ R | ∀T ∈ Tk, v|T ◦ FT ∈ Pp(T̂ )}, (4)

where FT : T̂ → T , T ∈ Tk is a family of element maps. We will work
with the spaces Vk := P1(Tk). Let Πp(Tk) : L2(Ω) → Pp(Tk) denote the L2-
projection onto Pp(Tk). Also, let Ek denote the set of all edges in Tk where
Ek(Ω) and Ek(Γ) denote the set of interior and boundary edges, respectively.
Given that T+ and T− are two adjacent elements in Tk sharing an edge
e = T+ ∩ T− ∈ Ek(Ω), let νe be the the unit normal vector pointing from
T− to T+, and for e ∈ Ek(Γ) let νe be outward unit normal of Ω. For any
v ∈ Pp(Tk) we denote the value on edge e ∈ E(Ω) as v± = v|e∩T± . The jump
and average of v ∈ Pp(Tk) is defined as, [v] = v−−v+ and {v} = (v−+v+)/2
respectively for e ∈ Ek(Ω), and [v] = {v} = v|e for e ∈ Ek(Γ). For a real
number x we define its negative part as x	 = 1/2(|x| − x).

Let 0 ≤ C <∞ denote any generic constant that neither depends on the
mesh size or the variables A and b; then a . b abbreviates the inequality
a ≤ Cb.

2.2 Discontinuous Galerkin discretization

For simplicity let the bilinear form ah(·, ·) : Vh × Vh → R, given any mesh
function h : Ω→ P0(Th), be split into two parts

ah(u, v) := ad
h(u, v) + ac

h(u, v), (5)

where ad
h(·, ·) represents the diffusion part and ac

h(·, ·) represents the convec-
tion part. The diffusion part is approximated using a symmetric interior
penalty method

ad
h(u, v) := (A∇hu,∇hv)L2(Ω) +

∑
e∈Eh

(σe
he

([u], [v])L2(e)

− ({νe · A∇u}, [v])L2(e) − ({νe · A∇v}, [u]L2(e))
)
,

(6)

where σe is a constant, depending on the diffusion, large enough to make
ad
h(·, ·) coercive. The convective part is approximated by

ac
h(u, v) := (b · ∇hu, v)L2(Ω) +

∑
e∈Eh(Ω)

(be[u], [v])L2(e)

−
∑

e∈Eh(Ω)

(νe · b[u], {v})L2(e) +
∑

e∈Eh(Γ)

((νe · b)	u, v)L2(e),
(7)
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where upwind is imposed choosing the stabilization term as be = |b · νe|/2
[5].

The following definitions and results are needed both on the fine and
coarse scale, for this sake let k = {h,H}. The energy norm on Vk is given by

|||v|||2k,d = ‖A1/2∇kv‖2
L2(Ω) +

∑
e∈Ek

σe
k
‖[v]‖2

L2(e),

|||v|||2k,c =
∑
e∈Ek

‖b1/2
e [v]‖2

L2(e),

|||v|||2k = |||v|||2k,d + |||v|||2k,c.

(8)

From Theorem 2.2 in [30] we have that for each v ∈ Vk, there exist an
averaging operator Ick : Vk → Vk ∩H1(Ω) with the following property

‖∇k(v − Ickv)‖L2(Ω) + ‖k−1(v − Ickv)‖L2(Ω) .
∑
e∈Ek

1

k
‖[v]‖2

L2(e). (9)

In the error analysis we will also need a localized energy norm, defined in a
domain ω ⊂ Ω (aligned with the mesh Tk) as

|||v|||2k,d,ω = ‖A1/2∇kv‖2
L2(ω) +

∑
e∈Ek
e∩ω̄ 6=0

σe
k
‖[v]‖2

L2(e),

|||v|||2k,c,ω =
∑
e∈Ek
e∩ω̄ 6=0

‖b1/2
e [v]‖2

L2(e),

|||v|||2k,ω = |||v|||2k,d,ω + |||v|||2k,c,ω.

(10)

3 Multiscale method

In this section we preset the multiscale decomposition and extend the results
in [15] to convection-diffusion problems. For the constants in the convergence
results to be stable we assume the following relation of the convective term

O
(
‖Hb‖L∞(Ω)

α

)
≤ 1 (11)

How the magnitude of (11) affects the convergence of the method is investi-
gated in the numerical experiments.
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3.1 Multiscale decomposition

In order to do the multiscale decomposition the problem is divided into a
coarse and a fine scale. To this end let TH and Th, with the respective
mesh function H and h, denote the two different subdivisions, where Th is
constructed by some (possible adaptive) refinements of TH .

The aim of this section is to construct a coarse finite element space based
on TH , which takes the fine scale behavior of the data into account. We
assume that the mesh Th resolves the variation in the data, i.e., the solution
to: find uh ∈ Vh such that

ah(uh, v) = F (v) for all v ∈ Vh, (12)

gives a sufficiently good approximation of the weak solution u to (1). Note
however that uh never have to be computed in practice, it only acts as a
reference solution. We introduce a coarse projection operator ΠH := Π1(TH)
and let the fine scale reminder space be defined by the kernel of ΠH , i.e.,

V f := {v ∈ Vh | ΠHv = 0} ⊂ Vh. (13)

The coarse projection operator has the following approximation and stability
properties.

Lemma 1. For any v ∈ Vh and T ∈ TH , the approximation property

H|−1
T ‖v − ΠHv‖L2(T ) . α−1/2|||v|||h,T , (14)

and stability estimate
|||ΠHv|||H . Cs|||v|||h, (15)

is satisfied, with

Cs =

(
C2
A +
‖Hb‖L∞(Ω)

α

)1/2

. (16)

Proof. The approximation property follows directly from [15, Lemma 5]. Let
CH : H1 → H1 ∩ VH be a Clément type interpolation operator proposed in
[6, Section 6] which satisfy

‖∇CHu‖L2(T ) + ‖H−1(u− CHu)‖L2(T ) . ‖∇u‖L2(ω1
T ), (17)

where ω1
T = int(∪{T ′ ∈ TH | T ∩ T 6= 0}) are the union of all elements that

share a edge with T . We define the conforming function vc = CHIchv using
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averaging operator in (9). We obtain

|||ΠHv|||2H =
∑
T∈TH

‖A1/2∇(ΠHv − Π0v)‖2
L2(T )

+
∑

e∈Eh(Ω∪ΓD)

( σ
H
‖[vc − ΠHv]‖2

L2(e) + ‖b1/2
e [vc − ΠHv]‖2

)
.
∑
T∈TH

β

(
1

H2
‖v − Π0v‖2

L2(T ) +

(
1

H2
+
‖b‖L∞(T )

H

)
‖vc − v‖2

L2(T )

) (18)

using that Π0 := Π0(TH) is the L2-projection onto constants, a trace inequal-
ity, and stability of ΠH . Next, using that

‖CHIchv − v‖L2(Ω) ≤ ‖CHIchv − Ichv‖L2(Ω) + ‖Ichv − v‖L2(Ω)

. H‖∇Ichv‖L2(Ω) + ‖Ichv − v‖L2(Ω)

. α−1/2H|||v|||h
(19)

in (18) concludes the proof.

The following lemma shows that for every vH ∈ VH there exist a (non-
unique) v ∈ Π−1

H vH ∈ Vh in the preimage of ΠH which is H1(Ω) conforming.

Lemma 2. For each vH ∈ VH , there exist a v ∈ Vh ∩ H1(Ω) such that
ΠHv = vH , |||v|||h . CA|||vH |||H , and supp(v) ⊂ supp(Ic

HvH).

Proof. Follows directly from [15, Lemma 6], since v ∈ H1(Ω).

The next step is to split any v ∈ Vh into some coarse part based on TH ,
such that the fine scale reminder in the space V f is sufficiently small. A naive
way to do this splitting is to use a L2-orthogonal split. An alternative defini-
tion of the coarse space is VH = ΠHVh. A set of basis functions that span VH
is the element-wise Lagrange basis functions {λT,j | T ∈ TH , j = 1, . . . , r}
where r = (1 + d) for simplexes or r = 2d for quadrilaterals/hexahedra. The
space VH is known to give poor approximation properties if TH does not re-
solve the variable coefficients in (1). We will use another choice, see [36, 15],
based on ah(·, ·), to construct a space of corrected basis functions. To this
end, we define a fine scale projection operator F : Vh → V f by

ah(Fv, w) = ah(v, w) for all w ∈ V f , (20)

and let the corrected coarse space be defined as

VmsH := (1− F)VH . (21)
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The corrected space are spanned by corrected basis functions VmsH := {λT,j−
φT,j | T ∈ TH , j = 1, . . . , r} which can be computed as: for all T ∈ TH , j =
1, . . . , r find φT,j ∈ V f such that

ah(φT,j, v) = ah(λT,j, v) for all v ∈ V f . (22)

Note that, dim(VmsH ) = dim(VH). From (21) we have that any vh ∈ Vh can
be decomposed into a coarse vmsH ∈ VmsH and a fine vf ∈ V f scale contribution,
vh = vmsH + vf .

Lemma 3 (Stability of the corrected basis function). For all T ∈ TH , j =
1, . . . , r, the following estimate

|||φT,h − λT,j|||h . Cφβ
1/2‖H−1λT,j‖L2(Ω) (23)

holds, where Cφ = (C2
A + ‖Hb‖L∞(Ω)α

−1)1/2.

Proof. Let v = λT,j − bT,j ∈ V f , where bT,j ∈ H1
0 (T ), ΠHbT,j = λT,j,

|||bT,j|||h ≤ CA|||λT,j|||H from Lemma 2. We have

|||φT,h − λT,j|||2h . ah(φT,h − λT,j, φT,h − λT,j)
= ah(φT,h − λT,j, v − λT,j) = ah(φT,h − λT,j, bT,j)
= adh(φT,h − λT,j, bT,j) + (b · ∇h(φT,h − λT,j), bT,j)L2(Ω) .

(24)

Using that the diffusion part in (24) of the bilinear form is continuous in
(Vh × Vh) with the constant CA, Lemma 2, and a inverse inequality, we get

adh(φT,h − λT,j, bT,j) . CA|||φT,h − λT,j|||h|||bT,j|||h
. C2

A|||φT,h − λT,j|||h|||λT,j|||H
. C2

Aβ
1/2|||φT,h − λT,j|||h‖H−1λT,j‖L2(T ).

(25)

For the convection part in (24), we have

(b · ∇h(φT,h − λT,j), bT,j)L2(Ω)

. ‖Hb · ∇h(φT,h − λT,j)‖L2(Ω)‖H−1bT,j‖L2(Ω)

. ‖Hb‖L∞(Ω)‖∇h(φT,h − λT,j)‖L2(Ω)‖H−1λT,j‖L2(Ω),

(26)

and obtain
|||φT,h − λT,j|||h ≤ Cφβ

1/2‖H−1λT,j‖L2(Ω). (27)

with Cφ = (C2
A + ‖Hb‖L∞(Ω)α

−1)1/2.
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3.2 Ideal discontinuous Galerkin multiscale method

An ideal multiscale method seeks umsH ∈ VmsH such that

ah(u
ms
H , v) = F (v) for all v ∈ VmsH . (28)

Note that, to construct in the space VmsH a variational problem has to be
solved on the whole domain Ω for each basis function, which is not feasible
for real computations. The following theorem shows the convergence of the
ideal (non-realistic) multiscale method.

Theorem 4. Let uh ∈ Vh be the solution to (12), and umsH ∈ VmsH be the
solution to (28), then

|||uh − umsH ||| . C1α
−1/2||H(f − ΠHf)||L2(Ω) (29)

holds, with C1 = CA + ‖Hb‖L∞(Ω)α
−1

Proof. See Section 5.

3.3 Discontinuous Galerkin multiscale method

The fast decay of the corrected basis functions (Lemma 6), motivates us to
solve the corrector functions on localized patches. This introduces a local-
ization error, but choosing the patch size as O(H log(H−1)) (Theorem 7)
the localization error has the same convergence rate as the ideal multiscale
method in Theorem 4. The corrector functions are solved on element patches,
defined as follows.

Definition 5. For all T ∈ TH , let ωLT be a patch centered around element T
with size L, defined as

ω0
T := int(T ),

ωLT := int(∪{T ′ ∈ TH | T ∩ ω̄L−1
T 6= 0}), L = 1, 2, . . . .

(30)

See Figure 1 for an illustration.

The localized corrector functions are calculated as follows: for all {T ∈
TH , j = 1, . . . , r} find φLT,j ∈ Vf (ωLT ) = {v ∈ V f | v|Ω\ωL

T
= 0} such that

ah(φ
L
T,j, v) = ah(λT,j, v), for all v ∈ Vf (ωLT ). (31)

The decay of the corrected basis function is given in the following lemma.
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Figure 1: Example of a patch with one layer, ω1
T , two layers ω2

T , and three
layers ω3

T , centered around element T.

Lemma 6. For all T ∈ TH , j = 1, . . . , r where φT,j is the solution to (22)
and φLT,j is the solution to (36), the following estimate∣∣∣∣∣∣φT,j − φLT,j∣∣∣∣∣∣h . C2γ

L|||λT,j − φLT,j|||h (32)

holds, where L = `k is the size of the patch, 0 < γ = (`−1C3)
`(k−1)−1
2`k(`+1) < 1,

C2 = CcCζ(1 + CACs), and C3 = C(C2
A + ‖Hb‖L∞(Ω)α

−1), where C is a
generic constants neither depending on the mesh size, the size of the patches,
or the problem data.

Proof. See Section 5.

The space of localized corrected basis function is defined by Vms,LH :=
{φLT,j − λT,j | T ∈ TH , r = 1, . . . , r}. The DG multiscale method reads: find

ums,LH ∈ Vms,LH such that

ah(u
ms,L
H , v) = F (v) for all v ∈ Vms,LH . (33)

An error bound for the DG multiscale method using a localized corrected
basis is given in Theorem 7. Note that it is only the first term |||u − uh|||h
in Theorem 7 that depends on the regularity of u.

Theorem 7. Let uh ∈ Vh and ums,LH ∈ Vms,LH be the solutions to (12) and
(33), respectively. Then

|||u− ums,LH |||h ≤|||u− uh|||h + Ccα
−1/2‖H(f − ΠHf)‖L2(Ω)

+ C5‖H−1‖L∞(Ω)L
d/2γL‖f‖L2(Ω)

(34)
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holds, where L is the size of the patches, C1 is a constant defined in Theo-
rem 4, 0 < γ < 1 and C5 = C

1/2
4 C2CφCA, where C4 = C2

cC
2
ζ (1 + CACs)

2 is
defined in Lemma 13, and C2 and γ are defined in Lemma 6.

Proof. See Section 5.

Remark 8. Theorem 7 is simplified to,

|||u− ums,LH |||h ≤ |||u− uh|||h + C1‖H‖L∞(Ω). (35)

given that the patch size is chosen as L = dC log(H−1)e with an appropriate
C and ‖f‖L2 = 1. In the numerical experiments we choose C = 2.

Remark 9. If the convective term is small it is not necessary to include it in
the computation of the correctors [21]. Instead the following correctors can
be used: for all {T ∈ TH , j = 1, . . . , r} find φ̂LT,j ∈ Vf (ωLT ) such that

ad
h(φ̂

L
T,j, v) = ad

h(λT,j, v), for all v ∈ Vf (ωLT ). (36)

This gives the right convergence results if

O
(
‖b‖L∞(Ω)

α

)
= 1 (37)

compared to (11) if the convective term is included.

4 Numerical experiment

We consider the domain Ω = [0, 1] × [0, 1] and the forcing function f =
1 + cos(2πx) cos(2πy). The localization parameter which determine the size
of the patches is chosen as L = d2 log(H−1)e, i.e., the size of the patches are
2H log(H−1). Consider a coarse quadrilateral mesh, TH , of size H = 2−i, i =
2, 3, 4, 5. The corrector functions are solved on sub-grids of the quadrilateral
mesh, Th, where h = 2−7. We consider three different permeabilities: A1 = 1,
A2 = A2(y) which is piecewise constant with respect to a Cartesian grid of
width 2−6 in y-direction taking the values 1 or 0.01, and A3 = A3(x, y) which
is piecewise constant with respect to a Cartesian grid of width 2−6 both in the
x- and y-directions, bounded below by α = 0.05 and has a maximum ratio
β/α = 4 · 105. The permeability A3 is taken from the 31 layer in the SPE
10 benchmark problem, see http:www.spe.org/web/csp/. The diffusion
coefficients A2 and A3 are illustrated in Figure 2. For the convection term
we consider: b = [C, 0], for different values of C.
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(a) A2 (b) A3

Figure 2: The diffusion coefficients A2 and A3 in log scale.
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Figure 3: The number degrees of freedom (Ndof ) vs. the relative error in
energy-norm, for different sizes of the convection term, C.

To investigate how the error in relative energy-norm, |||uh−ums,LH |||/|||uh|||,
depends on the magnitude of the convection we consider: A1 and b = [C, 0]
with C = {32, 64, 128}. Figure 3 shows the convergence in energy-norm as a
function of the coarse mesh size H for the different values of C.

Also, to see the effect of heterogeneous diffusion of the error in the relative
energy-norm, |||uh − ums,LH |||/|||uh|||, we consider: Figure 4 which shows the
error in relative energy-norm using A2 and b = [1, 0] and Figure 5 which
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shows the error in relative energy-norm using A3 and b = [512, 0].
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Figure 4: The number degrees of freedom (Ndof ) vs. the relative error in
energy-norm, using a high contrast diffusion coefficients A2 and b = [1, 0].

The dotted line corresponds to N
−3/2
dof .

We obtain H3 convergence of the DG multiscale method to a reference
solution in the relative energy-norm, |||uh − ums,LH |||/|||uh|||, independent of
the variation in the coefficients or regularity of the underlying solution.

5 Proofs from Section 3

In this section we state the proofs of the main results which was postponed
from in section 3. To this end we start by proving some technical lemmas in
Section 5.1 which we use to prove the main results in Section 5.2.

5.1 Technical lemmas

In the proofs of the main results, Theorem 4, Lemma 6, and Theorem 7, we
will need some definitions and technical lemmas stated below.

Continuity of the DG bilinear form for convective problems can be proven
on a orthogonal subset of Vh. The space V f is an orthogonal subset of Vh but
on a coarse scale.
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Figure 5: The number degrees of freedom (Ndof ) vs. the relative error in
energy-norm, using a high contrast diffusion coefficients A3 and b = [512, 0].

The dotted line corresponds to N
−3/2
dof .

Lemma 10 (Continuity in (Vh×V f) and (V f×Vh)). For all, (u, v) ∈ V f×Vh
or in Vh × V f , it holds

a(v, w) . Cc|||v|||h|||w|||h (38)

where
Cc = CA + ‖Hb‖L∞(Ω)α

−1. (39)

Proof. Since adh is continuous in (Vh × Vh) with the constant CA, continuity
in (V f × Vh) follows from V f ⊂ Vh. For the convective part ac

h, we have

ac(v, w) =
∑
T∈Th

(b · ∇v, w)L2(T ) +
∑
e∈Ek

(be[v], [w])L2(e)

−
∑

e∈Ek(Ω)

(νe · b[v], {w})L2(e) +
∑

e∈Ek(Γ)

((νe · b)	v, w)L2(e)

.
∑
T∈Th

(
‖b‖L∞(T )‖∇v‖L2(T )‖w − ΠHw‖L2(T )

)
+
∑
e∈Ek

(
‖b‖L∞(e)h

−1/2‖[v]‖L2(e)‖w‖L2(S+∪S−)

)
.

(40)
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where S+, S− ∈ Th and e = S+ ∩ S−. Using a discrete Cauchy-Schwartz
inequality and summing over the coarse elements, we get

ac(v, w) . α−1/2‖Hb‖L∞(Ω)|||v|||h‖H−1(w − ΠHw)‖L2(Ω),

. ‖Hb‖L∞(Ω)α
−1|||v|||h|||w|||h,

(41)

which concludes the proof for (Vh × V f). The proof of (V f × Vh) is obtained
by first integrating (b · ∇u, v)L2(T ) by parts.

The following cut-off function will be frequently used in the proof of the
main results.

Definition 11. The function ζd,D ∈ Po(Th), for D > d, is a cut off function
fulfilling the following condition

ζd,DT |ωd
T

= 1,

ζd,DT |Ω\ωD
T

= 0,

‖[ζd,DT ]‖L∞(Eh(T )) .
‖h‖L∞(T )

(D − d)H|T
,

(42)

and ||[ζd,D]||L∞(∂(ωD
T \ω

d
T )) = 0, for all T ∈ TH .

For the cut off function has the following stability property.

Lemma 12. For any v ∈ Vh and ζd,DT from Definition 11, the estimate,

|||ζd,DT v|||h . Cζ |||v|||h,ωD
T
, (43)

holds, where Cζ = (C2
A + ‖hb‖L∞(Ω)/α)1/2.

Proof. For the diffusion part we use the following result from [15],

|||(1− ζd,DT )v|||h,d . CA|||v|||h,Ω\ωL−1
T

(44)

and focus on the convective part. We obtain

|||(1− ζd,DT )v|||2h,c
=
∑
e∈Eh

‖b1/2
e [(1− ζd,DT )v]‖2

L2(e)

≤
∑
e∈Eh:

e∩ωL−1
T 6=0

(
‖b1/2
e [v]‖2

L2(e) + ‖h‖2
L∞(S+∪S−)‖H−1b1/2

e {v}‖2
L2(e)

)

.
∑
T∈TH :

e∩ωL−1
T 6=0

‖hb‖L∞(T )

(
‖h−1/2[v]‖2

L2(e) + ‖H−1(v − ΠHv)‖2
L2(T )

)

.
‖hb‖L∞(Ω)

α
|||v|||2h,Ω\ωL−1 ,

(45)
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using [vw] = {v}[w] + {w}[v], the triangle inequality, and a trace inequality.
The proof is concluded using (44) and (45).

The following lemmas will be necessary in order to prove Theorem 7.

Lemma 13. The following estimate,

|||
∑

T∈TH , j=1,...,r

vj(φT,j−φLT,j)|||2h . C4L
d

∑
T∈TH , j=1,...,r

|vj|2|||φT,j−φLT,j|||2h, (46)

holds, where C4 = C2
cC

2
ζ (1 + CACs)

2.

Proof. The proof is analogous with the proof of Lemma 12 in [15].

5.2 Proof of main results

We are now ready to prove, Theorem 4, Lemma 6, and Theorem 7.

Theorem 4. Let us decompose uh into a coarse contribution, vmsH ∈ VmsH , and
a fine scale remainder, vf ∈ V f , i.e., uh = vmsH + vf . For vf we have

|||vf |||2h . ah(v
f , vf ) = ah(uh, v

f ) = (f, vf )L2(Ω)

= (f − ΠHf, v
f − ΠHv

f )L2(Ω)

≤ ‖H(f − ΠHf)‖L2(Ω)‖H−1(vf − ΠHv
f )||L2(Ω)

≤ α−1/2‖H(f − ΠHf)‖L2(Ω)|||vf |||h.

(47)

Using continuity, we get

|||uh − umsH |||2h . ah(uh − umsH , uh − umsH ) = ah(uh − umsH , uh − vmsH )

. Cc|||uh − umsH |||h|||uh − vmsH |||h,
(48)

which concludes the proof together with (47).

Lemma 6. Define e := φT,j − φLT,j where φT,j ∈ V f and φLT,j ∈ Vf (ωLT ). We
have

|||e|||2h . ah(e, φT,j − φLT,j) = ah(e, φT,j − v) . Cc|||e|||h|||φT,j − v|||h. (49)

Furthermore from Lemma 2, there exist a v = ζL−1,L
T φT,j− bT ∈ Vf (ωLT ) such

that ΠHbT = ΠH(ζL−1,L
T φT,j) and |||bT |||h . CA|||ΠH(ζL−1,L

T φT,j)|||H , we have

|||e|||h . Cc

(
|||(1− ζL−1,L

T )φT,j|||h + |||bT |||h
)
, (50)
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where

|||bT |||h . CA|||ΠHζ
L−1,L
T φT,j|||H = CA|||ΠH(1− ζL−1,L

T )φT,j|||H
. CACs|||(1− ζL−1,L

T )φT,j|||h . CACsCζ |||φT,j|||h,Ω\ωL−1
T

.
(51)

using Lemma 2, Lemma 1, and Lemma 12. We obtain,

|||e|||h . C2|||φT,j|||h,Ω\ωL−1
T

, (52)

where C2 = CcCζ(1 + CACs) from (50) and (51).
The next step in the proof is to construct a recursive relation which will

be used to prove the decay of the correctors. To this end, let `k = L − 1,
and define another the cut off function, ηmT := (1−ζ`(k−m−1)−m,`(k−m)−m) and

the patch ω̃mT := ω
`(k−m+1)−m
T , for m = 0, 1, . . . , b`k/(` + 1) − 1c. Note that

ω̃m+1
T ⊂ ω̃mT . We obtain

|||φT,j|||h,Ω\ω̃m
T
≤ |||ηmT φT,j|||h . ah(η

m
T φT,j, η

m
T φT,j). (53)

To shorten the proof we refer to the following inequality

ad(ηmT φT,j, η
m
T φT,j) . ad(φT,j, (η

m
T )2φT,j − bT ) +

C2
A

`
|||φT,j|||2h,ω̃m

T \ω̃
m+1
T

. (54)

where (ηmT )2φT,j − bT ∈ V f , in the proof of Lemma 10 in [15]. We focus on
the convection term, since the cut of function is piecewise constant it follows
that

(b · ∇ηmT φT,j, ηmT φT,j)L2(S) = (b · ∇φT,j, (ηmT )2φT,j)L2(S) (55)

for all S ∈ Th. Using the following equalities from (Appendix A in [15])

{vw}[vw] = {w}[v2w]− [v]{w}{v}{w}+ 1/4[v]{v}[w][w],

[vw][vw] = [w][v2w]− 1/4[v]2[w]2 + [v]2{w}2,
(56)

and (55), we obtain

ac(ηmT φT,j, η
m
T φT,j) = ac(φT,j, (η

m
T )2φT,j)

+
∑

e∈Eh(Ω)

(
(νe · b[ηmT ]{φT,j}, {ηmT }{φT,j})L2(e)

− 1/4(νe · b[ηmT ]{φT,j}, {ηmT }[φT,j])L2(e)

− 1/4(be[η
m
T ]2, [φT,j]

2)L2(e) + (be[η
m
T ]2, {φT,j}2)L2(e)

)
.

(57)
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The sum over the edges terms can be bounded using that ‖[ηmT ]‖L∞(T ) .
‖h‖L∞(T )/H|T , ‖{ηmT }‖L∞(Ω) . 1, ‖h‖L∞(T )/H|T ` < 1, and a trace inequality.
We obtain∑

e∈Eh(Ω):
e∩(ω̃m

T \ω̃
m
T )6=0

‖H−1b‖L∞(e)

`

(
‖h1/2{φT,j}‖L2(e)‖h1/2{φT,j}‖L2(e)+

‖h1/2{φT,j}‖L2(e)‖h1/2[φT,j]‖L2(e) + ‖h1/2[φT,j]‖2
L2(e)

+ ‖h1/2{φT,j}‖2
L2(e)

)
.

∑
e∈EH(Ω):

e∩(ω̃m
T \ω̃

m
T )6=0

‖H−1b‖L∞(e)

`
‖φT,j‖2

L2(T+∪T−)

.
∑
T∈TH :

T∩(ω̃m
T \ω̃

m
T )6=0

‖Hb‖L∞(T )

`
‖H−1(φT,j − ΠHφT,j)‖2

L2(T )

.
‖Hb‖L∞(Ω)

`α
|||φT,j|||2h,(ω̃m

T \ω̃
m+1
T )

.

(58)

Combining the results, we have

|||φT,j|||2h,Ω\ω̃m
T
. a(φT,j, (η

m
T )2φT,j − bT ) + a(φT,j, bT )

+ `−1

(
C2
A +
‖Hb‖L∞(Ω)

α

)
|||φT,j|||2h,(ω̃m

T \ω̃
m+1
T )

,
(59)

where bT has support in ω̃mT \ ω̃m+1
T , such that (ηmT )2φT,j − bT ∈ V f and

|||bT |||h . CA|||ΠH((ηmT )2φT,j)|||H , see Lemma 2. We have

a(φT,j, (η
m
T )2φT,j − bT ) = 0. (60)

For all T ∈ TH the operator ΠH is stable in the L2(T )-norm, we have

|||bT |||2h,ω̃m
T \ω̃

m+1
T

. C2
s |||ΠH((ηmT )2φT,j)|||2H

= C2
s

(
|||ΠH((ηmT )2φT,j)|||2d,H + |||ΠH((ηmT )2φT,j)|||2a,H

)
.

(61)

For the first term in (61) we refer to the result

|||ΠH((ηmT )2φT,j)|||2d,H .
C2
A

`2
|||φT,j|||2h,ω̃m

T \ω̃
m+1
T

, (62)
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from [15] and for the second them we have

|||ΠH((ηmT )2φT,j)|||2a,H = |||ΠH((ηmT − Π0η
m
T )2φT,j)|||2a,H

=
∑

e∈EH(Ω)

‖b1/2
e [ΠH((ηmT )2 − Π0(ηmT )2)φT,j)]‖2

L2(e)

=
∑
T∈TH

‖H−1b‖L∞(T )‖(ηmT )2 − Π0(ηmT )2‖2
L∞(T )‖φT,j − ΠHφT,j‖2

L2(T )

.
‖Hb‖L∞(T )

α`2
|||φT,j|||2h,ω̃m

T \ω̃
m+1
T

.

(63)

We obtain

|||φT,j|||2h,Ω\ωm
T
. `−1

(
C2
A +
‖Hb‖L∞(T )

α

)
|||φT,j|||2h,Ω\ωm+1

T

= C3`
−1|||φT,j|||2h,Ω\ω̃m+1

T

(64)

where C3 = C(C2
A + ‖Hb‖L∞(Ω)α

−1) and C is the generic constant hidden in
’.’. We have

|||φT,j|||2h,Ω\ω̃m
T
. C3`

−1|||φT,j|||2h,Ω\ω̃m+1
T

, (65)

for any m = 0, 1, . . . , b`k/(`+ 1)c − 1, which we can use recursively as

|||φT,j|||2h,Ω\ω̃1
T
. (C3`

−1)k−1|||φT,j|||2h,Ω\ω̃k
T

= (C3`
−1)b`k/(`+1)c−1|||φT,j − λT,j|||2h,Ω.

(66)

Note that k/2 is a lower bound of `k/(` + 1). Equation (52) together with
(65), gives

|||φT,j − φLh |||h . C2(C3`
−1)

1
2

(`k/(`+1)−1)|||φT,j − λT,j|||h. (67)

which concludes the proof is concluded.

Theorem 7. Using the triangle inequality, we have

|||u− ums,LH |||h ≤ |||u− uh|||h + |||uh − ums,LH |||h. (68)

Note that, uh ∈ Vh, can be decomposed into a coarse, vmsH ∈ VmsH , and a fine,
vf ∈ V f , scale contribution, i.e., uh = vmsH + uf . Also, let vms,LH ∈ Vms,LH be
chosen such that ΠHv

ms,L
H = ΠHv

ms
H . We have

|||uh − ums,LH |||h . ah(uh − ums,LH , uh − ums,LH )

= ah(uh − ums,LH , uh − vms,LH )

. Cc|||uh − ums,LH |||h|||uh − vms,LH |||h,
(69)
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and obtain

|||u− ums,LH |||h ≤|||u− uh|||h
+ Cc

(
|||uh − vmsH |||h + |||vmsH − v

ms,L
H |||h

)
.

(70)

The first term in (70) implies that the reference mesh need to be sufficiently
fine to get a sufficient approximation. The second term is approximated
using (47), i.e.

|||uh − vmsH |||h . α−1/2‖H(1− ΠH)f‖L2(Ω), (71)

and for the last term in we have,

|||vmsH − v
ms,L
H |||2h = |||

∑
T∈TH , j=1,...,r

vmsH,T (xj)(φT,h − φLT,j)|||2h

. C4L
d

∑
T∈TH , j=1,...,r

|vmsH,T (xj)|2|||φT,h − φLT,j|||2h

. C4C
2
2L

dγ2L
∑

T∈TH , j=1,...,r

|vmsH,T (xj)|2|||φT,h − λT,j|||2h,

(72)
using Lemma 13 and Lemma 6.

We obtain, using Lemma 3, that∑
T∈TH , j=1,...,r

|vmsH,T (xj)|2|||φT,h − λT,j|||2h

≤ C2
φ

∑
T∈TH , j=1,...,r

‖H−1vmsH,T (xj)λT,j‖2
L2(Ω)

. C2
φβ‖

∑
T∈TH , j=1,...,r

H−1vmsH,T (xj)λT,j‖2
L2(Ω)

= C2
φβ‖

∑
T∈TH , j=1,...,r

H−1vmsH,T (xj)ΠH(λT,j − φT,j)‖2
L2(Ω)

≤ C2
φβ‖H−1‖L∞(Ω)‖ΠH(vmsH + uf )‖2

L2(Ω)

≤ C2
φβ‖H−1uh‖2

L2(Ω)

≤ C2
φC

2
A‖H−1‖L∞(Ω)|||uh|||h.

(73)

holds and we conclude the proof.
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[17] P. Henning, A. Målqvist, and D. Peterseim. Two-level discretization
techniques for ground state computations of bose-einstein condensates.
SIAM J. on Numer. Anal., 52(4):1525–1550, 2014.

[18] P. Henning and M. Ohlberger. The heterogeneous multiscale finite el-
ement method for advection-diffusion problems with rapidly oscillating
coefficients and large expected drift. Netw. Heterog. Media, 5(4):711–
744, 2010.

[19] P. Henning and D. Peterseim. Oversampling for the multiscale finite
element method. Multiscale Model. Simul., 11(4):1149–1175, 2013.
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[29] C. Johnson and J. Pitkäranta. An analysis of the discontinuous Galerkin
method for a scalar hyperbolic equation. Math. Comp., 46:1–26, 1986.

[30] O. Karakashian and F. Pascal. A posteriori error estimates for a discon-
tinuous Galerkin approximation of second-order elliptic problems. SIAM
J. Numer. Anal., 41:2374–2399, June 2003.
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Abstract In this work we investigate the advantages of multiscale methods in Petrov–
Galerkin (PG) formulation in a general framework. The framework is based on a
localized orthogonal decomposition of a high dimensional solution space into a low
dimensional multiscale space with good approximation properties and a high dimen-
sional remainder space, which only contains negligible fine scale information. The
multiscale space can then be used to obtain accurate Galerkin approximations. As a
model problem we consider the Poisson equation. We prove that a Petrov–Galerkin
formulation does not suffer from a significant loss of accuracy, and still preserve the
convergence order of the original multiscale method. We also prove inf-sup stability
of a PG continuous and a discontinuous Galerkin finite element multiscale method.
Furthermore, we demonstrate that the Petrov–Galerkin method can decrease the com-
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putational complexity significantly, allowing for more efficient solution algorithms.
As another application of the framework, we show how the Petrov–Galerkin frame-
work can be used to construct a locally mass conservative solver for two-phase flow
simulation that employs the Buckley–Leverett equation. To achieve this, we couple
a PG discontinuous Galerkin finite element method with an upwind scheme for a
hyperbolic conservation law.

Mathematics Subject Classification 35J15 · 65N12 · 65N30 · 76S05

1 Introduction

In this contribution we consider linear elliptic problems with a heterogenous and highly
variable diffusion coefficient A as arisen often in hydrology or in material sciences.
In the following, we are looking for u which solves

−∇ · A∇u = f in �,

u = 0 on ∂�,

in a weak sense. Here, we denote

(A1) � ⊂ R
d , d = 1, 2, 3, a bounded Lipschitz domain with a piecewise

polygonal boundary,

(A2) f ∈ L2(�) a source term, and,

(A3) A ∈ L∞(�, R
d×d
sym ) a symmetric matrix-valued function with uniform

spectral bounds β0 ≥ α0 > 0, σ(A(x)) ⊂ [α0, β0] for almost all x ∈ �.

We call the ratio β0/α0 the contrast of A.

Under assumptions (A1)–(A3) and by the Lax–Milgram theorem, there exists a unique
weak solution u ∈ H1

0 (�) to

a(u, v) = ( f, v) for all v ∈ H1
0 (�), (1)

where

a(v,w) :=
∫

�

A∇v · ∇w and (v,w) := (v,w)L2(�).

The problematic term in the equation is the diffusion matrix A, which is known
to exhibit very fast variations on a very fine scale (i.e. it has a multiscale character).
These variations can be highly heterogenous and unstructured, which is why it is
often necessary to resolve them globally by an underlying computational grid that
matches the said heterogeneity. Using standard finite element methods, this results
in high dimensional solution spaces and hence an enormous computational demand,
which often cannot be handled even by today’s computing technology. Consequently,
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there is a need for alternative methods, so called multiscale methods, which can either
operate below linear computational complexity by using local representative elements
(cf. [1,2,17,18,23,36,40]) or which can split the original problem into very localized
subproblems that cover � but that can be solved cheaply and independent from each
other (cf. [5,8,11,12,16,25,27,28,31,33,37,38]).

In this paper, we focus on a rather recent approach called localized orthogonal
decomposition (LOD) that was introduced by Målqvist and Peterseim [35] and further
generalized in [19,24].

We consider a coarse space VH , which is low-dimensional but possibly inadequate
for finding a reliable Galerkin approximation to the multiscale solution of problem
(1). The idea of the method is to start from this coarse space and to update the corre-
sponding set of basis functions step-by-step to improve the approximation properties
of the space. In a summarized form, this can be described in four steps: (1) define a
(quasi) interpolation operator IH from H1

0 (�) onto VH , (2) information in the kernel
of the interpolation operator is considered to be negligible (having a small L2-norm),
(3) hence define the space of negligible information by the kernel of this interpolation,
i.e. W := kern(IH ), and (4) find the orthogonal complement of W with respect to
a scalar product ah(·, ·), where ah(·, ·) describes a discretization of the problem to
solve. In many cases, it can be shown, that this (low dimensional) orthogonal com-
plement space has very accurate approximation properties with respect to the exact
solution. Typically, the computation of the orthogonal decomposition is localized to
small patches in order to reduce the computational complexity.

So far, the concept of the LOD has been successfully applied to nonlinear elliptic
problems [20], eigenvalue problems [34] and the nonlinear Schrödinger equation [21].
Furthermore, it was combined with a discontinuous Galerkin method [13,14] and
extended to the setting of partition of unity methods [22].

In this work, we are concerned with analyzing the LOD framework in Petrov–
Galerkin formulation, i.e. for the case that the discrete trial and test spaces are not
identical. We show that an LOD method in Petrov–Galerkin formulations still pre-
serves the convergence rates of the original formulation of the method. At the same
time, the new method can exhibit significant advantages, such as decreased compu-
tational complexity and mass conservation properties. In this paper, we discuss these
advantages in detail; we give examples for realizations and present numerical experi-
ments. In particular, we apply the proposed framework to design a locally conserva-
tive multiscale solver for the simulation of two-phase flow models as governed by the
Buckley–Leverett equation. We remark that employing Petrov–Galerkin variational
frameworks in the construction and analysis of multiscale methods for solving elliptic
problems in heterogeneous media has been investigated in the past, see for example
[16,26].

The rest of the paper is organized as follows. Section 2 lays out the setting and
notation for the formulation of the multiscale methods that includes the description
of two-grid discretization and the LOD. In Sect. 3, we present the multiscale methods
based on the LOD framework, starting from the usual Galerkin variational equation
and concentrating further on the Petrov–Galerkin variational equation that is the main
contribution of the paper. We establish in this section that the Petrov–Galerkin LOD
(PG-LOD) exhibits the same convergence behavior as the usual Galerkin LOD (G-
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LOD). Furthermore, we draw a contrast in the aspect of practical implementation that
makes up a strong advantage of PG-LOD in relative comparison to G-LOD. The other
advantage of the PG-LOD which cannot be achieved with G-LOD is the ability to pro-
duce a locally conservative flux field at the elemental level when discontinuous finite
element is utilized. We also discuss in this section an application of the PG-LOD for
solving the pressure equation in the simulation of two-phase flow models to demon-
strate this particular advantage. Section 4 gives two sets of numerical experiment: one
that confirms the theoretical finding and the other demonstrating the application of
PG-LOD in the two-phase flow simulation. We present the proofs of the theoretical
findings in Sect. 5.

2 Discretization

In this section we introduce notations that are required for the formulation of the
multiscale methods.

2.1 Abstract two-grid discretization

We define two different meshes on �. The first mesh is a ‘coarse mesh’ and is denoted
by TH , where H > 0 denote the maximum diameter of all elements of TH . The second
mesh is a ‘fine mesh’ denoted by Th with h representing the maximum diameter of all
elements of Th . By ‘fine’ we mean that any variation of the coefficient A is resolved
within this grid, leading to a high dimensional discrete space that is associated with
this mesh. The mesh Th is assumed to be a (possibly non-uniform) refinement of TH .
Furthermore, both grids are shape-regular and conforming partitions of � and we
assume that h < H/2. For the subsequent methods to make sense, we also assume
that each element of TH is at least twice uniformly refined to create Th . The set of all
Lagrange points (vertices) of T� is denoted by N�, and the set of interior Lagrange
points is denoted by N 0

� , where � is either H or h.
Now we consider an abstract discretization of the exact problem (1). For this pur-

pose, we let Vh denote a high dimensional discrete space in which we seek an approx-
imation uh of u. A simple example would be the classical P1 Lagrange finite element
space associated with Th . However, note that we do not assume that Vh is a subspace
of H1

0 (�). In fact, later we give an example for which Vh consists of non-continuous
piecewise linear functions. Next, we assume that we are interested in solving a fine
scale problem, that can be characterized by a scalar product ah(·, ·) on Vh . Accord-
ingly, a method on the coarse scale can be described by some aH (·, ·), which we
specify by assuming

(A4) a�(·, ·) is a scalar product on V� where � is either h or H .

This allows us to define the abstract reference problem stated below.

Definition 1 (Fine scale reference problem) We call uh ∈ Vh the fine scale reference
solution if it solves

ah(uh, vh) = ( f, vh)L2(�) for all vh ∈ Vh, (2)
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where ah(·, ·) ‘describes the method’. It is implicitly assumed that problem (2) is of
tremendous computational complexity and cannot be solved by available computing
resources i n a convenient time.

A simple example of ah(·, ·) is ah(vh, wh) = aH (vh, wh) = a(vh, wh). A more
complex example is the ah(·, ·) that stems from a discontinuous Galerkin approxi-
mation, in which case ah(·, ·) is different from aH (·, ·). The goal is to approximate
problem (2) by a new problem that reaches a comparable accuracy but one that can be
solved with a significantly lower computational demand.

2.2 Localized orthogonal decomposition

In this subsection, we introduce the notation that is required in the formulation of the
multiscale method. In particular, we introduce an orthogonal decomposition of the high
dimensional solution space Vh into the orthogonal direct sum of a low dimensional
space with good approximation properties and a high dimensional remainder space.
For this purpose, we make the following abstract assumptions.

(A5) ||| · |||h denotes a norm on Vh that is equivalent to the norm that is
induced by ah(·, ·), hence there exist generic constants 0 < α ≤ β

such that

α|||vh |||2h ≤ ah(vh, vh) and ah(vh, wh) ≤ β|||vh |||h |||wh |||h
for all vh, wh ∈ Vh . In the same way, ||| · |||H denotes a norm on VH

(equivalent to the norm induced by aH (·, ·)). Furthermore, we let
CH,h denote the constant with |||v|||H ≤ CH,h |||v|||h for all v ∈ Vh .
Note that CH,h might degenerate for h → 0.

(A6) The coarse space VH ⊂ Vh is a low dimensional subspace of Vh that
is associated with TH .

(A7) Let IH : Vh → VH be an L2-stable quasi-interpolation (or
projection) operator with the properties

• there exists a generic constant CIH (only depending on the
shape regularity of TH and Th) such that for all vh ∈ Vh

and vH ∈ VH it holds ‖vh − IH (vh)‖L2(�) ≤ CIH H |||vh |||h ;
|||IH (vh)|||H ≤ CIH |||vh |||h ; ‖vH − IH (vH )‖L2(�) ≤ CIH H |||vH |||H

and ‖IH (vH )‖L2(�) ≤ CIH |||vH |||H ,

• the restriction (IH )|VH is an isomorphism with ||| · |||H -stable
inverse, i.e. we have vH = (IH ◦ (IH |VH )−1)(vH ) for vH ∈ VH

and there exists a generic CI −1
H

such that for all vH ∈ VH it holds

|||(IH |VH )−1(vH )|||H ≤ CI −1
H

|||vH |||H .
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Typically, L2-projections onto VH can be verified to fulfill assumption (A7). Sim-
ilarly, IH can be a quasi-interpolation of the Clément-type that is related to the L2-
projection. An example for this case is given in Eq. (13) below. Alternatively, IH can
be also constructed from local L2-projections as it is done for the classical Clément
interpolation. Nodal interpolations typically do not satisfy (A7).

Using the assumption that (IH )|VH : VH → VH is an isomorphism (i.e. assumption
(A7)), a splitting of the space Vh is given by the direct sum

Vh = VH ⊕ Wh, with Wh := {vh ∈ Vh |IH (vh) = 0}. (3)

Observe that the ‘remainder space’ Wh contains all fine scale features of Vh that cannot
be expressed in the coarse space VH .

Next, consider the ah(·, ·)-orthogonal projection Ph : Vh → Wh that fulfills:

ah(Ph(vh), wh) = ah(vh, wh) for all wh ∈ Wh . (4)

Since Vh = VH ⊕ Wh , we have that V ms
� := kern(Ph) = (1 − Ph)(VH ) induces the

ah(·, ·)-orthogonal splitting

Vh = V ms
� ⊕ Wh .

Note that V ms
� is a low dimensional space in the sense that it has the same dimension

as VH . As shown for several applications (cf. [20,21,34]) the space V ms
� has very rich

approximation properties in the |||·|||h-norm. However, it is very expensive to assemble
V ms

� , which is why it is practically necessary to localize the space Wh (respectively
localize the projection). This is done using admissible patches of the following type.

Definition 2 (Admissible patch) For any coarse element T ∈ TH , we say that the
open and connected set U (T ) is an admissible patch of T , if T ⊂ U (T ) ⊂ � and if
it consists of elements from the fine grid, i.e.

U (T ) = int
⋃

τ∈T U
h

τ , where T U
h ⊂ Th .

It is now relevant to define the restriction of Wh to an admissible patch U (T ) ⊂ �

by

W̊h(U (T )) := {vh ∈ Wh |vh = 0 in �\U (T )}.

A general localization strategy for the space V ms
� can be described as follows (see

[19] for a special case of this localization and [35] for a different localization strategy).

Definition 3 (Localization of the solution space) Let the bilinear form aT
h (·, ·) be a

localization of ah(·, ·) on T ∈ TH in the sense that

ah(vh, wh) =
∑

T ∈TH

aT
h (vh, wh), (5)
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where aT
h (·, ·) acts only on T or a small environment of T . Let furthermore U (T ) be

an admissible patch associated with T ∈ TH . Let QT
h : Vh → W̊h(U (T )) be a local

correction operator that is defined as finding QT
h (φh) ∈ W̊h(U (T )) satisfying

ah(QT
h (φh), wh) = −aT

h (φh, wh) for all wh ∈ W̊h(U (T )), (6)

where φh ∈ Vh . The global corrector is given by

Qh(φh) :=
∑

T ∈TH

QT
h (φh). (7)

A (localized) generalized finite element space is defined as

V ms := {
H + Qh(
H )| 
H ∈ VH }.

The variational formulation (6) is called the corrector problem associated with
T ∈ TH . Solvability of each of these problems is guaranteed by the Lax–Milgram
theorem. By its nature, the system matrix corresponding to (6) is localized to the
patch U (T ) since the support of wh is in U (T ). Furthermore, each of (6) pertaining to
T ∈ TH is designed to be elementally independent and thus attributing to its immediate
parallelizability. The corrector problems are solved in a preprocessing step and can
be reused for different source terms and for different realization of the LOD methods.
Since V ms is a low dimensional space with locally supported basis functions, solving
a problem in V ms is rather inexpensive. Normally, the solutions QT

h (φh) of (6) decays
exponentially to zero outside of T . This is the reason why we can hope for good
approximations even for small patches U (T ). Later, we quantify this decay by an
abstract assumption (which is known to hold true for many relevant applications).

Remark 1 If U (T ) = � for all T ∈ TH , then Qh = −Ph , where Ph is the orthogonal
projection given by (4). In this sense, V ms is localization of the space V ms

� . This can
be verified using (5), which yields for all wh ∈ Wh

ah(φh + Qh(φh), wh) =
∑

T ∈TH

(
aT

h (φh, wh) + ah(QT
h (φh), wh)

)
= 0.

By uniqueness of the projection, we conclude Qh = −Ph .

The above setting is used to construct the multiscale methods utilizing the LOD
method as e.g. done in [19,35] for the standard finite element formulation and a
corresponding Petrov–Galerkin formulation.

3 Methods and properties

In this section, we state the LOD in Galerkin and in Petrov–Galerkin formulation
along with their respective a priori error estimates and the inf-sup stability. In the last

123



D. Elfverson et al.

part of this section, we give two explicit examples and discuss the advantages of the
Petrov–Galerkin formulation. Subsequently we use the notation a � b to abbreviate
a ≤ Cb, where C is a constant that is independent of the mesh sizes H and h; and
which is independent of the possibly rapid oscillations in A.

In order to state proper a priori error estimates, we describe the notion of ‘patch
size’ and how the size of U (T ) affects the final approximation. All the stated theorems
on the error estimates of the LOD methods are proved in Sect. 5.

Definition 4 (Patch size) Let k ∈ N>0 be fixed. We define patches U (T ) that consist
of the element T and k-layers of coarse element around it. For all T ∈ TH , we define
element patches in the coarse mesh TH by

U0(T ) := T,

Uk(T ) := ∪ {
T ′ ∈ TH |T ′ ∩ Uk−1(T ) �= ∅}

k = 1, 2, . . . . (8)

The above concept of patch sizes and patch shapes can be also generalized. See for
instance [22] for a LOD that is purely based on partitions of unity. Using Definition
4, we make an abstract assumption on the decay of the local correctors QT

h (
H ) for

H ∈ VH :

(A8) Let Q�,T
h (
H ) be the optimal local corrector using U (T ) = � that

is defined according to (6) and let Q�
h (
H ) := ∑

T ∈TH
Q�,T

h (
H ).
Let k ∈ N>0 and for all T ∈ TH let U (T ) = Uk(T ) as in Definition 4.
Then there exists p ∈ {0, 1} and a generic constant 0 < θ < 1 that
can depend on the contrast, but not on H , h or the variations of A
such that for all 
H ∈ VH ,

∣∣∣∣∣∣(Qh − Q�
h )(
H )

∣∣∣∣∣∣2
h � kdθ2k(1/H)2p

∣∣∣∣∣∣
H + Q�
h (
H )

∣∣∣∣∣∣2
h , (9)

where Qh(
H ) is given by (7) for U (T ) = Uk(T ).

Assumption (A8) quantifies the decay of local correctors, by stating that the solu-
tions of the local corrector problems decay exponentially to zero outside of T . This is
central for all a priori error estimates. For continuous Galerkin methods, we can obtain
the optimal order p = 0 for the exponent in (9). This means, that the (1/H)-term fully
vanishes. However, depending on the localization strategy [i.e. how Qh(
H ) is com-
puted] it is also possible that p takes the value 1 and that hence a pollution term of
order (1/H) arises (see [19, Remark 3.8] for a discussion). For discontinuous Galerkin
methods, the optimal known order is p = 1. However, even for this case it is known
that the (1/H)-term is rapidly overtaken by the decay, leading purely to slightly larger
patch sizes (see e.g. [35]).

3.1 Galerkin LOD

This method was originally proposed in [35]: find uG-LOD
H ∈ V ms that satisfies

ah

(
u G-LOD

H ,
ms
)

= ( f,
ms) for all 
ms ∈ V ms. (10)
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Theorem 1 (A priori error estimate for Galerkin LOD) Assume (A1)–(A8). Given a
positive k ∈ N>0, let for all T ∈ TH the patch U (T ) = Uk(T ) be defined as in (8)
and let u G-LOD

H ∈ V ms be as governed by (10). Let uh ∈ Vh be the fine scale reference
solution governed by (2). Then, the following a priori error estimate holds true

∥∥∥uh − ((IH |VH )−1 ◦ IH )(uG-LOD
H )

∥∥∥
L2(�)

+ ∣∣∣∣∣∣uh − uG-LOD
H

∣∣∣∣∣∣
h

� (H + (1/H)pkd/2θk)‖ f ‖L2(�), (11)

where 0 < θ < 1 and p ∈ {0, 1} are the generic constants in (A8).

The term ((IH |VH )−1 ◦ IH )(uG-LOD
H ) describes the coarse part (resulting from VH )

of uG-LOD
H and thus is numerically homogenized (the oscillations are averaged out).

In this sense, we can say that uG-LOD
H is an H1-approximation of uh and ((IH |VH )−1 ◦

IH )(uG-LOD
H ) an L2-approximation of uh , respectively. Furthermore, because k

d
2 θk

converges with exponential order to zero, the error |||uh − uG-LOD
H |||h is typically

dominated by the first term of order O(H). This was observed in various numerical
experiments in different works, cf. [19,20,35]. In particular, a specific choice k � (p+
1)| log(H)| leads to a O(H) convergence for the total H1-error, see also [19,20,35].

3.2 Petrov–Galerkin LOD

In a straightforward manner, we can now state the LOD in Petrov–Galerkin formula-
tion: find u PG-LOD

H ∈ V ms that satisfies

ah

(
u PG-LOD

H ,
H

)
= ( f,
H ) for all 
H ∈ VH . (12)

A unique solution of (12) is guaranteed by the inf-sup stability. In practice, inf-sup
stability is clearly observable in numerical experiments (see Sect. 4). Analytically we
can make the following observations.

Remark 2 (Quasi-orthogonality and inf-sup stability) The inf-sup stability of the LOD
in Petrov–Galerkin formulation is a natural property to expect, since we have quasi-
orthogonality in ah(·, ·) of the spaces V ms and Wh . This can be verified by a simple
computation. Let 
ms = 
H + Qh(
H ) ∈ V ms, let wh ∈ Wh and let Q�

h (
H ) the
optimal corrector as in assumption (A8), then

ah(
ms, wh) = ah(
H + Qh(
H ), wh)

= ah
(
Qh(
H ) − Q�

h (
H ), wh
)

≤ ∣∣∣∣∣∣Qh(
H ) − Q�
h (
H )

∣∣∣∣∣∣
h |||wh |||h

� kd/2θk(1/H)p
∣∣∣∣∣∣
H + Q�

h (
H )
∣∣∣∣∣∣

h |||wh |||h,

with generic constants 0 < θ < 1 and p ∈ {0, 1} as in (A8). This means that
ah(
ms, wh) converges exponentially in k to zero, and it is identical to zero for all
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sufficiently large k [because then Qh(
H ) = Q�
h (
H )]. Writing the PG-LOD bilinear

form as

ah(
H + Qh(
H ),�H )

= ah(
H + Qh(
H ),�H + Qh(�H )) + ah(
H + Qh(
H ), Qh(�H )),

we see that it is only a small perturbation of the symmetric (coercive) G-LOD version,
where the difference can be bounded by the quasi-orthogonality.

Even though the quasi-orthogonality suggests inf-sup stability, the given assump-
tions (A1)–(A8) do not seem to be sufficient for rigorously proving it. Here, it seems
necessary to leave the abstract setting and to prove the inf-sup stability result for the
various LOD realizations separately. For simplification, we therefore make the inf-sup
stability to be an additional assumption [see (A9) below]. Later we give an example
how to prove this assumption for a certain realization of the method. We also note that
the inf-sup stability can be always verified numerically (for a given k) by investigating
the system matrix SPG-LOD given by the entries

(S PG-LOD)i j = ah(
 j + Qh(
 j ),
i )

for 1 ≤ i, j ≤ NH where NH denotes the dimension of VH and where {
i | 1 ≤
i ≤ NH } denotes a basis of VH . To check the inf-sup stability we must compute the
eigenvalues of S PG-LOD. If their real parts are all strictly positive, we have inf-sup
stability and the inf-sup constant is identical to the smallest real part of an eigenvalue.
Standard approaches for computing the eigenvalues of a non-symmetric matrix are
the Arnoldi method, the Jacobi–Davidson method and the non-symmetric Lanczos
algorithm (cf. [39] for a comprehensive overview). Since NH is moderately small, the
cost for applying one of the methods are still feasible.

(A9) We assume that the LOD in Petrov–Galerkin formulation is inf-sup stable in
the following sense: there exists a sequence of constants α(k) and a generic
limit α0 > 0 (independent of H , h, k or the oscillations of A) such that
α(k) converges with exponential speed to α0, i.e. there exist constants C(H)

(possibly depending on H , but not on h, k or the oscillations of A) and a
generic θ ∈ (0, 1) such that |α(k)−α0| ≤ C(H)kd/2θk . Furthermore it holds
α(k̄) = α0 for all sufficiently large k̄ and

ah(
ms,
H )

|||
H |||H
≥ α(k)|||
ms|||h,

for all 
ms ∈ V ms and 
H := ((IH |VH )−1 ◦ IH )(
ms) ∈ VH .

The following result states that the approximation quality of the LOD in Petrov–
Galerkin formulation is of the same order as for the Galerkin LOD, up to a possible
pollution term depending on CH,h , but which still converges exponentially to zero.

Theorem 2 (A priori error estimate for PG-LOD) Assume (A1)–(A9). Given a positive
k ∈ N>0, let for all T ∈ TH the patch U (T ) = Uk(T ) be defined as in (8) and large
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enough so that the inf-sup constant in (A9) fulfills α(k) ≥ ᾱ for some ᾱ > 0 and
let uPG-LOD

H be the unique solution of (12). Let uh ∈ Vh be the fine scale reference
solution governed by (2). Then, the following a priori error estimate holds true

∥∥∥uh − ((IH |VH )−1 ◦ IH )(u PG-LOD
H )

∥∥∥
L2(�)

+ ∣∣∣∣∣∣uh − uPG-LOD
H

∣∣∣∣∣∣
h

� (H + (1/H)p(1 + (1/ᾱ))(1 + CH,h)kd/2θk)‖ f ‖L2(�),

where 0 < θ < 1 and p ∈ {0, 1} are the generic constants from assumption (A8) and
CH,h as in (A5).

3.3 Example 1: continuous Galerkin finite element method

The previous subsection showed that the Petrov–Galerkin formulation of the LOD
does not suffer from a loss in accuracy with respect to the symmetric formulation. In
this subsection, we give the specific example of the LOD for the continuous Galerkin
finite element method. In particular, we discuss the advantage of the PG formulation
over the symmetric formulation. Let us first introduce the specific setting and the
corresponding argument about the validity of (A4)–(A9) on this setting.

In addition to the assumptions that we made on the shape regular partitions TH

and Th in Sect. 2.1, we assume that TH and Th are either triangular or quadrilateral
meshes. Accordingly, for T = TH , Th we denote

P1(T ) :=
{
v ∈ C0(�)|∀T ∈ T , v|T is a polynomial of total degree ≤1

}
and

Q1(T ) :=
{
v ∈ C0(�)|∀T ∈ T , v|T is a polynomial of partial degree ≤1

}

and define Vh := P1(Th)∩ H1
0 (�) if Th is simplicial and Vh := Q1(Th)∩ H1

0 (�) if it
is a quadrilation. The coarse space VH ⊂ Vh is defined in the same fashion and since
Th is a refinement of TH , assumption (A6) is obviously fulfilled. For simplicity, we
also assume that the coarse mesh TH is quasi-uniform (which is the typical choice in
applications).

The bilinear form ah(·, ·) is defined by the standard energy scalar product on H1
0 (�)

that belongs to the elliptic problem to solve, i.e.

ah(v,w) :=
∫

�

A∇v · ∇w for v,w ∈ H1
0 (�).

Accordingly, we set |||v|||h := |||v|||H := ‖A1/2∇v‖L2(�) for v ∈ H1(�). Hence,
assumptions (A5) and (A6) are fulfilled and the solution uh ∈ Vh of (2) is nothing but
the standard continuous Galerkin finite element solution on the fine grid Th .

Next, we specify IH : Vh → Wh in (A7). For this purpose, let 
z ∈ VH be the nodal
basis function associated with the coarse grid node z ∈ NH , i.e., 
z(y) = δyz . Let IH

be the weighted Clément-type quasi-interpolation operator as defined in [9,10]:
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IH : H1
0 (�) → VH , v �→ IH (v) :=

∑
z∈N 0

H

vz
z with vz := (v,
z)L2(�)

(1,
z)L2(�)

. (13)

First we note that it was shown in [35] that (IH )|VH : VH → VH is an isomorphism
[but not a projection, i.e. (IH |VH )−1 �= IH |VH ]. Hence, (IH )−1

|VH
exists. This is one

of the properties in (A7). The L2- and H1-stability of IH , as well as correspond-
ing approximation properties, were proved in [9]. It only remains to check the H1-
stability of (IH )−1

|VH
. Unfortunately, this property is not trivial to fulfill. First, we

note that it was shown in [34] that the mapping (IH )−1
|VH

◦ IH is nothing but the

L2-projection PL2 : H1
0 (�) → VH (see also Remark 5 below). Consequently, the

question of H1-stability of (IH )−1
|VH

is equivalent to the question of H1-stability of

the L2-projection. This result is well-established for quasi uniform grids (cf. [6])
as assumed at the beginning of this section. However it is still open for arbitrary
refinements. The most recent results on this issue can be found in [7,15,29], where
the desired H1-stability was shown for certain types of adaptively refined meshes.
To avoid complicated mesh assumptions in this paper, we simply assume TH to be
quasi-uniform. This is not very restrictive since adaptive refinements should typi-
cally take place on the fine mesh Th . Alternatively, in light of [7,15,29], we could also
directly assume that the L2-projection on VH is H1-stable to allow more general coarse
meshes.

It remains to specify aT
h (·, ·), which we define by

aT
h (v,w) :=

∫
T

A∇v · ∇w for v,w ∈ H1
0 (�).

Let us for simplicity denote ||| · |||h,T := ‖A1/2∇ · ‖L2(T ). The decay assumption
(A8) was essentially proved in [19, Lemma 3.6], which established the existence of a
generic constant 0 < θ < 1 with the properties as in (A8) such that

∣∣∣∣∣∣(Qh − Q�
h )(
H )

∣∣∣∣∣∣2
h � kdθ2k

∑
T ∈TH

∣∣∣
∣∣∣
∣∣∣Q�,T

h (
H )

∣∣∣
∣∣∣
∣∣∣2

h
, (14)

for all 
H ∈ VH . On the other hand we have by ||| · |||h,T = ‖A1/2∇ · ‖L2(T ) and Eq.
(6) that

∣∣∣
∣∣∣
∣∣∣Q�,T

h (
H )

∣∣∣
∣∣∣
∣∣∣2

h
� ah

(
Q�,T

h (
H ), Q�,T
h (
H )

)

= −aT
h

(

H , Q�,T

h (
H )
)

� |||
H |||h,T

∣∣∣
∣∣∣
∣∣∣Q�,T

h (
H )

∣∣∣
∣∣∣
∣∣∣
h
. (15)
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Hence, by plugging this result into (14):
∣∣∣∣∣∣(Qh − Q�

h )(
H )
∣∣∣∣∣∣2

h � kdθ2k
∑

T ∈TH

|||
H |||2h,T

� kdθ2k |||
H |||2h = kdθ2k |||((IH |VH )−1 ◦ IH )(
H + Q�
h (
H ))|||2h

(A7)

� kdθ2k |||
H + Q�
h (
H )|||2h,

which proves that assumption (A8) holds even with p = 0. The remaining assumption
(A9) is less obvious and requires a proof. We give this proof for the continuous Galerkin
PG-LOD in Sect. 5. We summarize the result in the following lemma.

Lemma 1 (Inf-sup stability of continuous Galerkin PG-LOD) For all T ∈ TH let
U (T ) = Uk(T ) for k ∈ N. Then there exist generic constants C1, C2 (independent of
H, h, k or the oscillations of A) and 0 < θ < 1 as in assumption (A8), so that it holds

inf

H ∈VH

sup

ms∈V ms

a(
ms,
H )

|||
ms|||h |||
H |||h ≥ α(k),

for α(k) := C1α − C2kθkω(
ms) and

0 ≤ ω(
ms) := inf
wh∈W T

h

∥∥∇
ms − ∇((IH |VH )−1 ◦ IH )(
ms) − ∇wh
∥∥∥∥∇
ms − ∇((IH |VH )−1 ◦ IH )(
ms)

∥∥ ≤ 1,

where W T
h := {wh ∈ Wh | wh |T ∈ Wh(T )}, i.e. the space of all functions from Wh that

are zero on the boundary of the coarse grid elements. Observe that α(k) converges with
exponential speed to αC1. Furthermore we have α(0) = C1α [because ω(
ms) = 0]
and also α(�) = C1α for all sufficiently large �.

Remark 3 Let U (T ) = Uk(T ) for k ∈ N with k � | log(H)|, then the CG-LOD in
Petrov–Galerkin formulation is inf-sup stable for sufficiently small H . In particular,
there exists a unique solution of problem (12).

Remark 4 Lemma 1 does not allow to conclude to inf-sup stability for the regime
0 < k � | log(H)|. However, even though this regime is not of practical relevance, it
is interesting to note that we could not observe a violation of the inf-sup stability for
any value of k and in any numerical experiment that we set up so far.

Since assumptions (A1)–(A9) are fulfilled for this setting, Theorems 1 and 2 hold
true for the arising method. Furthermore, we have p = 0 and CH,h = 1 in the
estimates, meaning that the (1/H)-pollution in front of the decay term vanishes. We
can summarize the result in the following conclusion.

Conclusion 3 Assume the (continuous Galerkin) setting of this subsection and let
uPG-LOD

H denote a Petrov–Galerkin solution of (12). If k � m H | log(H)| for m ∈ N,
then it holds

∥∥uh − uPG-LOD
H

∥∥
H1(�)

� (H + Hm)‖ f ‖L2(�).
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In particular, the bound is independent of CH,h.

3.4 Discussion of advantages

The central disadvantage of the Galerkin LOD is that it requires a communication
between solutions of different patches. Consider for instance the assembly of the
system matrix that belongs to problem (10). Here it is necessary to compute entries of
the type

∫
�

A∇(
i + Qh(
i )) · ∇(
 j + Qh(
 j )),

which particularly involves the computation of the term

∑
T ∈TH
T ⊂ωi

∑
K∈TH
K⊂ω j

∫
U (T )∩U (K )

A∇QT
h (
i ) · ∇QK

h (
 j ), (16)

where 
i ,
 j ∈ VH denote two coarse nodal basis functions and ωi and ω j its cor-
responding supports. The efficient computation of (16) requires information about
the intersection area of any two patches U (T ) and U (K ). Even if T and K are not
adjacent or close to each other, the intersection of the corresponding patches can be
complicated and non-empty. The drawback becomes obvious: first, these intersection
areas must be determined, stored and handled in an efficient way and second, the
number of relevant entries of the stiffness matrix (i.e. the non-zeros) increases con-
siderably. Note that this also leads to a restriction in the parallelization capabilities,
in the sense that the assembly of the stiffness matrix can only be ‘started’ if the cor-
rectors Qh(
i ) are already computed. Another disadvantage is that the assembly of
the right hand side vector associated with ( f,
ms) in (10) is much more expensive
since it involves the computation of entries ( f,
i + Qh(
i ))L2(�). First, the inte-
gration area is ∪{U (T )| T ∈ TH , T ⊂ ωi } instead of typically ωi . This increases
the computational costs. At the same time, it is also hard to assemble these entries
by performing (typically more efficient) element-wise computations (for which each
coarse element has to be visited only once). Second, ( f,
i + Qh(
i ))L2(�) involves
a quadrature rule of high order, since Qh(
i ) is rapidly oscillating. These oscillations
must be resolved by the quadrature rule, even if f is a purely macroscopic function
that can be handled exactly by a low order quadrature. Hence, the costs for comput-
ing ( f,
i + Qh(
i ))L2(�) depend indirectly on the oscillations of A. Finally, if the
LOD shall be applied to a sequence of problems of type (1), which only differ in the
source term f (or a boundary condition), the system matrix can be fully reused, but
the complications that come with the right hand side have to be addressed each time
again.

The Petrov–Galerkin formulation of the LOD clearly solves these problems without
suffering from a loss in accuracy. In particular:
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– The PG-LOD does not require any communication between two different patches
and the resulting stiffness matrix is sparser than the one for the symmetric LOD. In
particular, the entries of the system matrix S can be computed with the following
algorithm:

Let S denote the empty system matrix with entries Si j .

Algorithm: assembleSystemMatrix( TH , Th , k )

In parallel foreach T ∈ TH do
foreach zi ∈ N 0

H with zi ∈ T do

compute QT
h (
zi ) ∈ Wh(Uk (T )) with

a(QT
h (
zi ), wh) = −

∫
T

A∇
zi · ∇wh for all wh ∈ Wh(Uk (T )).

foreach z j ∈ N 0
H with z j ∈ U (T ) do

update the system matrix:

S ji +=
∫
ω j

A
(

zi + ∇QT

h (
zi )
)

· ∇
z j .

end
end

end

Observe that it is possible to add the local terms a(
zi + QT
h (
zi ),
z j ) directly to

the system matrix S, i.e. the assembling of the matrix is parallelized in a straight-
forward way and does not rely on the availability of other results.

– Replacing the source term f in (1), only involves the re-computation of the terms
( f,
i )L2(ωi )

for coarse nodal basis functions 
i , i.e. the same costs as for the
standard FE method on the coarse scale. Furthermore, the choice of the quadrature
rule relies purely on f , but not on the oscillations of A.

Besides the previously mentioned advantages, there is still a memory consuming
issue left: the storage of the local correctors QT

h (
zi ). These local correctors need to
be saved in order to express the final approximation u PG-LOD

H which is spanned by
the multiscale basis functions 
i + Qh(
i ). As long as we are interested in a good
H1-approximation of the solution, this problem seems to be unavoidable. However,
in many applications we can even overcome this difficulty by exploiting another very
big advantage of the PG-LOD: Theorem 2 predicts that alone the ‘coarse part’ of
u PG-LOD

H , denoted by u H := ((IH |VH )−1 ◦ IH )(u PG-LOD
H )) ∈ VH , already exhibits

very good L2-approximation properties, i.e. if k � | log(H)| we have essentially

‖uh − u H ‖L2(�) ≤ O(H).

In contrast to u PG-LOD
H , the representation of u H does only require the classical

coarse finite element basis functions. Hence, we can use the algorithm presented
earlier, with the difference that we can immediately delete QT

h (
i ) after updating the
stiffness matrix. Observe that even if computations have to be repeated for different
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source terms f , this stiffness matrix can be reused again and again. Also, if a user is
interested in the fine scale behavior in a local region [but the QT

h (
i ) were already
dropped], it is still possible to quickly re-compute the desired local corrector for the
region.

As an application, consider for instance the case that the problem

∫
�

A∇u · ∇v =
∫

�

f v

describes the diffusion of a pollutant in groundwater. Here, u describes the concen-
tration of the pollutant, A the (rapidly varying) hydraulic conductivity and f a source
term describing the injection of the pollutant. In such a scenario, there is typically
not much interest in finding a good approximation of the (locally fluctuating) gradient
∇u, but rather in the macroscopic behavior of pollutant u, i.e. in purely finding a
good L2-approximation that allows to conclude where the pollutant spreads. A sim-
ilar scenario is the investigation of the properties of a composite material, where A
describes the heterogenous material and f some external force. Again, the interest
is in finding an accurate L2-approximation. Besides, the corresponding simulations
are typically performed for a variety of different source terms f , investigating differ-
ent scenarios. In this case, the PG-LOD yields reliable approximations with very low
costs, independent of the structure of A.

Remark 5 (Relation to the L2-projection) Assume the setting of this subsection. In
[34] it was shown that (vH , wh)L2(�) = 0 for all vH ∈ VH and wh ∈ Wh , i.e. VH and
Wh are L2-orthogonal. This implies that

(IH |VH )−1 ◦ IH = PL2 ,

with PL2 denoting the L2-projection on VH . To verify this, let vh ∈ Vh be arbitrary.
Then due to Vh = VH ⊕Wh we can write vh = vH +wh (with vH ∈ VH and wh ∈ Wh)
and observe for all 
H ∈ VH

∫
�

PL2(vh) 
H =
∫

�

vh 
H
VH ⊥L2 Wh=

∫
�

vH 
H

=
∫

�

((IH |VH )−1 ◦ IH )(vH ) 
H
IH (wh)=0=

∫
�

((IH |VH )−1 ◦ IH )(vh) 
H .

Hence, u PG-LOD
H = u H + Qh(u H ) with u H = PL2(u PG-LOD

H ).

Conclusion 4 (Application to homogenization problems) Assume the setting of this
subsection and let PL2 denote the L2-projection on VH as in Remark 5. We consider
now a typical homogenization setting with (ε)>0 ⊂ R>0 being a sequence of positive
parameters that converges to zero. Let Y := [0, 1]d denote the unique cube in R

d and
let Aε(x) = Ap(x, x

ε
) for a function Ap ∈ W 1,∞(� × Y ) that is Y -periodic in the

second argument (hence Aε is rapidly oscillating with frequency ε). The corresponding
exact solution of problem (1) shall be denoted by uε ∈ H1

0 (�). It is well known (cf. [3])

123



Petrov–Galerkin formulation

that uε converges weakly in H1 (but not strongly) to some unique function u0 ∈ H1
0 (�).

Furthermore, if ‖ f ‖L2(�) � 1 it holds ‖uε − u0‖L2(�) � ε. With Theorem 2 together
with Remark 5 and standard error estimates for FE problems, we hence obtain:

‖u0 − u H ‖L2(�) � ε +
(

h

ε

)2

+ H,

for u H = PL2(u PG-LOD
H ). Homogenization problems are typical problems, where one

is often purely interested in the L2-approximation of the exact solution uε , meaning
one is interested in the homogenized solution u0.

As discussed in this section, the PG-LOD can have significant advantages over
the (symmetric) G-LOD with respect to computational costs, efficiency and memory
demand. In Sect. 4.1 we additionally present a numerical experiment to demonstrate
that the approximations produced by the PG-LOD are in fact very close to the ones
produced by (symmetric) G-LOD, i.e. not only of the same order as predicted by the
theorems, but also of the same quality.

Remark 6 (Nonlinear problems) The above results suggest that the advantages can
become even more pronounced for certain types of nonlinear problems. For instance,
consider a well-posed problem of the type

−∇ · A∇u + c(u) = f,

for a nonlinear function c. Here, it is intuitively reasonable to construct Qh(
H ) as
before using only the linear elliptic part of the problem. This is a preprocessing step
that is done once and can be immediately deleted stiffness matrix is calculated and
saved. Then we solve for u H ∈ VH that satisfies

(A∇(u H + Qh(u H )),∇
H )L2(�) + (c(u H ),
H )L2(�) = ( f,
H )L2(�)

for all 
H ∈ VH . Clearly, typical iterative solvers can be utilized to solve this vari-
ational problem. This iteration is inexpensive because it is done in VH and the pre-
constructed stiffness matrix can be fully reused within every iteration and since the
other contributions are independent of Qh . Performing iterations on the coarse space
for solving nonlinear problems within the framework of multiscale finite element has
been investigated (see for example [12,16]).

3.5 Example 2: discontinuous Galerkin finite element method

In this subsection, we apply the results of Sect. 3.2 to a LOD Method that is based on a
discontinuous Galerkin approach. The DG-LOD was originally proposed in [14] and
fits into the framework proposed in Sect. 2.2. First, we show that the setting fulfills
assumptions (A4)–(A8) and after we discuss the advantage of the PG DG-LOD over
the symmetric DG-LOD. For simplification, we assume that A is piecewise constant
with respect to the fine mesh Th so that all of the subsequent traces are well-defined.
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Again, we make the same assumptions on the partitions TH and Th as in Sect. 2.1
and additionally assume that TH and Th are either triangular or quadrilateral meshes.
The corresponding total sets of edges (or faces for d = 3) are denoted by Eh (for Th),
where Eh(�) and Eh(∂�) denotes the set of interior and boundary edges, respectively.

Furthermore, for T = TH , Th we denote the spaces of discontinuous functions with
total, respectively partial, polynomial degree equal to or less than 1 by

P1(T ) :=
{
v ∈ L2�)|∀T ∈ T , v|T is a polynomial of total degree ≤1

}
and

Q1(T ) :=
{
v ∈ L2(�)|∀T ∈ T , v|T is a polynomial of partial degree ≤1

}

and define Vh := P1(Th) if Th is a triangulation and Vh := Q1(Th) if it is a quadrilation.
The coarse space VH ⊂ Vh is defined in the same fashion with TH instead of Th . Note
that these spaces are no subspaces of H1(�) as in the previous example. For this
purpose, we define ∇h to be the Th-piecewise gradient [i.e. (∇hvh)|t := ∇(vh |t) for
vh ∈ Vh and t ∈ Th].

For every edge/face e ∈ Eh(�) there are two adjacent elements t−, t+ ∈ Th with
e = ∂t− ∩ ∂t+. We define the jump and average operators across e ∈ Eh(�) by

[v] := (v|t− − v|t+) and {A∇v · n} := 1

2
((A∇v)|t− + (A∇v)|t+) · n,

where n be the unit normal on e that points from t− to t+, and on e ∈ Eh(∂�) by

[v] := w|t and {A∇v · n} := (A∇v)|t · n

where n is the outwards unit normal of t ∈ Th (and �). Observe that flipping the roles
of t− and t+ leads to the same terms in the bilinear form defined below.

With that, we can define the typical bilinear form that characterizes the discontin-
uous Galerkin method:

ah(vh, wh) := (A∇hvh,∇hwh)L2(�) +
∑
e∈Eh

σ

he
([vh], [wh])L2(e)

−
∑
e∈Eh

(
({A∇vh · n}, [wh])L2(e) + ({A∇wh · n}, [vh])L2(e)

)
.

Here, σ is a penalty parameter that is chosen sufficiently large and he = diam(e). The
coarse bilinear form aH (·, ·) is defined analogously with coarse scale quantities. It is
well known, that ah(·, ·) [respectively aH (·, ·)] is a scalar product on Vh (respectively
VH ). Consequently (A4) is fulfilled. As a norm on Vh that fulfills assumption (A5),
we can pick
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|||v|||h :=
∥∥∥A1/2∇hv

∥∥∥
L2(�)

+
⎛
⎝∑

e∈Eh

σ

he
‖[v]‖2

L2(e)

⎞
⎠

1/2

.

Analogously, we define |||v|||H to be a norm on VH . In this case we obtain the constant
CH,h = √

H/h. Assumption (A6) is obviously fulfilled.
As the operator in assumption (A7) we pick the L2-projection on VH , i.e. for

vh ∈ Vh we have

(Ih(vh),
H )L2(�) = (vh,
H )L2(�) for all 
H ∈ VH .

In [14, Lemma 5] it was proved that the operator fulfills the desired approximation
and stability properties. Since IH is a projection, we have IH = (IH |VH )−1 and hence
obviously also ||| · |||H -stability of the inverse on VH .

The localized bilinear form aT
h (·, ·) in (5) is defined by aT

h (vh, wh) := ah(χT vh, wh)

where χT = 1 in T and 0 otherwise, is the element indicator function. Obviously we
have for all vh, wh ∈ Vh that

ah(vh, wh) =
∑

T ∈TH

aT
h (vh, wh).

In [14] the DG-LOD is presented in a slightly different way, in the sense that
there exists no general corrector operator Qh . Instead, ‘basis function correctors’ are
introduced. However, it is easily checkable that each of these ‘basis function correctors’
is nothing but the corrector operator, defined via (6), applied to an original coarse basis
function. Therefore, the correctors given by (6) are just an extension of the definition
to arbitrary coarse functions. Hence, both methods coincide and are just presented in
a different way.

Next, we discuss (A8). This property was shown in [14, Lemmas 11 and 12],
however not explicitly for the setting that we established in Definition 3. It was only
shown for 
H = λT, j , where λT, j ∈ VH denotes a basis function on T associated with
the j’th node. However, the proofs in [14] directly generalize to the local correctors
QT

h (
H ) given by Eq. (6). More precisely, following the proofs in [14] it becomes
evident that the availability of the required decay property (A8) purely relies on the
fact, that the right hand side in the local problems is only locally supported (with a
support that remains fixed, even if the patch size decreases). Therefore (A8) can be
proved analogously.

Finally, assumption (A9) is not easy to verify. It is obviously fulfilled for the case
U (T ) = �, but the generalized result is harder to verify. The following result holds
under some restrictions on the meshes TH and Th .

Lemma 2 (Inf-sup stability of discontinuous Galerkin PG-LOD) Assume that TH is
quasi-uniform and that there exists an exponent m ∈ R with m > 1 such that for all
T ∈ TH

diam(T )m � min
{
he| e ∈ Eh and e ⊂ T

}
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(i.e. if Th is also quasi-uniform we assume Hm � h). If k ∈ N is such that k �
(m+3)

2 | log(H)| then, for sufficiently small H, there exist generic positive constants
C1, C2 such that

inf

H ∈VH

sup

ms∈V ms

ah(
ms,
H )

|||
ms|||h |||
H |||H
≥ C1(α − C2 H).

Hence, we have inf-sup stability for sufficiently small H.

The proof is given in Sect. 5. We note that the inf-sup stability can be observed
numerically already under weaker assumptions (see Sect. 4) and that it is in general
‘a reasonable thing to expect’ as discussed in Remark 2.

In conclusion, the discontinuous Galerkin LOD in Petrov–Galerkin formulation
fulfills the assumptions of our framework [up to a discussion on (A9)]. The advantages
that we discussed in the previous subsection for the Petrov–Galerkin continuous finite
element method in terms of memory and efficiency remains true. However, for the PG
DG-LOD there is a very important additional advantage. It is known that the classical
DG method has the feature of local mass conservation with respect to the elements
of the underlying mesh. This can be easily checked by testing with the indicator
function of an element T in the variational formulation of the method. The local mass
conservation is a highly desired property for various flow and transport problems.
However, the DG-LOD does not preserve this property, since the indicator function of
an element (whether coarse or fine) is not in the space V ms. This problem is solved in
the PG DG-LOD, where we can test with any element from VH and in particular with
the indicator function of a coarse element. Hence, in contrast to the symmetric DG-
LOD, the PG DG-LOD is locally mass conservative with respect to coarse elements
T ∈ TH . This allows for example the coupling of the PG DG-LOD for an elliptic
problem with the solver for a hyperbolic conservation law, which was not possible
before without relinquishing the mass conservation. We discuss this further in the next
subsection.

3.6 Perspectives towards two-phase flow

In this subsection, we investigate an application of the Petrov–Galerkin DG-LOD
in the simulation of two-phase flow as governed by the Buckley–Leverett equation.
Specifically, the LOD framework is utilized to solve the pressure equation, which is
an elliptic boundary value problem, and is coupled with a solver for a hyperbolic
conservation law. The Buckley–Leverett equation can be used to model two-phase
flow in a porous medium. Generally, the flow of two immiscible and incompressible
fluids is driven by the law of mass balance for the two fluids:

�∂t Sα + ∇ · vα = qα in � × (0, Tend ] for α = w, n. (17)

Here, � is a computational domain, (0, Tend ] a time interval, the unknowns Sw, Sn :
� → [0, 1] describe the saturations of a wetting and a non-wetting fluid and vw and
vn are the corresponding fluxes. Furthermore, � describes the porosity and qw and qn
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are two source terms. Darcy’s law relates the fluxes with the two unknown pressures
pn and pw by

vα = −K
kα(Sα)

μα

(∇ pα − ρα g) for α = w, n.

Here, K denotes the hydraulic conductivity, kw and kn the relative permeabilities
depending on the saturations, μw and μn the viscosities, ρw and ρn the densities and
g the gravity vector. The saturations are coupled via Sn+Sw = 1 and a relation between
the two pressures is typically given by the capillary pressure relation Pc(Sw) = pn−pw

for a monotonically decreasing capillary pressure curve Pc. In this case, we obtain
the full two-phase flow system, which consists of two strongly coupled, possibly
degenerate parabolic equations. However, if we neglect the gravity and the capillary
pressure [i.e. assume that Pc(Sw) = 0], the system reduces to the so called Buckley–
Leverett system with an elliptic pressure equation and an hyperbolic equation for the
saturation:

−∇ · (Kλ(S)∇ p) = q and �∂t S + ∇ · ( f (S)v) = qw, (18)

where we have S = Sw, p = pw = pn , the total mobility λ(S) := kw(S)
μw

+ kn(1−S)
μn

> 0,

the flux v := −Kλ(S)∇ p and the flux function f (S) := kw(S)
μwλ(S)

. The total source is

given by q := qw+qn
2 . Observe that (18) is obtained from (17) by summing up the

equations for the saturations, using ∂t (sn + sw) = ∂t 1 = 0.
An application for which neglecting the capillary pressure is typically justified

are oil recovery processes. Here, a replacement fluid, such as water or liquid carbon
dioxide, is injected with very high rates into a reservoir to move oil towards a production
well. However, often oil is trapped at interfaces of a low and a high conductivity region.
This oil would become inaccessible which is why detailed simulations are required
before the replacement fluid can be actually injected.

Depending on the choice for the mobilities, the hyperbolic Buckley–Leverett prob-
lem can have one or more weak solutions (cf. [32]). One approach for solving the
problem numerically is to use an operator splitting technique as proposed in [4],
which is more well-known as the implicit pressure explicit saturation (IMPES). Here,
the hyperbolic Buckley–Leverett problem is treated with an explicit time stepping
method where the flux velocity v is kept constant for a certain time interval and
then updated by solving the elliptic problem with the saturation from the previous
time step (see Fig. 1 for an illustration). Alternatively, depending on the type of the
flux function f , the hyperbolic problem can be also solved implicitly with a suitable
numerical scheme for conservation laws (cf. [30]) where the flux v arising from the
Darcy equation is, as in the previous case, only updated every fixed number of time
steps.

Observe that the difficulties produced by the multiscale character of the problem
are primarily related to the elliptic part of the problem. Once the Darcy problem is
solved to update the flux velocity, the grid for solving the hyperbolic problem can be
significantly coarsened. The reason is that v = −Kλ(S)∇ p is possibly still rapidly
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previous values

Pressure

new values(pn−1, vn−1, Sn−1)

Sn−1 (pn, vn)

(Sn−1, vn) Sn (pn, vn, Sn)

Fig. 1 A schematic of operator splitting (IMPES) for system (18)

oscillating, but the relative amplitude of the oscillations is expected to remain small.
In other words, just like for standard elliptic homogenization problems, v behaves
like an upscaled quantity −K0λ(S0)∇ p0 with effective/homogenized functions K0,
S0 and p0.

Remark 7 Any realization of the LOD involves to solve a number of local problems
that help us to construct the low dimensional space V ms. One might consider to update
this space every time that the Darcy problem has to be solved with a new saturation.
However, since λ(S) is essentially macroscopic, it is generally sufficient to construct
the space only once for λ = 1 and reuse the result for every time step. This makes
solving the elliptic multiscale problem much cheaper after the multiscale space is
assembled. A justification for this reusing of the basis can be e.g. found in [20] where
it was shown that oscillations coming from advective terms can be often neglected in the
construction of a multiscale basis. Under certain assumptions, the relative permeability
λ(S) can in fact be interpreted as a pure enforcement by an additional advection
term.

4 Numerical experiments

In this section we present two different model problems. The first one involves a LOD
methods for the continuous Galerkin method. Here, we compare the results obtained
with the symmetric version of the method with the results obtained for the Petrov–
Galerkin version. In the second model problem, we use a PG DG-LOD for solving the
Buckley–Leverett system.

4.1 Continuous Galerkin PG-LOD for elliptic multiscale problems

In this section, we use the setting established in Sect. 3.3. All experiments
were performed with the G-LOD and PG-LOD for the continuous finite element
method.

In order to be more flexible in the choice of the localization patches U (T ), we
make subsequently use of “half” or “quarter coarse layers”, i.e. k ∈ Q≥0. This can be
easily accomplished by extending Definition 4 straightforwardly to fine grid layers,
i.e. for k ∈ Q≥0 and T ∈ TH we define the number of fine layers by � := � k H

h � ∈ N

and the corresponding (broken layer) patch by Uk(T ) := Uf,�(T ), where iteratively
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Uf,�(T ) := ∪{t ∈ Th | t ∩ Uf,�−1(T ) �= ∅} and Uf,0(T ) := T . This allows us a more
careful investigation of the decay behavior.

Let uh be the solution of (2). In the following we denote by ‖ · ‖ rel
L2(�)

and ‖ · ‖ rel
H1(�)

the corresponding relative error norms defined by

‖uh − vh‖ rel
L2(�)

:= ‖uh − vh‖L2(�)

‖uh‖L2(�)

and

‖uh − vh‖ rel
H1(�)

:= ‖uh − vh‖H1(�)

‖uh‖H1(�)

for any vh ∈ Vh . The coarse part (‘the VH -part’) of an LOD approximation
u G-LOD (respectively uPG-LOD) is subsequently denoted by PL2(uG-LOD) [respectively
PL2(u PG-LOD)], where PL2 denotes the L2-projection on VH (see also Remark 5).

We consider the following model problem. Let � := ]0, 1[2 and ε := 0.05. Find
uε ∈ H1(�) with

−∇ · (Aε(x)∇uε(x)) = x1 − 1

2
in �

uε(x) = 0 on ∂�.

The scalar diffusion term Aε is shown in Fig. 2. It is given by

Aε(x) := (h ◦ cε)(x) with h(t) :=

⎧⎪⎨
⎪⎩

t4 for 1
2 < t < 1

t
3
2 for 1 < t < 3

2

t else

(19)

and where

Fig. 2 Sketch of heterogeneous diffusion coefficient Aε defined according to Eq. (19)
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Table 1 Results for the errors between LOD approximations and reference solutions

H k ‖eH ‖rel
L2(�)

‖eh‖ rel
L2(�)

‖eh‖ rel
H1(�)

∥∥∥e PG
H

∥∥∥ rel

L2(�)

∥∥∥e PG
h

∥∥∥ rel

L2(�)

∥∥∥e PG
h

∥∥∥ rel

H1(�)

2−2 0 0.3794 0.3772 0.6377 0.3778 0.3755 0.6375

2−2 1/2 0.2756 0.2381 0.5312 0.2588 0.2269 0.5628

2−2 1 0.2523 0.1445 0.3637 0.2544 0.1504 0.3642

2−2 3/2 0.2514 0.1355 0.3125 0.2518 0.1380 0.3162

2−3 0 0.2039 0.2037 0.5048 0.2037 0.2036 0.5048

2−3 1 0.1100 0.0526 0.2278 0.1139 0.0619 0.2345

2−3 2 0.1073 0.0423 0.1761 0.1078 0.0453 0.1807

2−3 3 0.1070 0.0366 0.1567 0.1077 0.0399 0.1600

2−4 0 0.0874 0.0873 0.3563 0.0874 0.0873 0.3563

2−4 2 0.0353 0.0105 0.0932 0.0357 0.0123 0.0994

2−4 4 0.0351 0.0082 0.0653 0.0353 0.0093 0.0680

2−4 6 0.0351 0.0080 0.0634 0.0353 0.0091 0.0662

We define eh := uh − uG-LOD and e PG
h := uh − u PG-LOD. Accordingly we define the errors between the

reference solution and the coarse parts of the LOD approximations by eH := uh − PL2 (u G-LOD) (for the

symmetric case) and e PG
H := uh − PL2 (u PG-LOD) (for the Petrov–Galerkin case). The reference solution

uh was obtained on a fine grid of mesh size h = 2−6 ≈ 0.0157 < ε which just resolves the micro structure
of the coefficient Aε . The number of ‘coarse grid layers’ is denoted by k and determines the patch size
Uk (T )

cε(x1, x2) := 1 + 1

10

4∑
j=0

j∑
i=0

(
2

j + 1
cos

(⌊
i x2 − x1

1+i

⌋ +
⌊

i x1
ε

⌋
+ ⌊ x2

ε

⌋))
.

The goal of the experiments is to investigate the accuracy of the PG-LOD, compared
to the classical symmetric LOD. Moreover, we investigate the accuracy of the coarse
part of the LOD approximation in terms of L2-approximation properties (see Sect. 3.3
for a corresponding discussion).

In Table 1 we can see the results for a fine grid Th with resolution h = 2−6 < ε

which just resolves the micro structure of the coefficient Aε. Comparing the relative
L2- and H1-errors for the G-LOD and the PG-LOD respectively (with the reference
solution uh), we observe that the errors are of similar size in each case. In general, we
obtain slightly worse results for the PG-LOD, however the difference is so small that
is does not justify the usage of the more memory-demanding (and more expensive)
symmetric LOD. For both methods we observe the same nice error decay (in terms
of the patch size) that was already predicted by the theoretical results. Comparing the
relative L2-errors between uh and the coarse parts of the LOD-approximations, we
observe that they already yield very good approximations. We also observe that they
seem to be much more dominated by H -error contribution than by the θk-error contri-
bution (i.e. the error coming from the decay). Using patches consisting of more than 8
fine element layers did not lead to any significant improvement, while there were still
clear improvements visible for the other errors for the full G-LOD approximations.

123



Petrov–Galerkin formulation

Table 2 Results for the errors between LOD approximations and reference solutions

H k ‖eH ‖ rel
L2(�)

‖eh‖ rel
L2(�)

‖eh‖ rel
H1(�)

∥∥∥e PG
H

∥∥∥ rel

L2(�)

∥∥∥e PG
h

∥∥∥ rel

L2(�)

∥∥∥e PG
h

∥∥∥ rel

H1(�)

2−2 0 0.3840 0.3815 0.6434 0.3820 0.3796 0.6432

2−2 1/8 0.2985 0.2781 0.5486 0.2957 0.2753 0.5513

2−2 1/4 0.2852 0.2592 0.5578 0.2718 0.2472 0.5774

2−2 1/2 0.2769 0.2392 0.5386 0.2607 0.2291 0.5722

2−2 3/4 0.2676 0.2052 0.4784 0.2577 0.1972 0.4956

2−3 0 0.2106 0.2103 0.5190 0.2103 0.2100 0.5190

2−3 1/4 0.1480 0.1375 0.4510 0.1569 0.1469 0.4486

2−3 1/2 0.1372 0.1163 0.3957 0.1305 0.1089 0.4029

2−3 1 0.1138 0.0535 0.2308 0.1176 0.0628 0.2372

2−3 3/2 0.1117 0.0399 0.1710 0.1126 0.0437 0.1761

2−4 0 0.0988 0.0984 0.3854 0.0987 0.0983 0.3854

2−4 1/2 0.0637 0.0592 0.2896 0.0500 0.0442 0.2934

2−4 1 0.0406 0.0211 0.1613 0.0431 0.0263 0.1690

2−4 2 0.0381 0.0109 0.0957 0.0385 0.0130 0.1017

2−4 3 0.0380 0.0087 0.0726 0.0382 0.0099 0.0753

The errors are defined as in Table 1. The reference solution uh was obtained on a fine grid of mesh size
h = 2−8 ≈ 0.0039 � ε which fully resolves the micro structure of the coefficient Aε . Again, the number
of ‘coarse grid layers’ is denoted by k and determines the patch size Uk (T )

Furthermore, the linear convergence in H is clearly visible for ‖eH ‖ rel
L2(�)

(respectively

‖e PG
H ‖ rel

L2(�)
) showing that the obtained error estimates seem to be indeed optimal.

The same observations can be made for the errors depicted in Table 2 for a fine
grid Th with resolution h = 2−8 � ε. Again, the results for the (symmetric) G-LOD
are slightly better than the ones for the PG-LOD, but always of the same order. The
exponential convergence in k for both realization is visualized in Fig. 3. It is clearly
observable that there is no argument for using the G-LOD when dealing with patch
communication issues which are storage demanding.

These findings are confirmed in the Figs. 4 and 5. In Fig. 4 we can see a visual
comparison of the reference solution with the corresponding full LOD approxima-
tions (symmetric and Petrov–Galerkin). Both are almost not distinguishable for the
investigated setting with (h, H, k) = (2−8, 2−4, 2). Also the coarse parts of the LOD
approximations already capture all the essential behavior of the reference solution.
In Fig. 5 this is emphasized. Here, we compare the isolines between the reference
solution and PG-LOD approximation (respectively its coarse part) and we observe
that they are highly matching.

4.2 PG DG-LOD for the Buckley–Leverett equation

In this subsection we present the results of a two-phase flow simulation, based on solv-
ing the Buckley–Leverett equation as discussed in Sect. 3.6. Recall that, the Buckley–
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Fig. 3 The graphic visualizes the error decay in k. The results correspond to the results of Table 2 for
(h, H) = (2−8, 2−4). We include ‖eh‖ rel

L2(�)
, ‖eh‖ rel

H1(�)
, ‖e PG

h ‖ rel
L2(�)

and ‖e PG
h ‖ rel

H1(�)
. The x-axis

depicts the localization parameter k and the y-axis the error “‖e(k)‖ − ‖e(3)‖” on the log-scale, where
‖e(k)‖ denotes an error for k-layers (the error ‖e(3)‖ is hence the limit reference)

Fig. 4 The left picture shows the finite element reference solution uh for h = 2−8. The remaining pictures
show LOD approximations for the case (H, k) = (2−4, 2), where k denotes the (broken) number of coarse
layers. The two top row pictures show the full G-LOD approximation u G-LOD (left) and the coarse part of it,
i.e. PL2 (u G-LOD) (right). The bottom row shows the full Petrov–Galerkin LOD approximation u PG-LOD

(left) and the corresponding coarse part, i.e. PL2 (u PG-LOD) (right). The grid that is added to each of the
pictures shows the coarse grid TH

123



Petrov–Galerkin formulation

Fig. 5 The pictures depict a comparison of isolines. The black lines belong to the reference solution uh
for h = 2−8. The colored isolines in the left picture belong to the PG-LOD approximation u PG-LOD and
match almost perfectly with the one from the reference solution. The right picture shows the coarse part of
u PG-LOD, i.e. PL2 (u PG-LOD). We observe that the isolines still match nicely (color figure online)

Leverett equation has two parts, a hyperbolic equation for the saturation and a elliptic
equation for the pressure. For that reason, we use the operator splitting technique
IMPES, that we stated in Sect. 3.6. The elliptic pressure equation is solved by the
PG DG-LOD for which a discontinuous linear finite element method is utilized that
allows for recovering an elemental locally conservative normal flux. We emphasize
that having a locally conservative flux is typically central for numerical schemes for
solving hyperbolic partial differential equations. In this experiment we use an upwind-
ing scheme.

Employing PG DG-LOD in this simulation proves to be a very efficient since the
local correctors for the generalized basis functions only have to be computed once
in a preprocessing step, this follows from the fact the saturation only influence the
permeability on the macroscopic scale. The time stepping in the IMPES scheme using
the PG DG-LOD for the is realized through Algorithm 2 below.

Set the end time Tend , number of update of the pressure n, number of explicit updates on each
implicit step update m.

Algorithm 2: solveBuckleyLeverett(TH , Th , Tend, n, m)

Set the initial values: S = S0 and i = 1
Preprocessing step: Compute local corrections QT

h for all T ∈ TH with λ(S) = 1
while t ≤ Tend do

Compute pressure p using PG DG-LOD at (t + Tend/(n))

Extract conservative flux v
while t ≤ iTend/n do

Compute saturation S at (t + Tend/(nm))

Update time: t + Tend/(nm) �→ t
end
i + 1 �→ i

end
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Fig. 6 The permeability structure of Ki in log scale with, β0/α0 ≈ 5 × 105 for i = 1 (left) and β0/α0 ≈
4 × 105 for i = 2 (right)

Table 3 The resulting error in relative L2-norm between S and Sref , where S is obtained using PG DG-LOD
for the pressure computed on TH and Sref is the reference solution computed on Th

Data ‖e(T1)‖L2(�) ‖e(T2)‖L2(�) ‖e(T3)‖L2(�)

K1 0.088 0.073 0.070

K2 0.058 0.087 0.079

We have T1 = 0.05, T2 = 0.25 and T3 = 0.45

In the numerical experiment we consider the domain � to be the unit square.
The permeability Ki for i = 1, 2 is given by layer 21 and 31 of the Society of
Petroleum Engineering comparative permeability data (available on http://www.spe.
org/web/csp), projected on a uniform mesh with resolution 2−6 as illustrated in Fig. 6.

We consider a microscopic partition Th with mesh size size h = 2−8 and a macro-
scopic partition TH with mesh size H = 2−i for i = 3, 4, 5, 6. The patch size is chosen
such that the overall H convergence for the PG DG-LOD is not effected. A reference
solution to the Buckley–Leverett equation is obtained when both the pressure and
saturation equation are computed on Th , compared to using Algorithm 2 where both
the pressure and saturation equation are computed on TH . We consider the following
setup. For the pressure equation we use the boundary condition p = 1 for the left
boundary, p = 0 for the right boundary, Kλ(S)∇ p = 0 otherwise, and the source
terms qw = qn = 0. For the saturation the initial value is S = 1 on the left boundary
and 0 elsewhere. The error is defined by e(·, t) := S(·, t) − Srel(·, t), where S(·, t) is
the solution obtained by Algorithm 2 (at time t) and Srel(·, t) is the reference solution
(at time t). The errors are measured in the L2-norm. In Table 3 we fix the coarse mesh
size to be H = 2−5, and compute the error for the permeabilities K1 and K2 at the
times T1 := 0.05, T2 := 0.25 and T3 := 0.45. A graphical comparison is shown in
Figs. 7 and 8. The errors in the L2-norm is less than 0.1 for both permeabilities at
all times which is quite remarkable since the coarse mesh TH for H = 2−5 does not
resolve the data. In Table 4 we consider the test case involving permeability K1. We
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Fig. 7 The saturation profile using PG DG-LOD for the pressure equation on the grid TH (bottom) and
the reference solution on the grid Th (upper) at time T1 = 0.05 (left), T2 = 0.25 (middle), and T3 = 0.45
(right) using permeability K1

Fig. 8 The saturation profile using PG DG-LOD for the pressure equation on the grid TH (bottom) and
the reference solution on the grid Th (upper) at time T1 = 0.05 (left), T2 = 0.25 (middle), and T3 = 0.45
(right) using permeability K2

present the L2-errors at t = T2 for different values of H . We basically observe a linear
convergence rate in H/h (for fixed h) which is just what we would expect (since we
only use the coarse part of the LOD pressure approximation).
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Table 4 We consider the test case involving K1

H ‖e(T2)‖L2(�)

2−3 0.220

2−4 0.113

2−5 0.073

2−6 0.048

The table depicts relative L2-errors between S and Sref at T2 = 0.25 for different values of the coarse
mesh size H . Here, Sref denotes the reference solution computed on Th with h = 2−8 and S denotes the
numerical approximation obtained with the IMPES scheme, using the PG DG-LOD for solving the pressure
equation (with coarse mesh TH ). We pick k = �2| log(H)|�

5 Proofs of the main results

In this proof section we will frequently exploit the estimate

‖vh‖L2(�) � |||vh |||h for all vh ∈ Vh, (20)

which is a conclusion from assumption (A7). Let I −1
H := (IH |VH )−1, then (20) can

be verified as follows by using (A7).

‖vh‖L2(�) ≤ ‖vh − IH (vh)‖L2(�) + ‖IH (vh)‖L2(�)

� H |||vh |||h + ‖(IH ◦ I −1
H ◦ IH )(vh)‖L2(�)

� H |||vh |||h + |||(I −1
H ◦ IH )(vh)|||H � H |||vh |||h + |||IH (vh)|||H

� H |||vh |||h + |||vh |||h .

5.1 Proof of Theorem 1

The arguments for establishing the error estimate in ||| · |||h-norm is analogous to the
standard case, see for example [35] or [19]. We only recall the main arguments.

Proof (Proof of Theorem 1) Let uG-LOD
H = (u H + Qh(u H )) ∈ V ms be the Galerkin

LOD solution governed by (10). Utilizing the notation in (A8), we set u H,� ∈ VH to
satisfy

ah(u H,� + Q�
h (u H,�),
H + Q�

h (
H )) = ( f,
H + Q�
h (
H )) for all 
H ∈ VH

and define eh := u H,� + Q�
h (u H,�) − uh . Using Galerkin orthogonality, we obtain

ah(eh,
) = 0 for all 
 ∈ V ms
� and hence eh ∈ Wh (i.e. IH (eh) = 0). This implies

|||eh |||2h � ah(eh, eh) = ( f, eh) = ( f, eh − IH (eh)) � H‖ f ‖L2(�) |||eh |||h and
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consequently by energy minimization

|||u G-LOD
H − uh |||h = |||u H + Qh(u H ) − uh |||h � |||u H,� + Qh(u H,�) − uh |||h

≤ |||eh |||h + ∣∣∣∣∣∣Q�
h (u H,�) − Qh(u H,�)

∣∣∣∣∣∣
h

(A8)
� H‖ f ‖L2(�) + (1/H)pkd/2θk

∣∣∣∣∣∣u H,� + Q�
h (u H,�)

∣∣∣∣∣∣
h .

The bound |||u H,� + Q�
h (u H,�)|||h � ‖ f ‖L2(�) finishes the energy-norm estimate.

The estimate in the L2-norm is established in a similar fashion using (20). ��

5.2 Proof of Theorem 2

We begin with stating and proving a lemma that is required to establish the a priori
error estimate.

Lemma 3 For all vms ∈ V ms
� with vms = vH + v f , where vH ∈ VH and v f ∈ Wh,

we have

‖v f ‖L2(�) � H |||vms|||h . (21)

Proof Because of IH (v f ) = 0 and (I −1
H ◦ IH )(vH ) = vH ,

v f = v f − IH (v f ) + vH − (I −1
H ◦ IH )(vH + v f ) + IH (vH + v f ) − IH (vH ),

and therefore with IH = IH ◦ I −1
H ◦ IH and (A7),

‖v f ‖L2(�) ≤ ‖vms − IH (vms)‖L2(�) +
∥∥∥
(

I −1
H ◦ IH

)
(vms) − IH (vms)

∥∥∥
L2(�)

� H |||vms|||h +
∥∥∥
(

I −1
H ◦ IH

)
(vms) −

(
IH ◦ I −1

H ◦ IH

)
(vms)

∥∥∥
L2(�)

� H |||vms|||h + H
∣∣∣
∣∣∣
∣∣∣
(

I −1
H ◦ IH

)
(vms)

∣∣∣
∣∣∣
∣∣∣

H

� H |||vms|||h .

In the last step we used again the stability estimates for I −1
H and IH in (A7). ��

Proof (Proof of Theorem 2) Let u G-LOD
H,� and uPG-LOD

H,� be respectively the solution

of (10) and (12) for U (T ) = �. As in the statement of the theorem, u PG-LOD
H is the

solution of (12) for U (T ) = Uk(T ). By adding and subtracting appropriate terms and
applying triangle inequality, we arrive at

∣∣∣
∣∣∣
∣∣∣uh − u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣
h

≤ I1 + I2 + I3,

where we set I1 = |||uh − u G-LOD
H,� |||h , I2 = |||u G-LOD

H,� − u PG-LOD
H,� |||h , and I3 =

|||u PG-LOD
H,� − u PG-LOD

H |||h . In the following, we estimate these three terms. Because
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e(1) := (uh − u G-LOD
H,� ) ∈ Wh (cf. proof of Theorem 1) and by applying the Galerkin

orthogonality, we get

I2
1 � ah(e(1), e(1)) = ah(uh, e(1))

= ( f, e(1) − IH (e(1))) � H‖ f ‖L2(�) |||e(1)|||h ≤ H‖ f ‖L2(�) I1,

(22)

i.e. I1 � H‖ f ‖. Furthermore, e(2) := (u PG-LOD
H,� − u G-LOD

H,� ) ∈ V ms
� and the splitting

e(2) = e(2)
H +e(2)

f with e(2)
H ∈ VH and e(2)

f ∈ Wh (i.e. IH (e(2)
f ) = 0) holds true. Because

ah(u PG-LOD
H,� , e(2)

f ) = 0, we obtain

I2
2 � ah(e(2), e(2))

= ah

(
u PG-LOD

H,� , e(2)
H

)
− ah

(
u G-LOD

H,� , e(2)
)

=
(

f, e(2)
H − e(2)

)
= −

(
f, e(2)

f

)
,

(23)

where ( f, e(2)
f ) ≤ ‖ f ‖L2(�) ‖e(2)

f ‖L2(�) � ‖ f ‖L2(�) H |||e(2)|||h = H‖ f ‖L2(�) I2

by Lemma 3. Again, we conclude that I2 � H‖ f ‖L2(�). It remains to estimate
I3 for which we define e(3) := u PG-LOD

H,� − u PG-LOD
H . To simplify the notation, we

subsequently denote (according to the definitions of V ms and V ms
� )

u PG-LOD
H = u H + Qh(u H ) and u PG-LOD

H,� = u�
H + Q�

h

(
u�

H

)
,

where u H ∈ VH and u�
H ∈ VH . By the definition of problem (12) we have

ah

(
u PG-LOD

H ,
H

)
= ( f,
H ) = ah

(
u PG-LOD

H,� ,
H

)
. (24)

On the other hand, by the definition of Q�
h = −Ph (see Remark 1) and since

Qh(
H ) ∈ Wh we get

ah

(
u PG-LOD

H,� , Qh(
H )
)

= 0. (25)

Combining (24) and (25) we get the equality

ah

(
u PG-LOD

H ,
H + Qh(
H )
)

= ah

(
u PG-LOD

H , Qh(
H )
)

+ah

(
u PG-LOD

H,� ,
H + Qh(
H )
)

.

We use this equality cast u H as a unique solution of a self-adjoint variational equation
expressed as

ah(u H + Qh(u H ),
H + Qh(
H )) = Fu H ,u�
H
(
H ) for all 
H ∈ VH ,
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where Fu H ,u�
H

is a given fixed data function written as

Fu H ,u�
H
(
H )=ah(u H +Qh(u H ), Qh(
H ))+ah

(
u�

H +Q�
h

(
u�

H

)
,
H +Qh(
H )

)
.

Since this problem is self-adjoint, we get that u H is equally the minimizer in VH of
the functional

J (
H ) := ah
(

H +Qh(
H )−u�

H −Q�
h

(
u�

H

)
,
H +Qh(
H )−u�

H − Q�
h

(
u�

H

))
−2ah(u H + Qh(u H ), Qh(
H )).

Hence we obtain

αI2
3 = α|||e(3)|||2h

≤ ah(e(3), e(3))

= J (u H ) + 2ah(u H + Qh(u H ), Qh(u H ))

≤ J
(
u�

H

) + 2ah(u H + Qh(u H ), Qh(u H ))

= ah
(
Qh

(
u�

H

) − Q�
h

(
u�

H

)
, Qh

(
u�

H

) − Q�
h

(
u�

H

))
− 2ah

(
u H + Qh(u H ), Qh(u H ) − Qh

(
u�

H

))
= I31 + I32, (26)

where

I31 = ah
(
Qh

(
u�

H

) − Q�
h

(
u�

H

)
, Qh

(
u�

H

) − Q�
h

(
u�

H

))
I32 = ah

(
Qh(u H ) − Q�

h (u H ), Qh(u H ) − Qh
(
u�

H

))
.

By the boundedness of ah(·, ·) and applying (9) we get

I31 �
∣∣∣∣∣∣Qh

(
u�

H

) − Q�
h

(
u�

H

)∣∣∣∣∣∣2
h � k pθ2k(1/H)2p

∣∣∣∣∣∣u�
H + Q�

h

(
u�

H

)∣∣∣∣∣∣2
h . (27)

We now need to estimate u PG-LOD
H,� = u�

H + Q�
h (u�

H ). By the inf-sup condition and
Lemma 3,

∣∣∣
∣∣∣
∣∣∣u PG-LOD

H,�

∣∣∣
∣∣∣
∣∣∣2

h
� ah

(
u PG-LOD

H,� , u PG-LOD
H,�

)

= a
(

u PG-LOD
H,� , u�

H

)

= (
f, u�

H

)
=

(
f, u PG-LOD

H,�

)
− (

f, Q�
h (u�

H )
)

� (1 + H)‖ f ‖L2(�)

∣∣∣
∣∣∣
∣∣∣u PG-LOD

H,�

∣∣∣
∣∣∣
∣∣∣
h
, (28)
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and thus combining it with (27) yields

I31 � kdθ2k(1/H)2p‖ f ‖2
L2(�)

(29)

Furthermore, in a similar fashion we use the boundedness of ah(·, ·) and (9) to get

I32 �
∣∣∣∣∣∣Qh(u H ) − Q�

h (u H )
∣∣∣∣∣∣

h

∣∣∣∣∣∣Qh(u H ) − Qh
(
u�

H

)∣∣∣∣∣∣
h

� kd/2θk(1/H)p
∣∣∣
∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣
h

∣∣∣∣∣∣Qh(u H ) − Qh
(
u�

H

)∣∣∣∣∣∣
h (30)

By adding and subtracting appropriate terms and applying triangle inequality

∣∣∣∣∣∣Qh(u H ) − Qh
(
u�

H

)∣∣∣∣∣∣
h

≤ ∣∣∣∣∣∣(Qh − Q�
h

)
(u H )

∣∣∣∣∣∣
h + ∣∣∣∣∣∣Q�

h

(
u H − u�

H

)∣∣∣∣∣∣
h + ∣∣∣∣∣∣(Q�

h − Qh
) (

u�
H

)∣∣∣∣∣∣
h .

(31)

We use (9) to estimate the first and last terms in (31) to yield

∣∣∣∣∣∣(Qh − Q�
h

)
(u H )

∣∣∣∣∣∣
h + ∣∣∣∣∣∣(Q�

h − Qh
) (

u�
H

)∣∣∣∣∣∣
h

� kd/2θk(1/H)p
(∣∣∣

∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣
h

+
∣∣∣
∣∣∣
∣∣∣u PG-LOD

H,�

∣∣∣
∣∣∣
∣∣∣
h

)
. (32)

Moreover, by the ||| · |||h-stability of Q�
h [which holds true since Q�

h = −Ph with Ph

being the orthogonal projection defined in (4)], we have

∣∣∣∣∣∣Q�
h

(
u H − u�

H

)∣∣∣∣∣∣
h �

∣∣∣∣∣∣u H − u�
H

∣∣∣∣∣∣
h

=
∣∣∣
∣∣∣
∣∣∣
(
(IH |VH )−1 ◦ IH

)
(e(3))

∣∣∣
∣∣∣
∣∣∣
h

� CH,h |||e(3)|||h . (33)

Putting back (33) and (32) to (31) and place it in (30) gives

I32 � kdθ2k(1/H)2p
∣∣∣
∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣
h

(∣∣∣
∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣
h

+
∣∣∣
∣∣∣
∣∣∣u PG-LOD

H,�

∣∣∣
∣∣∣
∣∣∣
h

)

+ kd/2θk(1/H)p
∣∣∣
∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣
h

CH,h |||e(3)|||h

� kdθ2k(1/H)2p
(∣∣∣

∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣2

h
+

∣∣∣
∣∣∣
∣∣∣u PG-LOD

H,�

∣∣∣
∣∣∣
∣∣∣2

h

)

+ C2
H,h

δ
kdθ2k(1/H)2p

∣∣∣
∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣2

h
+ δ

4
|||e(3)|||2h, (34)

where in the last step we use the Young’s inequality for both terms, and in particular
for the second term, inserting a sufficiently small δ > 0 so that we can later on hide the
term δ

4 |||e(3)|||2h in the left hand side of (26). Note that the choice of δ is independent
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of H , h or k. Rearranging and collecting common terms in the last inequality gives

I32 �kdθ2k(1/H)2p

((
1 + C2

H,h

δ

) ∣∣∣
∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣2+

∣∣∣
∣∣∣
∣∣∣u PG-LOD

H,�

∣∣∣
∣∣∣
∣∣∣2

)
+ δ

4
|||e(3)|||2h,

so that we need to estimate |||u PG-LOD
H |||h and |||u PG-LOD

H,� |||h , respectively. The sta-
bility of the second piece was established in (28), while the stability of the first piece
is achieved by employing (A9) and (A7) in

ᾱ

∣∣∣
∣∣∣
∣∣∣u PG-LOD

H

∣∣∣
∣∣∣
∣∣∣
h

|||u H |||H � ah

(
u PG-LOD

H , u H

)
= ( f, u H ) � ‖ f ‖L2(�) |||u H |||H .

From which we conclude that

I32 � kdθ2k(1/H)2p

((
1 + C2

H,h

δ

)
(1 + ᾱ−1)‖ f ‖2

)
+ δ

4
I2
3.

To summarize, putting this last inequality and (29)–(26) and choosing sufficiently
small δ gives

I3 � kd/2θk(1/H)p
((

1 + CH,h

δ

)
(1 + ᾱ−1)‖ f ‖

)
,

combining it with the existing estimates for I1 and I2 proves the error estimate in
||| · |||h . Moreover, the estimate in the L2-norm is established in a similar fashion. This
completes the proof of the theorem. ��

5.3 Proof of Lemmas 1 and 2

Next, we prove the inf-sup stability of the continuous Galerkin LOD in Petrov–
Galerkin formulation.

Proof (Proof of Lemma 1) Let 
ms ∈ V ms be an arbitrary element. To prove the
inf-sup condition, we aim to show that

ah(
ms,
H )

|||
H |||h ≥ α(k)|||
ms|||h for 
H =
(
(IH |VH )−1 ◦ IH

)
(
ms). (35)

Let therefore U (T ) = Uk(T ) for fixed k ∈ N. By the definitions of V ms and 
H , we
have 
ms = 
H + Qh(
H ), where Qh(
H ) denotes the corresponding corrector
given by (7). By Q�

h (
H ) we denote the corresponding global corrector for the case

U (T ) = � and the local correctors are denoted by Q�,T
h (
H ). First, we observe that

by ||| · |||h = ||| · |||H

|||
H |||h =
∣∣∣
∣∣∣
∣∣∣
(
(IH |VH )−1 ◦ IH

)
(
ms)

∣∣∣
∣∣∣
∣∣∣
h

� |||
ms|||h, (36)
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where we used the ||| · |||h-stability of IH and (IH |VH )−1 according to (A7). Conse-
quently, Eq. (36) implies

|||Qh(
H )|||h ≤ |||
ms|||h + |||
H |||h � |||
ms|||h, (37)

and thus

ah(
ms,
H ) = ah(
ms,
ms) − ah
(

ms, Qh(
H )

)
≥ α|||
ms|||2h − ah

(

ms, Qh(
H )

)
≥ Cα|||
H |||h |||
ms|||h − ah

(

ms, Qh(
H )

)
, (38)

where we have used (36) again to bound |||
ms|||h from below. Note here that C
denotes a generic constant. It remains to bound ah(
ms, Qh(
H )). By the orthogo-
nality of V ms

� and Wh we have

ah
(

H + Q�

h (
H ), Qh(
H )
) = 0, (39)

and since ah(·, ·) is such that ah(vh, wh) = 0 for all vh, wh ∈ Vh with the property
supp(vh)∩supp(wh) = ∅ we get by the definition of Qh(
H ) for every wT

h ∈ Wh(T )

ah

(

H + Qh(
H ), wT

h

)
=

∑
K∈TH

(
aK

h

(

H , wT

h

)
+ ah

(
Qh(
H ), wT

h

))

=
⎛
⎝ ∑

K∈TH

aK
h

(

H , wT

h

)⎞
⎠ + ah

(
QT

h (
H ), wT
h

)

= ah

(

H + QT

h (
H ), wT
h

)

= 0. (40)

Using both equalities above and by the boundedness of ah(·, ·) and applying (37)
yields

ah
(

ms, Qh(
H )

)
= ah

(

H + Q�

h (
H ), Qh(
H )
) + ah

(
Qh(
H ) − Q�

h (
H ), Qh(
H )
)

= ah
(
Qh(
H ) − Q�

h (
H ), Qh(
H ) − wh
)

≤ ∣∣∣∣∣∣Qh(
H ) − Q�
h (
H )

∣∣∣∣∣∣
h

|||Qh(
H ) − wh |||h
|||Qh(
H )|||h |||
ms|||h . (41)

We next estimate |||Qh(
H ) − Q�
h (
H )|||h by applying (14) and establishing an

analog of (15) for Q�,T
h (
H ) expressed as

∣∣∣
∣∣∣
∣∣∣Q�,T

h (
H )

∣∣∣
∣∣∣
∣∣∣2

h
� |||
H |||h,T

∣∣∣
∣∣∣
∣∣∣Q�,T

h (
H )

∣∣∣
∣∣∣
∣∣∣
h
, (42)
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giving (for k > 0)

∣∣∣∣∣∣Qh(
H ) − Q�
h (
H )

∣∣∣∣∣∣
h � kd/2θk

⎛
⎝ ∑

T ∈TH

∣∣∣
∣∣∣
∣∣∣Q�,T

h (
H )

∣∣∣
∣∣∣
∣∣∣2

h

⎞
⎠

1/2

� kd/2θk

⎛
⎝ ∑

T ∈TH

|||
H |||2h,T

⎞
⎠

1/2

� kd/2θk |||
H |||h . (43)

Thus we end up with

ah(
ms, Qh(
H )) �
( |||Qh(
H ) − wh |||h

|||Qh(
H )|||h
)

kd/2θk |||
H |||h |||
ms|||h, (44)

which when combined with (38) implies that there exist positive generic constants
C1, C2 (independent of H and k) such that

ah(
ms,
H )

|||
H |||h |||
ms|||h ≥ C1α − C2kd/2θk inf
wh∈W T

h

|||Qh(
H ) − wh |||h
|||Qh(
H )|||h . (45)

Since infwh∈W T
h

|||Qh(
H )−wh |||h|||Qh(
H )|||h = 0 for k = 0, estimate (45) holds for all k ∈ N and

the condition k > 0 is not required. The relation Qh(
H ) = 
ms − ((IH |VH )−1 ◦
IH )(
ms) finishes the proof. ��

Finally, we prove the inf-sup stability of the discontinuous Galerkin LOD in Petrov–
Galerkin formulation.

Proof (Proof of Lemma 2) The main arguments are similar as in the proof of Lemma
1. Set n := (m + 3)/2. Let 
ms = 
H + Qh(
H ) ∈ V ms be an arbitrary element
and let U (T ) = Uk(T ) for fixed k � n| log(H)|. By the assumptions on TH and Th

and by the definitions of ||| · |||h and ||| · |||H it is easy to see that

|||
H |||h � H (1−m)/2|||
H |||H and |||
H |||H � |||
ms|||h .

Consequently we get

|||Qh(
H )|||h ≤ |||
ms|||h + |||
H |||h � (1 + H (1−m)/2)|||
ms|||h . (46)
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Thus

ah
(

ms,
H

) = ah(
ms,
ms) − ah
(

ms, Qh(
H )

)
≥ α|||
ms|||2h − ah

(

ms, Qh(
H )

)
= α|||
ms|||2h − ah

(
Qh(
H ) − Q�

h (
H ), Qh(
H )
)

≥ α|||
ms|||2h − ∣∣∣∣∣∣Qh(
H ) − Q�
h (
H )

∣∣∣∣∣∣
h |||Qh(
H )|||h

(28)≥ α|||
ms|||2h − ∣∣∣∣∣∣Qh(
H ) − Q�
h (
H )

∣∣∣∣∣∣
h (1 + H (1−m)/2)|||
ms|||h .

(47)

Using

∣∣∣∣∣∣Qh(
H ) − Q�
h (
H )

∣∣∣∣∣∣
h ≤ C(1/H)kd/2θk

∣∣∣∣∣∣
H + Q�
h (
H )

∣∣∣∣∣∣
h

≤ C(1/H)kd/2θk (|||
ms|||h +∣∣∣∣∣∣Qh(
H )−Q�
h (
H )

∣∣∣∣∣∣
h

)
≤ C Hn−1 (|||
ms|||h + ∣∣∣∣∣∣Qh(
H ) − Q�

h (
H )
∣∣∣∣∣∣

h

)

we obtain that we have for small enough H

∣∣∣∣∣∣Qh(
H ) − Q�
h (
H )

∣∣∣∣∣∣
h � Hn−1|||
ms|||h .

Inserting this into (47) gives us

ah
(

ms,
H

) ≥ α|||
ms|||2h − (1 + H (1−m)/2)Hn−1|||
ms|||2h
≥ C1(α − C2 H)|||
ms|||2h .

If H is small enough so that (α − C2 H) is positive, the stability estimate |||
H |||H �
|||
ms|||h concludes the inf-sup estimate. ��
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Multiscale methods for problems with complex geometry

Daniel Elfverson∗, Mats G. Larson†, and Axel Målqvist‡

September 14, 2015

Abstract

In this paper we extend the multiscale analysis to elliptic problems on complex domains,
e.g. domains with cracks or complicated boundary. We construct corrected coarse test and
trail spaces which takes the fine scale features of the domain into account. The corrections
only needs to be computed in regions effected by the fine scale geometrical information of
the domain. We achieve linear convergence rate in energy norm for the multiscale solution.
Moreover, the conditioning of the multiscale method is not affected by how the domain
boundary cuts the coarse elements in the background mesh. The analytical findings are
verified in a series of numerical experiments.

1 Introduction

Partial differential equations with data varying on multiple scales in space and time, so called
multiscale problems, appear in many areas of science and engineering. Two of the most prominent
examples are composite materials and flow in a porous medium. Standard numerical techniques
may perform arbitrarily badly for multiscale problems, since the convergence rely on smoothness
of the solution, see [3]. Also adaptive techniques [21], where local singularities are resolved by
local mesh refinement fail for multiscale problems since the roughness of the data is often not
localized in space. As a remedy against this issue generalized finite element methods [2] and
other related multiscale techniques [12, 13, 11, 6, 13, 14, 15, 17] have been developed. So far
these techniques have focused on multiscale coefficients in general and multiscale diffusion in
particular. Significantly less work within the multiscale community has been directed towards
handling a computational domain with multiscale boundary. However, in many applications
including voids and cracks in materials and rough surfaces, multiscale behavior emanates from the
complex geometry of the computational domain. Furthermore, the classical multiscale methods
mentioned above aim at, in different ways, upscaling the multiscale data to a coarse scale where
the equation is possible to solve at a reasonable computational cost. However, these techniques
typically assume that the representation of the computational domain is the same on the coarse
and fine scale. In practice this is very difficult to achieve unless the computational domain has
a very simple shape, which is not the case in many practical applications.

Other techniques for handling complex geometry include e.g. the extended finite element
method (XFEM) [10] and the cut finite element method (CutFEM) [5]. In XFEM the polyno-
mial approximation space is enriched with non-polynomial functions and CutFEM uses a robust
Nitsche’s formulation to weakly enforce the boundary/interface conditions on so called cut el-
ements that have more general shape compared to standard elements. However, none of these
approaches handles boundaries which varies on a smaller scale then the computational mesh.

∗Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden.
†Department of Mathematics, Ume̊a University, SE-901 87 Ume̊a, Sweden. Supported by SSF.
‡Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg

SE-412 96 Göoteborg, Sweden. Supported by the Swedish research council.
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In this paper we consider the problem of designing a multiscale method for problems with
complex computational domain. In order to simplify the presentation we will neglect multiscale
coefficients in the analysis even though the methodology directly extends to this situation. The
proposed algorithm is based on the localized orthogonal decomposition (LOD) technique pre-
sented in [15] and further developed in [7, 8, 16, 19]. In LOD both test and trail spaces are
decomposed into a multiscale space and a reminder space that are orthogonal with respect to
the scalar product induced by the bilinear form appearing in the weak form of the equation. In
this paper we propose and analyze how the modified multiscale basis functions can be blended
with standard finite element basis functions, allowing them to be used only close to the complex
boundary. We prove optimal convergence and show that the condition number of the resulting
coarse system of equations scales at an optimal rate with the mesh sizes.

The gain of this approach is that the global solution is computed on the coarse scale, with
the accuracy of the fine scale. Also, all localized fine scale computations needed to enrich the
standard finite element basis are localized and can thus be done in parallel.

The outline of the paper is as follows. In Section 2 we present the model problem and
introduce some notation. In Section 3 we formulate a multiscale method for problems where the
mesh does not resolve the boundary. In Section 4 we analyse the proposed method in several
different steps and finally prove a bound of the error in energy norm, which shows that the error
is of the same order as the standard finite element method on the coarse mesh for a smooth
problem. In Section 5 we shortly describe the implementation of the method and we prove a
bound of the condition number of the stiffness matrix, which is optimal compared to standard
finite elements on the coarse scale. Finally, in Section 6 we present some numerical experiment
to verify the convergence rate and conditioning of the proposed method.

2 Preliminaries

In this section we present a model problem, introduce some notation, and define a reference finite
element discretization of the model problem.

2.1 Model problem

We consider the Poisson equation in a bounded polygonal/polyhedral domain Ω ⊂ R
d for d = 2, 3,

with a complex/fine scale boundary ∂Ω = ΓD ∪ ΓR. That is, we consider

−Δu = f in Ω,

ν · ∇u+ κu = 0 on ΓR,

u = 0 on ΓD,

(2.1)

where ν is the exterior unit normal of Ω, 0 ≤ κ ∈ R, and f ∈ L2(Ω). For simplicity we assume
that, if κ = 0 then ΓD �= Ø to ensure existence and uniqueness of the solution u. The weak form
of the partial differential equation reads: find u ∈ V := {v ∈ H1(Ω) | v|ΓD

= 0} such that

a(u, v) :=

∫

Ω

∇u · ∇v dx+

∫

ΓR

κuv dS =

∫

Ω

fv dx =: F (v), (2.2)

for all v ∈ V. Throughout the paper we use standard notation for Sobolev spaces [1]. We denote
the local energy and L2-norm in a subset ω ⊂ Ω by

|||v|||ω =

(∫

ω

|∇u|2 dx+

∫

ΓR∩∂ω

κu2 dS

)1/2
, (2.3)
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and

‖v‖ω =

(∫

ω

u2 dx

)1/2
, (2.4)

respectively. Moreover, if ω = Ω we omit the subscript, |||v||| := |||v|||Ω and ‖v‖ := ‖v‖Ω.

2.2 Reference finite element method

We embed the domain Ω within a polygonal domain Ω0 equipped with a quasi-uniform and
shape regular mesh TH,0, i.e., Ω ⊂ Ω0 and Ω0 =

∑
T∈TH,0

T . We let TH be the sub mesh of TH,0

consisting of elements that are cut or covered by the physical domain Ω, i.e,

TH = {T ∈ TH,0 | T ∩ Ω �= Ø}. (2.5)

The finite element space on TH is defined by

VH = {v ∈ C0(Ω) | ∀T ∈ TH , v|T ∈ P1(T )}, (2.6)

where P1(T ) is the space of polynomial of total degree ≤ 1 on T . We have VH = span{ϕx}x∈N ,
where N is the set of all nodes in the mesh TH and ϕx is the linear nodal basis function associated
with node x ∈ N .

The space VH will not be sufficiently fine to represent the boundary and the boundary data.
We therefore enrich the space VH close to the complex boundary ∂Ω. In order to construct the
enrichment we define L-layer patches around the boundary recursively as follows

ω0 := int
(
(T̄ ∈ TH | T ∩ Ω �= T ) ∩ Ω

)
,

ω� := int
(
(T̄ ∈ TH | T̄ ∩ ω̄�−1

T �= ∅) ∩ Ω
)
, for � = 1, . . . , L.

(2.7)

note that ω0 is the set all elements which are cut by the domain boundary ∂Ω. An illustration
of Ω, TH,0, ω

0, and ω1 is given in Figure 1. We will later see in Lemma 4.8 that the appropriate
number of layers is determined by the decay of the H2-norm of the exact solution away from the
boundary.

Let Th be a fine mesh defined on ωk, obtained by refining the coarse mesh in ωk. On the
interior part of the boundary ∂ωk \ ∂Ω we allow hanging nodes. Let Vh(ωk) = {v ∈ C0(ωk) |
∀T ∈ Th, v|T ∈ P1(T )}. We define a reference finite element space by

VΓh := (VH + Vh(ωk)) ∩H1
ΓD

(Ω), (2.8)

which consists of the standard finite element space enriched with a locally finer finite element
space in ωk. We assume that the space VΓh is fine enough to resolve the fine scale features of the
boundary, i.e., we assume that the boundary ∂Ω is exactly represented by the fine mesh Th.

The finite element method posed in the enriched space VΓh reads: find uh ∈ VΓh such that

a(uh, v) = F (v) for all v ∈ VΓh . (2.9)

We call the solution to (2.9) the reference solution and we have the following standard a priori
error estimate

|||u− uh||| ≤ C(H|u|H2(Ω\ωk−1) + hs−1|u|Hs(ωk−1)) (2.10)

where 1 ≤ s ≤ 2 depends on the regularity of u in ωk.
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Figure 1: The computational domain Ω embedded in the mesh TH,0. The dark grey area is ω0,
and the union of the dark and light grey area is ω1.

3 The multiscale method

In the multiscale method we want to construct a coarse scale approximation of uh, which can be
computed cheaply. We present the method in two steps:

• First, we construct a global multiscale method using a corrected coarse basis which takes
the fine scale variation of the boundary into account.

• Then, we construct a localized multiscale method where the corrected basis is computed
on localized patches.

3.1 Global multiscale method

For each x ∈ N (the set of free nodes) we define a L-layer nodal patch recursively as

ω0x =: int
(
(T̄ ∈ TH | T̄ ∩ x �= ∅) ∩ Ω

)
,

ω�
x =: int

(
(T̄ ∈ TH | T̄ ∩ ω̄�−1

T �= ∅) ∩ Ω
)
, for � = 1, . . . , L.

(3.1)

We consider a projective Clément interpolation operator defined by

IHv =
∑
x∈NI

(Pxv)(x)ϕx, (3.2)

where NI is the index set of all interior nodes in Ω and Px is a local L2-projection defined by:
find Pxv ∈ {v ∈ VH | supp(v) ∩ ω0x �= Ø} such that

(Pxv, w)ω0
x
= (v, w)ω0

x
for all w ∈ {v ∈ VH | supp(v) ∩ ω0x �= ∅}. (3.3)

Using the interpolation operator we split the space VΓh into the range and the kernel of the
interpolation operator, i.e., VH = IHVΓh and Vf = (1 − IH)VΓh . However, the space VH does
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not have the satisfactory approximation properties. Instead we use the same idea as in LOD
and construct an orthogonal splitting with respect to the bilinear form. We define the corrected
coarse space as

VΓH = (1 +Q)IHVΓh (3.4)

where the operator Q is defined as follows: given vH ∈ VH find Q(vH) ∈ {v ∈ Vf | Q(vH)|ΓD
=

−vH} such that

a(Q(vH), w) = −a(vH , w) for all v ∈ {v ∈ Vf | Q(vH)|ΓD
= 0}. (3.5)

Note that VH �⊂ VΓh but VΓH ⊂ VΓh because the correctors are solved with boundary conditions that
compensates for the nonconformity of the space VH . Also, from (3.5) we have the orthogonality
a(VΓH ,Vf ) = 0 and can write the reference space as the direct sum VΓh = VΓH ⊕a Vf .

The multiscale method posed in the space VΓH reads: find uH ∈ VΓH such that

a(uH , v) = F (v) for all v ∈ VΓH . (3.6)

3.2 Localized multiscale method

Finally, we localize the computation of the corrected basis functions to nodal patches instead of
solving them globally on ωk. Using linearity of the operator Q(vH), we obtain

Q(vH) =
∑
x∈NI

vH(x)Q(ϕx). (3.7)

We denote the localized corrector by

QL(vH) =
∑
x∈NI

vH(x)QL
x (ϕx). (3.8)

where QL
x (ϕx) is the localization of Qx(ϕx) computed on an L-layer patch. The local correctors

are computed as: given x ∈ NI find QL
x (ϕx) ∈ {v ∈ V f | v|Ω\ωL

x
= 0 and v|ΓD

= −ϕx} such that,

a(QL
x (ϕx), w) = −a(ϕx, w) for all v ∈ {v ∈ V f | v|Ω\ωL

x
= 0 and v|ΓD

= 0}. (3.9)

The localized multiscale method reads: find uL
H ∈ VΓ,LH := span{ϕx +QL

x (ϕx)}x∈NI
such that

a(uL
H , v) = F (v) for all v ∈ VΓ,LH . (3.10)

The space VΓ,LH has the same dimension as the coarse space VH but the basis functions have

slightly larger support. The multiscale solution uL
H ∈ VΓ,LH has better approximation properties

compared to the standard finite element solution on the same mesh, i.e, uL
H ∈ VΓ,LH satisfy

|||uh − uL
H ||| ≤ CH, (3.11)

where H is the mesh size and the constant C is independent of the fine scale features of the
boundary Γ, which is proven in in Theorem 4.12.

In the next section we will show that the multiscale space has better approximation properties
that the standard finite element space.
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4 Error estimates

In this section we derive our main error estimates. First we present the following technical tools
needed to prove the main result

• We present an explicit way to compute an upper bound for Poincaré-Friedrich constants
on complex domains.

• We prove approximation properties of the interpolation operator on these domains.

The main result is obtained in four steps:

• We bound the difference between the analytic solution and the reference finite element
solution |||u− uh|||.

• We bound the difference between the reference finite element solution and the global mul-
tiscale method |||uh − uH |||.

• We bound the difference between a function v ∈ VH modified by the global corrector and
localized corrector |||Q(v)−QL(v)|||.

• Together these properties are used to estimate the error between the analytic solution and
the localized multiscale method.

Furthermore, let a � b abbreviate the inequality a ≤ Cb where C is any generic positive constant
independent on the domain Ω and of the the coarse and fine mesh sizes H,h.

4.1 Poincaré-Friedrichs’ inequality on complex domains

A crucial part of the proof is a Poincaré-Friedrichs inequality with a constant of moderate size.
The Poincaré inequality reads: for all u ∈ H1(ω),

inf
c∈R

‖u− c‖ω ≤ C(ω)diam(ω)‖∇u‖ω, (4.1)

holds where the optimal constant is

c =
1

|ω|
∫

ω

u dx. (4.2)

Following [18], we consider inequalities of the following type: for all u ∈ H1(ω)

‖u− λγ(u)‖ω ≤ C(ω)diam(ω)‖∇u‖ω, (4.3)

where γ ⊂ ∂ω is a (d− 1)-dimensional manifold and

λγ(u) =
1

|γ|
∫

γ

u dS. (4.4)

We introduce the notation CPF = C(ω), and refer to CPF as the Poincaré-Friedrichs constant,
which depends on the domain ω but not on its diameter.

A direct consequence of (4.3) is the following inequality

‖u‖ω � CPFdiam(ω)‖∇u‖ω + diam(ω)1/2‖u‖γ , (4.5)
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if diam(ω)d−1 � measd−1(γ), i.e., the average is taken over a large enough manifold γ ⊂ ∂ω. A
short proof is given by

‖u‖ω ≤ ‖u− λγ(u)‖ω + ‖λγ(u)‖ω
≤ CPFdiam(ω)‖∇u‖ω + |λγ(u)|measd(ω)

1/2

≤ CPFdiam(ω)‖∇u‖ω + ‖λγ(u)‖γmeasd−1(γ)
−1/2measd(ω)

1/2

� CPFdiam(ω)‖∇u‖ω + diam(ω)1/2‖λγ(u)‖γ .

(4.6)

Furthermore, from [18] we have the bound CPF ≤ 1 for the Poincaré constant on a d-dimensional
simplex where γ is one of the facets.

Next we will review some results given in [18] applied to domains with complex boundary.
In [18] the notion of quasi-monotone paths is use to prove weighted Poincaré-Friedrichs type
inequalities using average on (d− 1)-dimensional manifolds γ ⊂ ω. These results have also been
discussed for perforated domains in [4].

Definition 4.1. For simplicity we assume that ω is a polygonal domain which is subdivided into
a quasi-uniform partition of simplices τ = {T�}n�=1. We call the region P�1,�2 = (T̄�1∪T̄�2∪· · ·∪T̄�s)
a path, if T̄�i and T̄�i+1 share a common (d− 1)-dimensional manifold, measd−1(T�i ∩ T�i+1) > 0.
We will call s�1,�s := s the length of the path P�1,�s and η = maxT∈τ{diam(T )}.
Lemma 4.2. Given τ from Definition 4.1 and define the index set J = {� : ∂T�∩γ �= Ø}. Then

C2
PF � smaxrmaxη

d+1

|γ|H2
, (4.7)

holds where smax = max(sk,j) is the length of the longest path and rmax = maxi∈I |{(s, k) ∈
I × J | Ti ∈ Pk,j}| is the maximum times the paths intersect. For Friedrichs inequality we need
the extra condition u|γ = 0.

Proof. See [18] for a proof.

We will now use Lemma 4.2 to show some cases when CPF can be bounded independent of
the complex/fine scale boundary ∂Ω.

Fractal domain. We consider the fractal shaped domain given in Figure 2. First we compute
smax. The number of T� on γ is then proportional to 2k, where k is the total number of uniform
refinements of the domain and we bound the maximum path length as

smax ∼
k∑

i=0

2k

2i
≤ 2 · 2k, (4.8)

i.e., the maximum length of a path is proportional to 2k. Next we compute the maximum times
a simplex is in a path, rmax. First we show how many times the elements that are in γ are in
a path and then we show that this number is larger than on any other γi, see Figure 2. The
number of paths on each T� is the total number of elements in the domain. We get

rγ ∼
k∑

i=0

n�(i)e�(i) =
k∑

i=0

3i
(2k)2

4i
≤ 4k

k∑
i=0

(
3

4

)i

≤ 4 · 4k, (4.9)

where n�(i) is the number sub domains with index i and e�(i) is the number of elements inside
a single sub domain with index i. Next we show that there is no T in other parts of the domain
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Figure 2: A fractal domain that has a bounded Poincaré-Friedrich constant.

where the number of paths are proportional to something with a stronger dependence on n than
rγ . We obtain,

rγj ∼ 2j

3j

k∑
i=j

n�(i)e�(i) < rγ , (4.10)

where 2j comes from that 2jn�(j) = n�(0) and that only 1/3j of the domain affects boundary
rγj . This proves that rmax ∼ rγ , choosing L-type paths paths in the interior of the squares. To
finish the argument we note that H/η = 2k and |γ| = H, and we obtain

C2
PF � smaxrmaxη

d+1

|γ|H2
� 1. (4.11)

Saw tooth domain. An other example of a complex geometry is the saw domain given in
Figure 3. Let the width of the saw teeth be η = 2−k. A mesh constructed using 2k uniform

γ

Figure 3: Saw domain that has a bounded Poincaré-Friedrich constant. Here η is the width of
one of the saw teeth.

refinements are needed to resolve the saw teeth. It is clear that smax ∼ 2k and choosing L-shaped
paths we have that rmax ∼ (2k)2. Again we have that CPF � 1 as long the length of the saw
teeth are fixed.
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An example of a domain with a non-bounded Poincaré-Friedrich constant is e.g. a dumbbell
domain.

4.2 Estimation of the interpolation error

In this section we compute the interpolation error for a class of fine scale functions needed in the
analysis. For each T ∈ TH we define an L-layer element patch recursively as

ω0T =: T ∩ Ω,

ω�
T =: int

(
(T̄ ∈ TH | T̄ ∩ ω̄�−1

T �= 0) ∩ Ω
)
, for � = 1, . . . , L.

(4.12)

Lemma 4.3. The projective Clément type operator inherits the local approximation and stability
properties for all interior elements, i.e., for all v ∈ H1(Ω)

‖H−1(v − IHv)‖T + ‖∇IHv‖T � ‖∇v‖ω1
T
, (4.13)

holds for all interior elements T ∈ TH .

Proof. Follows directly from the standard proof [4] since
∑

i∈N ϕi is a partition of unity on
interior elements.

The trace of a function v ∈ Vf is “small” since the function v is in the kernel of an averaging
operator,

Vf = {v ∈ VΓh | IHv = 0}. (4.14)

Lemma 4.4. Given an interior element T ∈ TH , let γ ⊂ ∂T be one of its faces, then

‖v‖2γ � H1/2‖∇v‖ω1
T
, (4.15)

holds for all v ∈ Vf .

Proof. For an interior element T the standard approximation property of the Clemént type
interpolation operator holds, i.e.,

‖v‖T = ‖v − IHv‖T � H‖∇v‖ω1
T
. (4.16)

since v ∈ Vf . Using a trace inequality and (4.16) we obtain

‖v‖2γ � H−1‖v‖2T +H‖∇v‖2T � H‖∇v‖2ω1
T
, (4.17)

where T is an interior element.

We will now make an assumption which is a sufficient condition to prove the main results of
the paper and which will also simplify the analysis.

Assumption 4.5. All elements in S ∈ TH share a vertex with an interior element, i.e., an
element T ∈ TH such that T ∩ Ω = T .

Lemma 4.6. Let T be an element that is cut by the boundary ∂Ω. Under Assumption 4.5 the
following Poincaré-Friedrich like inequality holds

‖v‖T � H‖∇v‖ω2
T

for all v ∈ Vf . (4.18)
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Figure 4: Admissible (left) and non-admissible (right) mesh according to Assumption 4.5. The
line is where the elements are cut by the outer boundary. In this case a uniform refinement would
make the (right) mesh admissible.

Proof. Let T̃ be an element which share the vertex x with T . Using (4.5) we have that

‖v‖T ≤ ‖v‖ω0
x
� H‖∇v‖ω0

x
+H1/2‖u‖γ � H‖∇v‖ω1

˜T
� H‖∇v‖ω2

T
, (4.19)

holds, since diam(ωk−1
T ) � H and ω0x ⊂ ω1

˜T
.

Next we prove local approximation and stability properties for functions which are in a larger
space than Vf .

Lemma 4.7. Let IH : L2(ΩH)→ VH be the Clément interpolation operator defined by (3.2). If
v = ηw, where η and w satisfies 0 ≤ η ≤ 1, ‖∇η‖L∞ � H−1, and w ∈ Vf , then the following
estimate holds

‖H−1(v − IHv)‖T + ‖∇IHv‖T � ‖∇w‖ω2
T
, (4.20)

for all T ∈ TH .

Proof. The local approximation and stability properties for an interior element follows directly
from Lemma 4.16 together with

‖∇ηw‖T � H−1‖w‖T + ‖∇w‖T � ‖∇w‖ω1
T
. (4.21)

Next we investigate the local approximation and stability properties for elements on the bound-
ary. Let T be an element cut by the boundary and T̃ an interior element sharing vertex x with
T. Then the L2-stability follows directly from the stability of the interior elements, i.e,

‖(Pxv)(x)‖T = |(Pxv)(x)| ‖1‖T‖1‖
˜T

‖1‖
˜T � |(Pxv)(x)|‖1‖˜T = ‖(Pxv)(x)‖˜T

� Hd/2‖(Pxv)(x)‖L∞(˜T ) ≤ Hd/2‖Pxv‖L∞(˜T ) � ‖Pxv‖˜T
≤ ‖Pxv‖ω0

x
≤ ‖v‖ω0

x
≤ ‖v‖ω1

T
.

(4.22)

We obtain
‖v − IHv‖T � ‖v‖ω1

T
� ‖w‖ω1

T
� H‖∇w‖ω2

T
, (4.23)

since w ∈ Vf using Lemma 4.4, L2-stability of the interpolation operator, and w ∈ Vf . Similar
argument yields

‖∇IHv‖T �
∑

x∈NT

H−1‖(Pxv)(x)‖T � ‖∇w‖ω2
T
, (4.24)

where NT is all vertices in element T .
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4.3 Estimation of the error in the reference finite element solution

The reference finite element solution uh ∈ VΓh has the following approximation property.

Lemma 4.8. Let u ∈ V and uh ∈ VΓh be the solutions to (2.2) and (2.9) respectively, then

|||u− uh||| � inf
vH∈VH

(
‖H−1(u− vH)‖Ω\ωk−1

Γ
+ |||u− vH |||Ω\ωk−1

Γ

)
+ inf

vh∈Vh(ωk
Γ)
|||u− vh|||ωk−1

Γ
,

(4.25)
holds.

Proof. We split Ω into the different parts Ω \ ωk, ωk
Γ \ ωk−1

Γ , and ωk−1
Γ . Since VΓh ⊂ V, we have

the best approximation result

|||u− uh||| � |||u− w|||, for all v ∈ VΓh . (4.26)

Let η ∈ VH be a cut off function, where η|Ω\ωk = 0, η|ωk−1 = 1, and ‖∇η‖L∞(T ) � H−1. We

construct w = vH + πhη(vh − vH) ∈ VΓh where vH ∈ VH , vh ∈ Vh(ωk
Γ) , and πh is the nodal

interpolant onto the finite element space Vh and obtain

|||u− w|||2 = |||u− vH |||2Ω\ωk + |||u− vH − πhη(vh − vH)|||2
ωk\ωk−1

Γ

+ |||u− vh|||2ωk−1
Γ

. (4.27)

The first and third term are in the right form, see the statement of Lemma 4.8. Next we turn to
the second term. Using the fact that the nodal interpolant πh is H1-stable for finite polynomial
degrees (2 in our case) we obtain

|||πhη(vh − vH)|||2ωk\ωk−1 � |||η(vh − vH)|||2ωk\ωk−1

= ||∇(η(vh − vH))||2ωk\ωk−1 + κ||η(vh − vH)||2∂(ωk\ωk−1)∩∂ΓR
.

(4.28)

We have

||∇(η(vh − vH))||ωk\ωk−1

≤ ||(vh − vH)∇η||ωk\ωk−1 + ||η∇(vh − vH)||ωk\ωk−1

� H−1||vh − vH ||ωk\ωk−1 + ||∇(vh − vH)||ωk\ωk−1

� H−1||vh − u+ u− vH ||ωk\ωk−1 + ||∇(vh − u+ u− vH)||ωk\ωk−1

� H−1||u− vH ||ωk\ωk−1 + ||∇(u− vH)||ωk\ωk−1

+H−1||u− vh||ωk\ωk−1 + ||∇(u− vh)||ωk\ωk−1 .

(4.29)

We also have that

κ1/2||(1− η)(vh − vH)||∂(ωk\ωk−1)∩∂Ω � κ1/2||v − vH ||∂(ωk\ωk−1)∩∂Ω

� κ1/2||v − vH ||1/2ωk\ωk−1 ||∇(v − vH)||1/2
ωk\ωk−1 � |||v − vH |||ωk\ωk−1 .

(4.30)

Taking the infimum and using that

inf
vh∈Vh

(
H−1||u− vh||ωk\ωk−1 + ||∇(u− vh)||ωk\ωk−1

)

≤ inf
vH∈VH

(
H−1||u− vH ||ωk\ωk−1 + ||∇(u− vH)||ωk\ωk−1

)
,

(4.31)

since h < H and VH ⊂ Vh, concludes the proof.

The analysis extends to a non-polygonal boundary if we assume that h is fine enough to
approximate the boundary using interpolation onto piecewise affine functions, see e.g. [20].
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4.4 Estimation of the error in the global multiscale method

In this section we present and analyze the method with non-localized correctors.

Lemma 4.9. Let uh ∈ VΓh solve (2.9) and uH ∈ VΓH solve (3.6), then

|||uh − uH ||| � H‖f‖ωk (4.32)

holds.

Proof. Any uh ∈ VΓh can be uniquely written as uh = uH +uf where uH ∈ VΓH and uf ∈ V f . This
follows from the result from functional analysis, that if we have a projection P : uh → uH onto
a closed subspace, we have the unique split uh = Puh + (1−P)uh. For P = (1+Q)IH , we have
PVΓh = VΓH and

P2 = (1 +Q)IH(1 +Q)IH = (1 +Q)IHIH = (1 +Q)IH = P. (4.33)

We obtain

|||uf |||2 = a(uf , uf) = (f, uf)L2(Ω) = (f, uf − IHuf)L2(ωk) � H‖f‖ωk |||uf |||, (4.34)

which concludes the proof.

4.5 Estimation of the error between global and localized correction

The correctors fulfill the following decay property.

Lemma 4.10 (Decay of correctors). For any x ∈ NI there exist a 0 < γ < 1 such that the local
corrector QL

x (ϕx) ∈ V fL(ϕx) and the global corrector Q(ϕx) ∈ V f(ϕx), which solves (3.9) and
(3.5) respectively, fulfills the decay property

|||(Q−QL)(vH)|||2 ≤ Ldγ�(L−3)/3�
∑
x∈NI

|||Qxv|||2, (4.35)

where �·� is the floor function which maps a real number to the largest previous integer.

Proof. See Appendix A

The localized corrected basis functions fulfill the following stability property.

Lemma 4.11. Under Assumption 4.5 we have the stability

|||ϕx +QL(ϕx)||| � H−1||ϕx||, (4.36)

for the corrected basis function given any x ∈ NI .

Proof. First we will prove that there exist a (non-unique) function gx ∈ Vf (ωL
x ) such that

(gx − ϕx)|ΓD
= 0 and |||gx||| � |||ϕx||| for all x ∈ NI . Given any x define w|T = gx − ϕx and

w|Ω\TI
= 0 where T is an interior element. The function w have to fulfill the following restriction

IHw = IHϕx = ϕx, (4.37)

which is equivalent to
Pyw(y) = δxy, (4.38)
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where δxy is the Kronecker delta function. In order to construct w we perform two a uniform
refinements in 2D. A similar construction is possible in 3D using two red-green refinements. Then
we have three free nodes in T for a function that is zero on the boundary ∂T . We write w as
w =

∑d+1
j=1 αjϕ̂j where ϕj are the P1 Lagrange basis function associated with the three interior

nodes. We can determine w by letting it fulfill

d+1∑
i,j=1

(Pyi
αjϕ̂j)(yi) = δx,yi

. (4.39)

The value Pyϕ̂i(x) can be computed as

Pyϕ̂j(y) = δTy (Π
TMH/4Π)−1ΠTMH/4ϕj , (4.40)

where MH/4 is a local mass matrix computed on ω0x, δ
T
x = 1 for index x and 0 otherwise, and

Π : VH → VH/4 is a projection from the finer space onto the coarse. On a quasi-uniform mesh
Pyϕ̂j(y) is independent of H. Therefore, αj is independent of H and there exist a constant such
that

||w|| ≤ C||ϕx||. (4.41)

This yields
|||w||| � 4H−1||w|| � H−1||ϕx||. (4.42)

Using the triangle inequality we have

|||gx||| ≤ |||ϕx|||+ |||w||| � H−1||ϕx||. (4.43)

Next we consider the problem: find Q0 ∈ V f (ωL
x ) such that

a(Q0, w) = a(ϕx − gx, w) w ∈ Vf (ωL
x ), (4.44)

where g satisfy g ∈ Vf (ωL
x ), (ϕx − g)|ΓD

= 0, and |||gx||| � |||ϕx|||. It is clear that QL(ϕx) =
Q0 + g. For the stability we obtain

|||ϕx +QL(ϕx)|||2 ≤ a(ϕx +QL(ϕx), ϕx +QL(ϕx)) = a(ϕx +QL(ϕx), ϕx +Q0 + g)

= a(ϕx +QL(ϕx), ϕx + g) ≤ |||ϕx +QL(ϕx)|||(|||ϕx|||+ |||gx|||)
� |||ϕx +QL(ϕx)||| · |||ϕx|||,

(4.45)

which concludes the proof.

4.6 Estimation of the error for the localized multiscale method

The a priori results for the localized multiscale method reads.

Theorem 4.12. Let u ∈ V solve (2.2) and uL
H ∈ VΓ,LH solve (3.6). Then under Assumption 4.5

the bound

|||u− uL
H ||| � inf

v∈VH

(
‖H−1(u− v)‖Ω\ω0

Γ
+ |||u− v|||Ω\ω0

Γ

)

+ inf
v∈Vh(ωk

Γ)
|||u− v|||ωk−1

Γ
+ ‖Hf‖ωk + Ld/2H−1γL‖f‖Ω,

(4.46)

holds for k ≥ 2.
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Proof. Since VΓ,LH ⊂ V we have the best approximation result

|||u− uL
H ||| ≤ |||u− vH ||| for all vH ∈ VΓ,LH . (4.47)

We obtain
|||u− uL

H ||| ≤ |||u− uh|||+ |||uh − uH |||+ |||uH − vH |||, (4.48)

using the triangle inequality. The first and second term is bounded using Lemma 4.8 and 4.9.
For the third term we choose vH = IHuH +Q(IHuH) which gives

|||uH − vH |||2 = |||Q(IHuH)−QL(IHuH)|||2 � Ldγ2L
∑
x∈NI

|||Qx(IHuH)|||2, (4.49)

using Lemma 4.10. Using Lemma 4.11 we obtain

|||uH − vH |||2 � H−2Ldγ2L
∑
x∈NI

uH(x)2‖ϕx‖2 � Ldγ2L‖IHuH‖2

� H−2Ldγ2L||IHuH ||2 � H−2Ldγ2L||uH ||2
� H−2Ldγ2L|||uH |||2 ≤ H−2Ldγ2L||f ||2,

(4.50)

using a Poincaré-Friedrich inequality. Combining (4.48) and (4.50) concludes the proof.

5 Implementation and conditioning

In this section we will shortly discuss how to implement the method and analyze the conditioning
of the matrices.

5.1 Implementation

To compute QL(ϕx) in (3.9) we impose the extra condition IHv = 0 using Lagrangian multipliers.
Let nx and Nx be the number of fine and coarse degrees of freedom in the patch ω0x. Let Mx

and Kx denote the local mass and stiffness matrix on ω0x satisfying

(v, w)ω0
x

⇔ ŵTMxv̂, (5.1)

and
a(v, w)|ω0

x
⇔ ŵTKxv̂, (5.2)

where v, w ∈ Vh|ω0
x
and ŵ, v̂ ∈ R

nx are the nodal values of v, w. We also define the projection
matrix Πx : {v ∈ VH(ω0x) | supp(v) ∩ ω0x �= 0} → Vh(ω0x) of size (nx × Nx) which project
a coarse function onto the fine mesh and a Kronecker delta vector of size Nx × 1 as δx =
(0, . . . , 0, 1, 0, . . . , 0) where 1 is in node x. We obtain

Pxv(x) = 0 ⇔ λT
x v̂ = δTx (Π

T
x M̂xΠx)

−1ΠT
xMxv̂ = 0. (5.3)

Set Λ = [λy1
, λy1

, . . . , λyNx
], then (3.9) is equivalent to solving the linear system

[
Kx Λ
ΛT 0

] [
Q̂L(ϕx)

μ

]
=

[−KxΠxϕ̂x

0

]
, (5.4)

where Q̂L(ϕx) ∈ R
nx contains the nodal values of QL(ϕx) and μ is a Lagrange multiplier. For

each coarse node x in ω0x we need to invert ΠT
x M̂xΠx to assemble (5.4), however since the size is
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only (Nx ×Nx) they are cheap to invert. The coarse scale stiffness matrix K̂ in (3.10) is given
element wise by

K̂i,j = a(ϕj +QL(ϕj), ϕi +QL(ϕi)). (5.5)

We save the nodal values of the corrected basis as

Φ =
[
ϕy1

+ Q̂L(ϕy1
), ϕy2

+ Q̂L(ϕy2
) . . . , ϕyN

+ Q̂L(ϕyN
).
]
, (5.6)

Given the stiffness matrix on the fine scale K and the collection of corrected basis functions Φ,
we can compute the coarse stiffness matrix as

K̂ = ΦTKΦ. (5.7)

and the linear system (3.10) is computed as

K̂ûΓ,LH = b, (5.8)

where ûΓ,LH is the nodal values of ûΓ,LH and b correspond to some right hand side by1
= (f, ϕy1

+

Q̂L(ϕy1
)). However, the fine stiffness matrix does not have to be assembled globally. If a Petrov-

Galerkin formulation is used, further savings can be made [9].

5.2 Conditioning

The Euclidean matrix norm is defined as

||A||N = sup
0 �=v∈RN

|Av|N
|v|N , (5.9)

where 〈v, w〉 = ∑N
i=1 v(xi)w(xi) and |v|N =

√〈v, v〉.
Theorem 5.1. The bound

κ = ‖K̂‖N‖K̂−1‖N � H−2, (5.10)

on the condition number κ holds.

Proof. To prove the condition number we use the following three properties.

1. An inverse type inequality for the modified basis functions. We have

|||ϕi +Q(ϕi)||| � H−1‖ϕi‖, (5.11)

from Lemma 4.11.

2. A Poincaré-Friedrich type inequality on the full domain, see Section 4.1.

3. An equivalence between the Euclidean norm and the L2-norm. We have that

‖v‖2 ≤
∑

v2i ‖ϕi +Q(ϕi)‖2 �
∑

v2i (‖ϕi‖+ ‖Q(ϕi)− IHQ(ϕi)‖)2

�
∑

v2i (‖ϕi‖+H‖∇Q(ϕi)‖)2

�
∑

v2i (‖ϕi‖+H‖∇ϕi‖+H‖∇(ϕi −Q(ϕi))‖)2

�
∑

v2i ‖ϕi‖2 � Hd|v|N ,

(5.12)
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and

|v|2N =

N∑
i=1

v2i � H−d
N∑
i=1

v2i ‖ϕi‖2 � H−d‖
N∑
i=1

viϕi‖2 = H−d‖IHv‖2 � H−d‖v‖2. (5.13)

holds, hence |v|N ∼ H−d/2‖v‖.
We have

|K̂v|N = sup
0 �=w∈RN

|〈K̂v, w〉|
|w|N = sup

0 �=w∈RN

|a(v, w)|
|w|N = sup

0 �=w∈RN

|||v||| · |||w|||
|w|N ≤ Hd−2|v|N , (5.14)

using property 1) and 3). Also

|K̂−1v|2N = H−d‖K̂−1v‖ ≤ CPFH
−d|||K̂−1v|||

≤ H−d〈K̂K̂−1v, K̂−1v〉 ≤ H−d|v|N · |K̂−1v|N ,
(5.15)

using property 2) and 3). The proof is concluded by taking the supremum over v.

6 Numerical experiments

In the following section we present some numerical experiments which verifies our analytical
results. In all the following experiment we fix the right hand side to f = 1.

6.1 Accuracy on fractal shaped domain

We consider the domain in Figure 2. We use homogeneous Dirichlet boundary condition on the
most left, down, and right hand side boundaries and Robin boundary condition with κ = 10 on
the rest. Correctors are computed in the full domain. The reference solution is computed using
h = 2−9. As seen in Figure 5, a even higher convergence rate than linear convergence to the
reference solution and the correct scaling of the condition number are observed with respect to
the coarse mesh H.
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O(H−2)

Figure 5: The convergence rate to the reference solution in relative energy norm (left) and the
scaling of the condition number (right) for the fractal domain in Figure 5.
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6.2 Locally added correctors around singularities

Let us consider two different domains, the L-shaped domain L = ([0, 1]× [0, 1])\([0.5, 1]× [0, 0.5])
and a slit-domain L = ([0, 1]× [0, 1])\([0.5, 0.5]× [0, 0.5]) with homogeneous Dirichlet boundary
condition. We only compute correctors in the vicinity of the singularities, see Figure 6. As seen
in Figure 7, the correct convergence rates to the reference solutions and the correct scaling of
the condition number are observed for both singularities.

Figure 6: The marked area is where the finite element space is enriched, for the L-shaped domain
(left) and a slit domain (right).
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Figure 7: The convergence rate to the reference solution in relative energy norm (left) and scaling
of the condition number (right) for a L-shaped and a slit domain.

6.3 Locally add correctors around saw tooth boundary

Let us consider a unit square where one of the boundaries are cut as a saw tooth and where
correctors are only computed in the vicinity of the saw teeth, see Figure 8. On all the non
saw tooth boundaries we use homogeneous Dirichlet boundary conditions. On the saw tooth
boundary we test both homogeneous Dirichlet and Neumann boundary condition. We observe
the correct convergence and scaling of the conditoin number, see Figure 9.
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Figure 8: We consider the saw tooth domain (left). The marked area (right) is where the finite
element space is enriched.
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Figure 9: The convergence rate to the reference solution in relative energy norm (left) and
the scaling of the condition number (right) for the saw tooth shaped boundary using different
boundary condition on the saw tooths.

6.4 Accuracy and conditioning on cut domains

Let us consider an L-shaped domain Ω = ([0, 1]×[0, 1])\([0.5, 1]×[0, 0.5]). We want to investigate
how sensitive the accuracy in the solution and the conditioning of the coarse stiffness matrix are
to how the coarse mesh are cut for different boundary condition. We fix the coarse H = 2−3 and
fine h = 2−8 mesh sizes and consider three different setups of boundary condition, homogeneous
Dirichlet on the whole boundary, homogeneous Dirichlet on the cut elements and homogeneous
Neumann otherwise, and homogeneous Neumann on the cut elements and homogeneous Dirichlet
otherwise. We will cut the coarse mesh in two different ways, 1) with a horizontal cut and 2)
a circular cut around the reentered corner, see Figure 10. The errors are measured in energy
norm. The results are presented in Table 1 and 2. We conclude that neither the error nor the
conditioning are sensitive to how the domain is cut.
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c    b    aa b   c
1)2)

Figure 10: A given background mesh which is cut in two different ways 1) and 2) with different
size of the cut a), b), and c).

Γcut ∂Ω \ Γcut erel(a) erel(b) erel(c)
D D 0.059 0.057 0.056
D N 0.018 0.019 0.020
N D 0.063 0.055 0.053

cond(a) cond(b) cond(c)
D D 9.85 10.10 13.63
D N 299.75 282.26 353.27
N D 10.537 10.79 11.47

Table 1: For cut 1 we have L ∩ [0, 1 − r] × [0, 1], where r = {h, 0.5H,H − h} in a), b), and c),
respectively. The errors measured in relative energy norm and condition number of the coarse
stiffness matrix are presented. We try the different boundary conditions, D (Dirichlet) and N
(Neumann), on the boundary segement Γcut, which cuts the elements.

Γcut ∂Ω \ Γcut erel(a) erel(b) erel(c)
D D 0.060 0.064 0.073
D N 0.0205 0.035 0.048
N D 0.060 0.057 0.059

cond(a) cond(b) cond(c)
D D 9.80 9.23 7.03
D N 246.99 107.52 59.67
N D 9.90 11.44 12.16

Table 2: For cut 2 we have L\B(x0, r) for a ball B centered in x0 = (0.5, 0.5) and with radius r,
where r = {h, 0.5H,H} in a), b), and c), respectively. The errors measured in energy norm and
condition number of the coarse stiffness matrix are presented. We try the different boundary
conditions, D (Dirichlet) and N (Neumann), on the boundary segement Γcut, which cuts the
elements.
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A Proofs

In the appendix we collect proofs of the more technical results.

Proof of Lemma 4.10. We will make frequent use of the cut off function ηk−1,kx which satisfy
ηk−1,kx = 0 in ωk−1

x , ηk−1,kx = 1 in Ω \ ωk
x, and ‖∇ηk−1,kx ‖L∞(Ω) � H−1.

Let e = (Q−QL)(v), we obtain

|||e|||2 � a(e, e) =
∑
x∈NI

a
(
(Qx −QL

x )(v), e
)
=

∑
x∈NI

(
a((Qx −QL

x )(v), e− ṽx
)

(A.1)

where we choose ṽx = ηL+2,L+1x e− IHηL+2,L+1x e which satisfy

a((Qx −QL
x )(v), ṽx) = 0. (A.2)

since ṽx ∈ V f and supp(ṽx) ∩ supp(QL
x (v)) = 0. For each x ∈ NI , we obtain

a
(
(Qx −QL

x )(v), e− ṽx
) ≤ |||(Qx −QL

x )(v)||| · |||e− ṽx||| (A.3)

where we split
|||e− ṽx||| ≤ |||e− ηL+2,L+1x e|||+ |||ηL+2,L+1x e− ṽx|||. (A.4)

The first term in (A.4) can be bounded as

|||(1− ηL+2,L+1T )e|||2
ωL+2

T

= ‖∇(1− ηL+2,L+1T )e‖2
ωL+2

T

+ ‖κ(1− ηL+2,L+1T )e‖2
ΓL+2
T

≤ ‖∇e‖2
ωL+2

T

+H−1‖e‖2
ωL+2

T

+ ‖κ(1− ηL+2,L+1T )e‖2
ΓL+2
T

≤ |||e|||2
ωL+3

T

(A.5)

using the product rule, inverse estimates, and interpolation estimates. The second term in (A.4)
can be bounded as

|||ηL+2,L+1x e− ṽ|||2 = ‖∇IH(ηLT e)‖2 + ‖κIH(ηLT e)‖2Γ � |||e|||2
ωL+4

x
(A.6)

where we used

‖∇IH(ηL+2,L+1x e)‖2 = ‖∇(IHηL+2,L+1x e)‖2
ωL+3

x \ωL
x
� H−2‖e‖2

ωL+3
x \ωL

x

≤ |||e|||2
ωL+4

x \ωL−1
x

≤ |||e|||2
ωL+4

x

(A.7)

and

‖κIH(ηL+2,L+1x e)‖2ΓL
x
=

∑
E∈ΓL

x

‖κIH(ηL−2,L−1
x e)‖2E ≤ κH−1‖IH(ηωL−1

x
e)‖2

ωL+3
x

≤ κH−1‖e− IHe‖2
ωL+3

x
≤ κH‖∇e‖2

ωL+4
x

≤ |||e|||2
ωL+4

x

(A.8)

which follows from Lemma 4.7 and that κ � H−1. Hence, combining (A.1), (A.4), (A.5), and
(A.6) we obtain

|||e|||2 �
∑
x∈NI

|||(Qx −QL
x )(v)||| · |||e|||ωL+4

x

� Ld

( ∑
x∈NI

|||(Qx −QL
x )(v)|||2

)1/2

|||e|||
(A.9)
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that is
|||e|||2 � Ld

∑
x∈NI

|||(Qx −QL
x )(v)|||2 (A.10)

Let ex = (Qx−QL
x )(v) and again use ηL+2,L+1x and w̃x = (1−ηL−1,L−2

x )Qxv+IHηL−1,L−2
x Qxv ∈

Vf (ωL
x ), we obtain

|||ex|||2 ≤ a(ex, ex) = a(ex, Qxv − w̃x)

= a(ex, η
L−1,L−2
x Qxv − IHηL−1,L−2

x Qxv)

≤ |||ex|||(|||ηL−1,L−2
x Qxv|||+ |||IHηL−1,L−2

x Qxv|||)
� |||ex||| · |||Qxv|||Ω\ωL−3

x

(A.11)

Next we construct a recursive scheme which will be used to show the decay. We obtain

|||QT v|||2Ω\ωk
x
≤

∫

Ω

ηk,k−1T ∇QT v∇QT v dx+

∫

ΓR

ηk,k−1T κQT vQT v dS

=

∫

Ω

∇QT v∇(ηk,k−1T QT v) dx+

∫

ΓR

κQT v(η
k,k−1
T QT v) dS

−
∫

Ω

QT v∇QT v∇ηk,k−1T dx

= a(QT v, η
k,k−1
T QT v)−

∫
QT v∇QT v∇ηk,k−1T dx.

(A.12)

The first term in (A.12) can be bounded as

a(Qxv, η
k,k−1
x Qxv) = a(Qxv, η

k,k−1
x Qxv − IHηk,k−1x Qxv) + a(Qxv, IHηk,k−1x Qxv)

= a(Qxv, IHηk,k−1x Qxv) � |||Qxv|||ωk
x\ω

k−1
x
|||IHηk,k−1x Qxv|||

� |||Qxv|||ωk
x\ω

k−1
x
|||Qxv||||ωk+1

x \ωk−2
x
|||Qxv|||2ωk+1

x \ωk−2
x

(A.13)

using Lemma 4.7. The second term is bounded as

∫

Ω

Qxv∇Qxv∇ηk,k−1x dx ≤ H−1‖Qxv − IHQxv‖ωk
x\ω

k−1
x
|||Qxv|||ωk

x\ω
k−1
x

� |||Qxv|||ωk+1
x \ωk−2

x
|||Qxv||||ωk+1

x \ωk−2
x

≤ |||Qxv|||2ωk+1
x \ωk−2

x

(A.14)

Combining (A.12), (A.13), and (A.14) we obtain

|||QT v|||2Ω\ωk
x
≤ C1|||Qxv|||2ωk+1

x \ωk−2
x

= C1

(
|||Qxv|||2Ω\ωk−2

x
− |||Qxv|||2Ωx\ωk+1

x

)

≤ C1

(
|||Qxv|||2Ω\ωk−2

x
− |||Qxv|||2Ωx\ωk

x

) (A.15)

and hence
|||Qxv|||2Ω\ωk

x
≤ γ|||Qxv|||2Ω\ωk−2

x
, (A.16)

where γ = C1

1+C1
. Using (A.16) recursively we obtain

|||Qxv|||2Ω\ωL−3 ≤ γk|||Qxv|||2Ω\ωL−3(k+1)
x

⇔ |||Qxv|||2Ω\ωL−3 ≤ γ�(L−3)/3�|||Qxv|||2Ω\ω0
x
≤ γ�(L−3)/3�|||Qxv|||2.

(A.17)



22

Combing (A.9), (A.11), and, (A.17) we get

|||e|||2 � Ldγ�(L−3)/3�
∑
x∈NI

|||Qxv|||2 (A.18)

which concludes the lemma.
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to compute information about the stochastic properties of the output quantity.
As a concrete example, we consider an elliptic partial differential equation modeling incom-

pressible single-phase Darcy flow in porous media. The problem is posed on a fixed domain
with specified boundary conditions and with a stochastic permeability field. The output func-
tional is an integral of the normal flux of the pressure on one segment of the boundary of the
domain of the problem.

A common numerical problem in this setting is the approximation of the cumulative distri-
bution function for the output functional. But there are other important statistical quantities
that may be targeted. In this paper, we consider the problem of estimating the p-quantile for
the output quantity. Quantiles, such as the median, provide important statistical information
about complex probability distributions. For example, they are used in formulating engineer-
ing problems involving failure probabilities and they are important in a number of hypothesis
tests. Quantiles are also relatively insensitive to the effects arising from a long-tailed distri-
bution (a form of heavy-tailed distribution) and outliers in data, which makes them useful
measures in those situations [11].

There are two primary sources of error affecting a p-quantile estimator in a practical
setting, namely, finite sampling and numerical solution error. In a Monte Carlo approach, we
compute a p-quantile estimate using model solutions for a finite sample of input parameter
values chosen at random. Moreover, the typical physical model must be solved numerically,
which means that the sample model values are only approximations of the true model outputs.
These two sources of error have a complex interdependency, with numerical errors of sample
solutions varying significantly as the input parameters vary in general.

Therefore, uncertainty quantification for the estimation of the p-quantile for a determin-
istic model with stochastic input involves not only computing a p-quantile estimate, but also
estimating the effects of finite sampling and numerical solution on the accuracy of a p-quantile
estimator. That is the subject of this paper. In particular, the main goal of this paper is a pos-
teriori error analysis for a p-quantile estimator that takes into account the effects of both the
stochastic error arising from finite sampling and the deterministic error arising from numerical
solution of the model and yields a computational error bound for the estimator.

In [8, 9], we carry out the analogous a posteriori error analysis for an approximate cumula-
tive distribution function. However, the fact that the p-quantile is determined by an inequality
condition on the cumulative distribution function complicates analysis of the effects of numeri-
cal sample error on the accuracy of an estimator. Our approach involves computing upper and
lower bounding quantities for the p-quantile that individually are estimators. The difference
between the bounds provides an estimate of the accuracy of either estimator.

The model treatment is carried out on an abstract level, requiring only a computational
a posteriori bound on the error of any given numerical solution that can be made arbitrarily
small by suitable adjustment of discretization parameters. Under general assumptions, we
analyze the asymptotic convergence properties of the p-quantile estimator bounds in the limit
of large sample size and decreasing numerical error. We also describe two algorithms for
computing an estimate of the p-quantile with a desired accuracy in a computationally efficient
fashion, i.e., by approximately minimizing the number of samples and maximizing the sample
error while still achieving the desired accuracy. One algorithm exploits the fact that the
accuracy of only a subset of sample values significantly affects the accuracy of a p-quantile
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estimator. Under the assumption of a model for computational “work,” we show that this
algorithm leads to a significant gain in computational efficiency. Finally, we investigate the
performance of the p-quantile bounding estimators as well as various issues affecting the
accuracy of the bounds in a set of numerical examples.

The paper is organized as follows. In section 2 we set up the problem, and in section 3
we derive error bounds for the approximate cumulative distribution function useful for our
purposes. Section 4 presents the main theoretical results, giving the bounding estimators of
the p-quantile and the error analysis for the estimators. Section 5 is devoted to presenting and
analyzing algorithms for computing p-quantile estimates of a desired accuracy in an efficient
way. We present some observations about p-quantile estimates in section 6. We present
numerical examples in section 7. Finally, we present proofs of several results in section 8.

2. Problem formulation. The deterministic model is expressed as

M(u;ω) = 0,

where ω ∈ Ω is a vector of parameters and/or data valued in domain Ω, and u = u(ω)
denotes the solution of the model. We assume the model has a unique solution for a given
parameter value and also assume continuous dependence on the parameter values in Ω. Note
that the model solution may also depend on other data or parameters that are held fixed.
We let V denote the solution space of the model. In a common situation, M is an integral
or differential equation and V is an appropriate Sobolev space. We assume that the object
of solving the model is to compute a specified Quantity of Interest (QoI) expressed as a
continuous (non)linear functional Q : V → R. We set x(ω) = Q(u(ω)), which is a continuous
function of ω. We note that in the case of a differential equation in space and/or time, the
application of the functional removes all explicit dependence on the independent variables
other than the parameters.

We assume that Ω is the sample space for a probability space (Ω,Σ, P ). This implies that
the output X(ω) = Q(u(ω)) is a real-valued random variable with the induced measure on
the Borel σ-algebra of R. We let F (x) denote the cumulative distribution function associated
with X, and the p-quantile y is defined as

y = F−1(p) = inf{x ∈ R : F (x) ≥ p}.

We seek an estimator of y, along with a computable bound on the accuracy of the estimator.
As an example, we consider a model for incompressible single-phase Darcy flow for the

pressure field u,

(2.1) −∇ · A(ω)∇u = 0, x ∈ D ,

posed on the unit square D = [−1, 1] × [−1, 1] with specified boundary conditions. The QoI
is the normal flux through the left-hand boundary Γ1,

Q(u(ω)) =

∫
Γ1

n ·A(ω)∇uds.

We assume a stochastic permeability field k : D → R constructed using Layer 30 of the
Society of Petroleum Engineering comparative permeability data (which are available online
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from http://www.spe.org/web/csp). We introduce a conforming triangulation T h0 of D , with
elements having diameter h0 = 0.2 and vertices pj ∈ N0. We let ω = (ω1, . . . , ωN0) be a vector
of independent random variables of standard normal distribution (N (0, 1)), where N0 is the
number of points in N0. For j = 1, . . . , N0, we let λj denote the linear Lagrange basis function
for which λj(p�) = δj�, � = 1, . . . , N0. We define

A(ω,N0) = A0 +

N0∑
j=1

eωjk(pj)λj ,

where 0 < A0 is chosen to guarantee coercivity. Thus, A is a continuous, piecewise linear
polynomial on D that is affine on each T ∈ T h0 .

To estimate the p-quantile, we employ a finite number of random approximate sample
values. Thus, the accuracy of the p-quantile estimate is affected both by stochastic sampling
error and deterministic numerical error. We let {ωi}ni=1 be an independent and identically
distributed (i.i.d.) sample of size n from Ω, for which the true QoIs are xi = Q(u(ωi)) for
i = 1, . . . , n. We assume that numerical approximations xεi = Q(uε(ωi)) are computed by
solving an approximate model,

MΔ(uε(ωi), ωi) = 0,

for an approximate solution uε(ωi) ≈ u(ωi), where Δ denotes some discretization parameter.
We assume that the error of the approximate value xεi can be made as small as desired by
adjusting Δ.

The computational problem we address is as follows: Given p and 0 < β < 1, find
computable bounds y−n,ε and y

+
n,ε for y such that

Pr
(
y ∈ [y−n,ε, y

+
n,ε]
)
> 1− β,

for all n sufficiently large and ε sufficiently small, and

y−n,ε → y, y+n,ε → y as n→∞, ε→ 0.

We note that the error of any estimator ŷn,ε satisfying y
−
n,ε ≤ ŷn,ε ≤ y+n,ε of y is bounded,

Pr(|y − ŷn,ε| ≤ |y+n,ε − y−n,ε|) > 1− β,

which provides the desired estimate on the accuracy of any such estimator.

3. Error analysis of the approximate cumulative distribution function. Computing the
p-quantiles estimates involves computing approximate cumulative distribution functions (cdfs)
using a finite number of samples of approximate model solutions. The error in the approximate
cdf in turn affects the accuracy of the p-quantile estimates.

We begin by decomposing the error of a computed cdf into statistical and numerical
contributions by introducing the empirical distribution function,

Fn(x) =
#{i = 1, . . . , n : xi ≤ x}

n
, x ∈ R,
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and its numerical approximation,

Fn,ε(x) =
#{i = 1, . . . , n : xεi ≤ x}

n
, x ∈ R,

where # denotes cardinality. The error decomposition is then

F (x)− Fn,ε(x) = F (x)− Fn(x)︸ ︷︷ ︸
statistical error

+Fn(x)− Fn,ε(x)︸ ︷︷ ︸
numerical error

.

We note that Fn cannot be computed.

3.1. Bounds on the statistical error contribution. The nature of the error introduced by
stochastic sampling means that we employ an asymptotic bound rather than an a posteriori
estimate in the sense used for differential equations. There are a number of ways to derive
such bounds [8, 9]. The statistical bounds needed in this paper are formulated in the following
assumption.

Assumption 3.1 (computable bound on statistical error). There exist a positive continuous
function G : [0, 1]→ R and constant C̃1 > 0, independent of x and n, such that for any given
0 < β < 1,

(3.1) Pr

(
|F (x) − Fn(x)| ≤ G(Fn(x))n

−1/2 + C̃1n
−1

)
> 1− β/2

for x ∈ R for all n sufficiently large.
The C̃1n

−1 is generally required in order to derive a bound independent of the unknown
cdf. We note that (3.1) implies that there is a constant C1 such that

(3.2) G(Fn(x))n
−1/2 + C̃1n

−1 ≤ C1n
−1/2.

We actually need the following assumption.
Lemma 3.2. Under Assumption 3.1, (3.1) holds for any two points x1, x2 ∈ R simulta-

neously with probability 1− β.
Proof. This is a consequence of Bonferroni’s inequality Pr(E1∩E2) ≥ Pr(E1)+Pr(E2)−1

for two events E1 and E2. Let E1 and E2 be the events that (3.1) is satisfied pointwise at
two points x1 and x2 with confidence level for (3.1) such that Pr(E1) = Pr(E2) = 1 − β/2.
Bonferroni’s inequality implies (3.1) holds with simultaneous probability at least 1− β.

A standard way to derive (3.1) uses the fact that the distribution of nFn(x) is binomial.
Consequently, Chebyshev’s inequality implies

Pr
(
|Fn(x)− F (x)| ≥ kn−1/2F (x)1/2(1− F (x))1/2

)
≤ 1/k2.

We use the expansion F (x)(1 − F (x)) = Fn(x)(1 − Fn(x)) + (F (x) − Fn(x)); then we set
G(q) = (2/β)1/2q1/2(1− q)1/2 and C̃1 = 2β−1.

Alternatively, we can use the DKW inequality [4], which states that for all K > 0,

(3.3) Pr

(
sup
x∈R
|Fn(x)− F (x)| > Kn−1/2

)
≤ 2e−2K2

.
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This is a uniform confidence bound, and we let G(q) =
√

2−1 ln(2/β) and C̃1 = 0.
Assumption 3.1 defines an interval for F that is symmetric around Fn. We can also handle

an “asymmetric” interval. We now assume there is an affine transformation T : R→ R such
that

(3.4) |F (x) − T (Fn(x))| ≤ G(T (Fn(x)))n
−1/2 + C̃1n

−1.

Any subsequent results for Fn or any numerical approximation that depend on Assumption 3.1
hold for T applied to Fn or any approximation.

For example, the Agresti–Coull interval [1, 3] is an asymmetric approximate confidence
interval for binomial parameter F (x) that is recommended over other common bounds. It
reads as

(3.5) Pr
(
|F (x)− p̃| ≤ κp̃1/2(1− p̃)1/2ñ−1/2

)
> 1− β/2,

with κ = Φ−1 (1− β/4), Φ(z) ∼ N(0, 1), ñ = n + κ2, and p̃ = (nFn(x) +
1
2κ

2)/ñ. We let

T (Fn(x)) = p̃ and define G(q) = κq1/2(1− q)1/2 and C̃1 = 0 to satisfy (3.4).

3.2. Bounds on the numerical error contribution. Depending on how approximate solu-
tions of the physical model are computed, there are generally several approaches for computing
estimates and bounds on the error of computed information obtained from a numerical solu-
tion. We assume the following.

Assumption 3.3 (computable bound on QoI). There is a computational procedure for com-
puting a numerical bound εi for each sample numerical solution xi, i = 1, . . . , n, such that

(3.6) |xi − xεi | ≤ εi,

where εi can be made as small as desired by adjusting Δ.
We discuss a particular approach for computing numerical error estimates and bounds in

section 6.

3.3. Error bounds for the approximate cdf. We now derive error estimates for various
approximate numerical cdfs. The central issue is that error in the sample values leads to
miscounts in the computation of the cdf. The following two approximate cdfs can be considered
“worst case” approximations:

F−
n,ε(x) =

#{i = 1, . . . , n : xεi + εi ≤ x}
n

, F+
n,ε(x) =

#{i = 1, . . . , n : xεi − εi ≤ x}
n

.

These definitions assume that the errors always have the disadvantageous sign and are the
size of the bounding quantities. However, we note that only the values of the samples in a
relatively small region affect the computation of p-quantile estimates.

We define the computable bound on the statistical error contribution,

(3.7) Estatn,ε (x) = max
F−
n,ε(x)≤q≤F+

n,ε(x)
G(q)n−1/2 + C̃1n

−1,

and the computable bound on the numerical error contribution,

(3.8) Enumn,ε (x) = max
(
F+
n,ε(x)− Fn,ε(x), Fn,ε(x)− F−

n,ε(x)
)
.
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These definitions yield the following theorem.
Theorem 3.4 (bound on the error in the cdf). Under Assumptions 3.1 and 3.3, given 0 <

β < 1, for any two xj ∈ R, j = 1, 2,

(3.9) Pr

(
|F (x)− Fn,ε(xj)| ≤ Estatn,ε (xj) + Enumn,ε (xj)

)
> 1− β

for all sufficiently large n.
Proof. Since for every x ∈ R the number of elements in {xεi + εi}ni=1 less than x is smaller

than or equal to the number of elements in {xi}ni=1 less than x, Fn(x) ≥ F−
n,ε(x). Using a

similar argument, we conclude that Fn(x) ≤ F+
n,ε(x). Therefore, |Fn(x)− Fn,ε(x)| ≤ Enumn,ε (x).

Next, we combine Lemma 3.2, (3.8), and these inequalities to reach (3.9).

4. p-quantile bounding estimators and convergence rates. In this section, we derive
computable bounds for the p-quantile which are used as estimators. We use the notation
ε = (εi)

n
i=1, εmax = maxi=1,...,n εi, εmin = mini=1,...,n εi. We analyze the convergence properties

of the bounds in the limits εmax → 0 and n→∞.

4.1. Computable error bounds for the p-quantile. The two bounding estimators handle
the “worst case” scenario,

(4.1) y+n,ε = inf{x ∈ R : F−
n,ε(x)− Estatn,ε (x) ≥ p}, y−n,ε = inf{x ∈ R : F+

n,ε(x) + Estatn,ε (x) ≥ p}.

With these definitions, we have the following theorem.
Theorem 4.1 (existence of the p-quantile bounding estimators). The computable quantities

y+n,ε, y
−
n,ε exist, and given 0 < β < 1,

Pr

(
y ∈ [y−n,ε, y

+
n,ε]

)
> 1− β

for all sufficiently large n.
Proof. We define Y = {x ∈ R : F−

n,ε(x) − Estatn,ε (x) ≥ p}. We start by showing that Y is

nonempty and inf Y exists. The assumption on n implies Estatn,ε (x) ≤ C1n
−1/2 < 1−p for all x.

For a fix n, and for all x > maxi=1,...,n(x
ε
i + εi), we have F−

n,ε(x) = 1 and F−
n,ε(x)− Estatn,ε (x) >

1− 1+ p = p, rendering Y nonempty. Since p > 0, Estatn,ε is nonnegative, F−
n,ε is nondecreasing,

and F−
n,ε(x) = 0 for some finite x, we can conclude that Y is bounded from below, implying

y+n,ε = inf Y exists. Further, Theorem 3.4 and the inequalities used in its proof apply to y+n,ε,
and we conclude that y ≤ y+n,ε from

y = inf{x ∈ R : F (x) ≥ p} ≤ inf{x ∈ R : F−
n,ε(x)− Estatn,ε (x) ≥ p} = y+n,ε.

Similarly, y ≥ y−n,ε. The results hold with probability greater than 1 − β for both bounds
simultaneously from Theorem 3.4.

The minimization problems (4.1) in Theorem 4.1 form the basis for a practically feasible
procedure to compute the bounding p-quantile estimators y−n,ε and y

+
n,ε; see section 4.3.
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4.2. Convergence of the bounding p-quantile estimators. We next analyze the conver-
gence properties of y+n,ε, y

−
n,ε. We define

y− = lim
η→0+

inf{x ∈ R : F (x) + η ≥ p} and y+ = lim
η→0−

inf{x ∈ R : F (x) + η ≥ p},

which bound the quantile, y− ≤ y ≤ y+, by definition. The lower bound y− is actually equal
to y. However, y+ is not necessarily equal to y in the case when F is “flat.” When y− �= y+,
the problem of finding y is ill-conditioned, since small perturbations in the data p or F cause
large variations in the solution y and the quantile bounds converge to either y− or y+, or
cycles between them, as n approaches infinity and numerical error approaches zero (see [10]).

On the other hand, when the p-quantile is unique (i.e., y− = y = y+) and F is continuous,
then we have the following theorem.

Theorem 4.2 (convergence of the bounding p-quantile estimators). If F is continuous, then
with probability 1,

min(|y+n,ε − y+|, |y+n,ε − y−|)→ 0 and min(|y−n,ε − y+|, |y−n,ε − y−|)→ 0

as n→∞ and ε→ 0.
The proof is given in section 8.
Furthermore, for unique p-quantiles, we have the following asymptotic convergence rate

result, proved in section 8.
Theorem 4.3 (convergence rate of the bounding p-quantile estimators). For a fixed n > 0

and 0 < p < 1, choose K > 0 such that (K + C1)n
−1/2 < p < 1 − (K + C1)n

−1/2; then
if F is absolutely continuous and � = inf{x∈R:|F (x)−p|≤(K+C1)n−1/2} F

′(x) > 0, we have

|y+n,ε − y−n,ε| ≤ 2�−1(K + C1)n
−1/2 + 4εmax

with probability at least 1− 2e−2K2
.

4.3. An algorithm for computing the bounding p-quantile estimates. We describe how
y−n,ε and y+n,ε can be computed in practice. We first note that the functions F−

n,ε, F
+
n,ε are

piecewise constant on n + 1 intervals. From (3.7), we observe that Estatn,ε has discontinuities
only at the points of discontinuity of F−

n,ε and F
+
n,ε and hence is piecewise constant on at most

2n+1 intervals. The sums F+
n,ε+ Estatn,ε and F−

n,ε−Estatn,ε have 2n+1 intervals of constant value
to be searched when solving (4.1). The procedure is described in Algorithm 1. Note that the
conditions in Theorem 4.1 need to hold for the obtained values in Algorithm 1 to make sense
(or even exist). The computational time complexity is dominated by sorting and is O(n log n).

Algorithm 1. Algorithm for computing the bounding p-quantile estimates.

1: Let z = (zi)
2n
i=1 ← sort (xε1 + ε1, x

ε
1 − ε1, . . . , xεn + εn, x

ε
n − εn) (requires sorting 2n values)

2: Compute F+
n,ε and F

−
n,ε at all points in z (requires sorting n values twice)

3: Compute Estatn,ε at all points in z (using F+
n,ε and F

−
n,ε at z)

4: Let y−n,ε ← smallest zi for which F
+
n,ε(zi) + Estatn,ε (zi) ≥ p

5: Let y+n,ε ← smallest zi for which F
−
n,ε(zi)− Estatn,ε (zi) ≥ p
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5. Algorithms for control of the error of the bounding p-quantile estimators. In a
practical situation, an important goal is to determine the number of samples and the accuracy
of the samples required to guarantee a given level of accuracy, i.e., |y+n,ε − y−n,ε| ≤ TOL, in
a computationally efficient way. By computational efficiency, we mean that the numerical
samples should not be overly accurate and the number of numerical samples should not be
overly large.

Equation (3.9) shows that the bound on the error in the cdf is decomposed in terms of Estatn,ε

and Enumn,ε . However, such a decomposition cannot be perfect. This complicates the selection
of the number of samples and the accuracy of each sample. Since a priori selection is difficult,
an a posteriori approach is employed. Such an approach is based on the following cycle: the
computation of an estimate, the estimation of the accuracy of the computed estimate, and
adjustment of computational parameters for the next cycle. There are a number of ways to
organize an algorithm for controlling the error following this basic idea.

From the definitions in (3.8) it is apparent that the statistical error bound Estatn,ε can be
bounded independently of ε, so a value of n can be determined a priori. With this choice, we
can use a computational error estimate on the error of the approximate samples to achieve a
“balance” in the stochastic and deterministic contributions to the error. The following theorem
shows that balancing the error indicators lead to a p-quantile interval length dependent only
on n.

Theorem 5.1. Given ε such that Enumn,ε (x) − Estatn,ε (x) ≤ 0 for all y−n,ε ≤ x ≤ y+n,ε and n >
9C2

1 max
(
(1− p)−2, p−2

)
, it holds that

y+n,ε − y−n,ε ≤ F−1
n (p+ 3C1n

−1/2)− F−1
n (p− 3C1n

−1/2).

The proof is given in section 8.
In a practical procedure to reach a specified error tolerance TOL, an initial n is chosen and

the numerical error tolerance parameters ε are reduced until the balance condition (Enumn,ε (x)−
Estatn,ε (x) ≤ 0) in Theorem 5.1 is satisfied. The p-quantile interval length is then checked against
the tolerance, and possibly a larger n is chosen. We now focus only on the problem of finding
ε for balancing the two error indicators at minimal computational cost, given a fixed n.

5.1. A full refinement algorithm for control of sample accuracy. We first present a
straightforward algorithm for computing approximate p-quantile bounding estimates to within
a prescribed accuracy. The algorithm employs a sequence of refinements, by which we mean
the discretization actions required to decrease the numerical error estimate or bound. For
example, refinement of a realization might be mesh refinement of the discretization for that
realization.

The convergence rate result in Theorem 4.3 is based on uniform refinement for all realiza-
tions so that εmax → 0. Using the balance criterion in Theorem 5.1 as a termination criterion,
we construct an algorithm which refines all realizations to the same numerical error tolerance
in each iteration. This full refinement algorithm is given in Algorithm 2. To state the algo-
rithm, we use δ to denote another vector of numerical error tolerance parameters when two
different vectors are needed simultaneously. Approximate quantities based on δ instead of ε
are indicated with a superscript δ.

The full refinement algorithm refines all realizations to the same numerical error tolerance
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Algorithm 2. Algorithm for full refinement.

1: Pick p, β, n, and δinit
2: Set δ = (δinit, . . . , δinit)
3: Compute xδi satisfying Assumption 3.3 for all i = 1, . . . , n
4: Let j = 0 be an iteration counter

5: while supx∈[y−n,δ,y
+
n,δ]

(
Enumn,δ (x)− Estatn,δ (x)

)
> 0 do

6: Set j ← j + 1
7: Set δi ← δinit2

−j for all i = 1, . . . , n
8: Recompute xδi (satisfying Assumption 3.3) for all i = 1, . . . , n
9: Save δ(j) ← δ

10: end while

δinit2
−j in each iteration j until the errors are balanced. Here δinit is the initial numerical error

tolerance. Following the algorithm listing, initially all n numerical error tolerance parameters
δ are set to δinit. Before entering the main loop, n realizations are generated satisfying
Assumption 3.3 with the initial numerical error tolerance. The balance criterion Enumn,δ (x) −
Estatn,δ (x) ≤ 0 is checked and the main loop is entered if it is not satisfied. In each iteration, all

realizations are refined to the same numerical error tolerance δinit2
−j , where j is the iteration

number. Then xδi are recomputed before checking the termination criterion again.

5.2. A selective refinement algorithm for control of sample accuracy. The second algo-
rithm is based on the observation that it is not necessary to refine all realizations as called for
in the full refinement algorithm. The bound |y+n,ε− y−n,ε| can be made as small as desired even
when there is a significant number of realizations that have a large numerical error bound εi.
In each iteration in the full refinement algorithm, it is possible to identify the set of realizations
whose accuracy may affect the interval [y−n,ε, y

+
n,ε], while the complement of this set consists

of realizations with no potential to affect the interval. Hence, only a subset of the realiza-
tions needs to be considered for further refinement in each iteration. We propose a selective
refinement algorithm, Algorithm 3, that exploits this fact. The criterion for a realization to
be refined is that any further refinement of the realization might affect the interval [y−n,ε, y

+
n,ε],

which can be determined computationally.
The following theorem shows that the result of selective refinement is at least as accurate as

the result of full refinement at the same iteration count. We assume without loss of generality
that the QoI values and numerical error tolerances are scaled so that δinit = εinit = 1.

Theorem 5.2. For any 0 < p < 1 and j ∈ N, if we let δ = δ(j) = (2−j , . . . , 2−j) from
Algorithm 2 and ε = ε(j) from Algorithm 3 (with εmin = 2−j), then

y−n,δ ≤ y
−
n,ε and y+n,ε ≤ y+n,δ.

As a direct consequence, Theorem 4.3 holds with εmax replaced by εmin for ε chosen according
to Algorithm 3.

The proof is presented in section 8.
It is easy to see that selective refinement always performs fewer refinements than full

refinement. In the cases where the computations due to refinements are the dominant part
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Algorithm 3. Algorithm for selective refinement.

1: Pick p, β, n, and εinit
2: Set ε = (εinit, . . . , εinit) and I = {1, . . . , n}
3: Compute xεi for all i ∈ I
4: Let j = 0 be an iteration counter
5: while supx∈[y−n,ε,y

+
n,ε]

(
Enumn,ε (x)− Estatn,ε (x)

)
> 0 do

6: Set j ← j + 1
7: Compute I ← {i = 1, . . . , n : y−n,ε − εi < xεi ≤ y+n,ε + εi} ∩ I
8: Set εi ← εinit2

−j for all i ∈ I
9: Recompute xεi (satisfying Assumption 3.3) for all i ∈ I

10: Save ε(j) ← ε, and I(j) = {i = 1, . . . , n : ε
(j)
i = 2−j}

11: end while

of the computational work, there is always a gain from using selective refinement. The next
section is devoted to quantifying this gain.

5.3. Quantification of the gain in computational complexity by selective refinement.
In order to quantify the gain in computational complexity in terms of n obtained by selective
refinement in comparison to full refinement, we need an estimate of the work required by the
two algorithms.

For this, we make an additional assumption,
Assumption 5.3 (model of work). The work W for computing xεi satisfying (3.6) depends

on the numerical error tolerance and satisfies

(5.1) C2ε
−q
i ≤W (εi) ≤ ε−q

i ,

where C2 ≤ 1 and q > 0 are independent of i.
As motivation, consider the situation in which the QoI is a functional of a finite element

solution to a d-dimensional elliptic partial differential equation. On a uniform mesh of maxi-
mum element size h, the accuracy of the solution is proportional to hλ for some λ > 0. The
linear system to produce the approximate solution is solved in linear time in the number of
degrees of freedom N . The numerical error bound εi is determined by an a posteriori error
bound for the functional value. Neglecting constants, we have W ≈ N , N ≈ h−d, and εi ≈ hλ,
i.e., the work to compute a solution with accuracy εi is W ≈ ε

−d/λ
i , that is, with q = d/λ in

Assumption 5.3.
Inequality (5.1) implies there is a minimum amount of work C2ε

−q
i required to achieve

a tolerance εi. It is possible to construct cases when there is no minimum work for specific
realizations or a class of realizations. For example, for a differential equation with a piecewise
linear finite element discretization, all realizations rendering solutions to the model that can
be exactly represented in the discretization give no discretization error and hence require no
additional work to achieve any lower numerical error tolerance. We assume that the class of
such realizations occurs with probability 0.

In this analysis, the computations used for the refinement algorithm itself are not con-
sidered in the work estimate. This is motivated by the fact that the most computationally
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demanding work (complexitywise) associated with the selective algorithm itself is computing
y−n,ε and y

+
n,ε (see Algorithm 1). This amounts to sorting O(n1/2) number of elements (see The-

orem 5.1) in each iteration, with a complexity of O(n1/2 log(n)). In each iteration, at least
O(n1/2) realizations need to be refined and the amount of required work is O(n1/2W (εi)).
When the errors are balanced, O(εi) = O(n−1/2), the work for refining is O(n(1+q)/2). This
means the work for the selective algorithm itself can be neglected for large n.

In Algorithm 3, the numerical error tolerance is reduced by a factor of two in each iteration,
so that ε(j) = 2−j for iteration j. The amount of work W (j) performed in iteration j =
0, 1, 2, . . . in the algorithm is then (see Assumption 5.3)

W (j) =W (2−j)#I(j), j = 0, 1, 2, . . . .

Note that #I(0) = n. The work for an iteration in the full refinement algorithm is

Ŵ (j) =W (2−j)n, j = 0, 1, 2, . . . .

The computational complexity for selective refinement compared to full refinement is given
in Theorem 5.4.

Theorem 5.4. For a fixed n ≥ 1, if the cdf F associated to the QoI is Lipschitz contin-
uous, and assuming that J = 
12 log2 n − log2 C3� iterations are required for Algorithm 3 to

terminate (see Remark 5.5), the ratio between the required work,
∑J

j=0W
(j), using selective

selective refinement (Algorithm 3) and the required work,
∑J

j=0 Ŵ
(j), using full refinement

(Algorithm 2), is bounded above by

(5.2)

∑J
j=0W

(j)∑J
j=0 Ŵ

(j)
≤ min

⎛⎜⎝1,KC4

⎧⎪⎨⎪⎩
n−q/2 if q < 1

n−1/2 log2 n if q = 1

n−1/2 if q > 1

⎞⎟⎠
with probability at least 1−2e−2K2

, where C4 depends on the cdf F , the statistical error constant
C1 (3.2), the model of work constants C2 and q (5.1), and the error balance constant C3.

Proof. See section 8.
Remark 5.5. The termination criterion is satisfied when εmin = C3n

−1/2 (Theorem 4.3) for
some constant C3, depending on the specific sample, but not asymptotically on n. Then the
number of iterations required to balance the error is J = 
12 log2 n− log2C3�, since εmin = 2−J .
If more iterations are required, selective refinement provides greater gain in the comparison
to full refinement.

Remark 5.6. The rates in (5.2) are limited by the rate of convergence of Estatn,ε in terms
of n. If Estatn,ε ≤ C1n

−1 through a different sampling technique, e.g., quasi Monte Carlo, then
the rates can be replaced by n−q, n−1 log2 n, and n

−1 for the three cases, respectively. In the
last case, this means the cost for Algorithm 3 is asymptotically independent of the number of
realizations. The probability for the result to hold is also affected, since the DKW inequality
has to be replaced by the improved confidence interval.

6. Some additional observations. In this section, we comment briefly on the use of a
posteriori error estimates instead of bounds and the potential cancellation of errors in the cdf
due to miscounts. In this section, we simplify notation by setting εi = ε. We denote the true
(signed) error in the quantity of interest by ei, i.e., ei = xi − xεi .
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6.1. Using accurate error estimates instead of bounds for numerical sample error.
There are approaches to error estimation that yield accurate error estimates ēi rather than
bounds; i.e., for each sample numerical solution, i = 1, . . . , n,

(6.1) xi − xεi ≈ ēi.

It is natural to consider the use of such estimates (6.1) in the estimation of the p-quantile.
We discuss this briefly.

An important issue is that in practice, accurate error estimates are only approximations to
the true error. Issues affecting accuracy of an error estimate include the fact that the derivation
often involves neglecting terms that cannot be estimated (though may be provably smaller
than the error) and because of various numerical approximations used in the computation of
an estimate. Consequently, an estimate may be smaller or larger than the error. One difficulty
in estimating the effects of sample errors on the computation of a p-quantile is the fact that
small errors in sample values can lead to an O(1) miscount in the computation of the cdf,
which in turn affects the evaluation of the inequality defining the p-quantile. This is a main
motivation for using an error bound on the error of each sample value in Assumption 3.3.

In many situations, it is possible to derive a bound on the accuracy of the error estimate
of the form

|xi − xεi − ēi| ≤ C(ēi)
λ

for some constant C and λ depending on the accuracy of the error estimate. In this case, we
can use the accurate error estimate to “correct” the approximate sample values, and exploit
all of the previous analysis to define p-quantile bounds using {xεi + ēi} in place of {xεi} and by
setting ε = C(ēi)

λ. This results in a gain in computational efficiency, since we can expect to
use a coarser discretization parameter Δ in the numerical approximation while still achieving
the specified numerical error tolerance.

Accurate a posteriori error estimates can be used to define another p-quantile estimator.
Specifically, the numerical error |Fn(x)− Fn,ε(x)| can be estimated by defining a “corrected”
cdf, based on accurate a posteriori error estimates ēi, such that |ei− ēi| ≤ ελ, for some λ > 1,

F̄n,ε(x) =
#{i = 1, . . . , n : xεi + ēi ≤ x}

n
, x ∈ R,

which generates a presumably more accurate numerical cdf. If the a posteriori error estimates
are accurate and reliable, we can approximate

|Fn − Fn,ε| ≈ |F̄n,ε − Fn,ε|

and use the alternative definitions,

F+
n,ε(x) = max(Fn,ε(x), F̄n,ε(x)), F−

n,ε(x) = min(Fn,ε(x), F̄n,ε(x)).

This gives
|Fn,ε − F̄n,ε| = |F+

n,ε − F−
n,ε|.

Now we could use all of the results in the paper starting with these definitions.
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6.2. The effect of miscount cancellation on the numerical error in the cdf. Up to
this point, the only assumption used on the numerical error in the QoI is ei ≤ ε. The
following discussion shows there can be a miscount cancellation effect in the numerical error
|Fn(x)− Fn,ε(x)| in the cdf.

We consider ei = ei(ωi) to be a random variable and define Y ε
i (x) = �(x−xi)−�(x−xεi),

where �(x) is zero for x < 0 and one for x ≥ 0, and we note that

Fn(y)− Fn,ε(y) =
1

n

n∑
i=1

Y ε
i (y).

The random variable Y ε
i (y) takes the values {−1, 0, 1} with probabilities {p−1, p0, and p1},

respectively. The case −1 corresponds to xi − ei ≤ y < xi; the case 1 to xi ≤ y < xi − ei; and
the case 0 otherwise. It is apparent that the probabilities pi depend on both the distributions
of xi and ei. The expected value and variance of Y ε

i (y) obey

E[Y ε
i (y)] = −1p−1 + 1p1 and V [Y ε

i (y)] ≤ E[(Y ε
i (y))

2] = (−1)2p−1 + 12p1.

Since
|p1 − p−1| ≤ p1 + p−1 ≤ Pr(|y − xi| ≤ ε) ≤ CLε,

where CL depends on the Lipschitz constant of F , we obtain

(6.2) E[Fn(y)−Fn,ε(y)] = p1−p−1 ≤ CLε, V ar[Fn(y)−Fn,ε(y)] = n−1(p1+p−1) ≤ CLn
−1ε.

Thus, in the case p−1 = p1, the numerical error in the cdf is in the order of n−1/2ε1/2, since
the expected value is zero. Thus, no refinements are necessary, i.e., we can let ε ≈ 1 and still
balance the statistical and numerical errors in the cdf, thanks to cancellations in the miscounts.
However, the case p−1 = p1 is rather unrealistic. Assuming F (y) is differentiable, we still
need ei to be median-unbiased given xi, which cannot be expected from errors in numerical
simulations in general. The effect of miscounts is investigated numerically in section 7.4.

7. Numerical experiments. This section presents a few numerical experiments demon-
strating the selective refinement algorithm and its gain in computational complexity compared
to full refinement. The last numerical example illustrates the discussion in section 6 on how
miscounts affect the convergence with respect to the numerical error.

7.1. Demonstration in principle. In this experiment, we let the QoI be sampled directly
from a χ2-distribution with three degrees of freedom, i.e., X ∼ χ2(3). For a sample {xi}ni=1

from χ2(3), the approximate sample {xεi}ni=1 is computed as follows. For a given εi, x
ε
i is

computed as xεi = xi + 2/3(sin(100 × εi × i) + 1/2) × εi, to simulate some solution procedure
generating approximate values with a systematic error within the error bound. We use the
Agresti–Coull interval. With this setup, both Assumptions 3.1 and 3.3 are satisfied. We pick
n = 10000, p = 0.95, β = 0.99, and εinit = 1. These values are chosen to illustrate the
performance of the selective refinement algorithm.

Algorithms 2 and 3 are executed with the described setup. The resulting functions Fn,ε;
F+
n,ε; F

−
n,ε; lower and upper bounds of F ; and lower and upper bounds, y−n,ε and y

+
n,ε, respec-

tively, of y are plotted after termination of the two algorithms in Figures 1a and 1b, respec-
tively. (Note that all functions F ·

·,· are transformed via the affine transformation T (Fn(x)) = p̃
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defined by the Agresti–Coull confidence interval in (3.5), i.e., the figure actually shows T (F+
n,ε),

and so on.) The figures illustrate how the numerical error in samples away from the 95%-
quantile is larger after selective refinement than after full refinement. Both algorithms exe-
cuted two iterations before the error balance was achieved. The p-quantile bounding estimates
are identical for both algorithms, with y−n,ε = 7.1055 and y+n,ε = 8.5244. This is in accordance
with Theorem 5.2. The true 95%-quantile is y = 7.8147.
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(a) Full refinement.
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(b) Selective refinement.

Figure 1. 99% confidence band of F with 95%-quantile bounds after (a) full refinement and (b) selective
refinement. Note how the numerical error (distance between dash-dotted, magenta lines) is larger for samples
away from the p-quantile with selective refinement.

7.2. Computational complexity experiment. Theorem 5.4 predicts the following compu-
tational complexity reduction for selective refinement versus full refinement:∑J

j=0W
(j)∑J

j=0 Ŵ
(j)
≤ min

⎛⎜⎝1,KC4

⎧⎪⎨⎪⎩
n−q/2 if q < 1

n−1/2 log2 n if q = 1

n−1/2 if q > 1

⎞⎟⎠ ,

with different values of C4 for the three different cases. In this experiment, we use exactly the
same setup as in the previous experiment. This means X and xεi are defined as in section 7.1.
Additionally, for the model of work, we assume C2 = 1, i.e., W (εi) = ε−q

i , and we consider
three different values of q: q = 3, 1, and 1/3 in order to try the three cases above. We pick
p = 0.95, β = 0.99, εinit = 1 and execute Algorithms 2 and 3. The resulting work ratio is

presented in Figure 2. The solid lines show the value of the work ratio, i.e.,
∑N

j=0 W
(j)

∑N
j=0 Ŵ

(j)
, for the

three different values of q. The constants 6, 2, and 3 in the definition of the dashed lines are
selected manually to make the slope comparison easy. The slopes of the experimental data
verify Theorem 5.4.

7.3. An engineering application. We return to the model for Darcy flow (2.1). We
complete the problem formulation by applying the boundary conditions

u = 0 on Γ1,

u = 1 on Γ2,

n ·A(ω)∇u = 0 on Γ3 ∪ Γ4,
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Figure 2. Work reduction; full vs. selective refinement as a function of sample size.

where n denotes the outward normal on the boundary of D and Γ1, Γ2, Γ3, Γ4 are the left,
right, upper, and lower boundaries, respectively. We define ΓD = Γ1 ∪ Γ2 and ΓN = Γ3 ∪ Γ4

to denote the Dirichlet and Neumann boundaries, respectively.
We define H1

D(D) = {v ∈ H1(D) : v|Γ1 = 0 and v|Γ2 = 1} and H1
0 (D) = {v ∈ H1(D) :

v|ΓD
= 0} to be function spaces that satisfy the boundary condition and vanishing on the

Dirichlet boundary, respectively. Let V h ⊂ H1(D) be the space of continuous functions on D
that are also affine on all triangles T ∈ T h, T h being a conforming triangulation of D , where
h = maxT∈T h diam(T ). We assume that the finite element triangulation is a refinement of
T h0 used in the definition of the diffusion coefficient. The finite element discretization is then
as follows: Find uh ∈ V h ∩H1

D(D) such that

a(ω;uh, v) =

∫
D
A(ω)∇u · ∇v dx = 0 for all v ∈ V h ∩H1

0 (D).

We use an adjoint-based approach to error estimation [6, 5, 7, 2]. The QoI (normal flux
through Γ1) is approximated by the linear functional

(7.1) Q(uh(ω)) = a(ω;uh, v) for all v ∈ V h ∩H1
D(D).

We solve for a corresponding numerical adjoint solution: Find φk ∈ V k ∩H1
D(D) such that

(7.2) a(ω; v, φk) = 0 for all v ∈ V k ∩H1
0 (D),

where k < h. We use k = h/2 to approximate the adjoint solution. We define πh : H1
D(D)→

V h ∩H1
D(D) to be a (quasi-)interpolation operator.

With this framework, we can produce both accurate a posteriori error estimates and a
posteriori error bounds.

1. For an accurate estimate, we use [6, 5, 7, 2]

Q(u)−Qh(uh) ≈ a(ω;uh, φk − πhφk) = eEST(uh).
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This estimate is exact if φ = φk. We approximate the QoI as xεi = Q(uh(ωi)) +
eEST(uh(ωi)) (note the correction) for an hi satisfying |eEST(uh(ωi))| < εi in order to
reach a numerical error tolerance of εi. The procedure to reach the tolerance is to
halve hi until the error estimate is less than numerical error tolerance.

2. We derive an (dual or adjoint weighted) a posteriori error bound from the a posteriori
error estimate by integration by parts over each element in the mesh and accumulating
quantity values on common element boundaries to obtain

(7.3) |Q(u) −Qh(uh)| ≤
∑
T∈T k

RT (u
h) · wT + rT (u

h) · w∂T = eDWR(uh),

where the residuals RT and rT are defined by

RT (u
h) = ‖∇ · A(ω)∇uh‖L2(T ),

r2T (u
h) =

1

2
‖h1/2[A(ω)∇uh]‖2L2(∂T\(ΓD∪ΓN )) + ‖h

1/2A(ω)∇uh‖2L2(∂T∩ΓN ),

respectively, where [·] denotes the jump in normal direction, and h is a piecewise
constant function h|T = diam(T ). The adjoint weights (wT and w∂T ) are defined by

wT = ‖φk − πhφk‖L2(T ), w∂T = ‖h−1/2(φk − πhφk)‖L2(∂T ),

respectively. For a given realization ωi, we approximate the QoI as xεi = Q(uh(ωi))
for an hi satisfying e

DWR(uh(ωi)) < εi. In order to find such an hi, we start with an
initial hi and halve it until the bound is less than the numerical error tolerance.

The statistical error, Estatn,ε , is approximated using the Agresti–Coull confidence interval
(see (3.4), (3.5), and (3.7)). We pick n = 2000, p = 0.99, β = 0.99, εinit = 3, A0 = 1
and execute Algorithm 3 (selective refinement) using the two error bounding and estimation
methods introduced above.

For both error bounding and estimation methods, four iterations were performed until the
errors were balanced and the algorithm terminated. Figures 3a and 3b illustrate the initial and
final p-quantile bounding estimates, respectively, for the adjoint-based error bounds (method
2 above). It is evident that realizations close to the p-quantile have been refined to a larger
extent than those far from the p-quantile. Figure 3c shows a zoomed-in version of Figure 3b,
where the balance of numerical and statistical error can be observed. Also, the interval defined
by the final p-quantile bounding estimates can be read from Figure 3c and is approximately
[16.8, 18.1].

As in the previous section, we compare the ratio of required work between selective and
full refinement. In this example, we use the following model of work, W (hi) = h−2

i , where
the exponent is −2, since we have a uniform triangulation of a two-dimensional domain and
solve the linear equation systems in linear time complexity. However, in this example it is too
expensive to perform the full algorithm to yield values of hi. Instead, hi for the full algorithm
is estimated from the error estimates in the resulting selective algorithm solution using the
numerically verified rate of convergence 1. That is, for each realization, the number of times
the numerical error has to be halved to reach the numerical error tolerance is computed, and
the corresponding hi is halved accordingly. This leaves a set of hi values that is used to
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ment as a function of sample size.

Figure 3. Plots illustrating performance of the selective algorithm for the boundary flux problem.

estimate the work for the full algorithm. The ratio between the required work for the two
algorithms, for n = 1000, 2000, 4000, 8000, and 16000, is shown in Figure 3d. The figure
shows work savings in the order of 10 for this span of n, and the work reduction rate in
Theorem 5.4 is observed in practice. The jump between n = 4000 and n = 8000 is explained
by the fact that an additional iteration was required to balance the errors for the latter case.
This causes a substantial increase of work for the full algorithm. These jumps are present also
in Figure 2. For illustration purposes, Figure 4a contains a solution plot for a single realization
on the coarsest mesh and Figure 4b shows an estimated probability density function for Q
based on 4000 realizations with error tolerance 0.1 using the adjoint-based error estimate
(method 2 above).

7.4. Effect of miscounts on numerical error. Following the discussion in section 6, we
illustrate how miscounts in the computation of the cdf affect the “exact” numerical error |Fn−
Fn,ε|. We let X ∼ N (0, 1) and {ψi}ni=1 be an i.i.d. sample of the uniform distribution U(0, 1).
We consider two cases for the numerical error: (a) no systematic error, xεi = xi + ε(2ψi − 1);
(b) systematic error, xεi = xi+ε(2(ψi)

2−1). Given a value of n, we pick ε = n−1/2 (simulating
balance between numerical and statistical error), generate a random sample of size n from
X and U to compute xi, ψi, and xεi , and compute the numerical error |Fn(y) − Fn,ε(y)| for
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Figure 4.

y = 1 for the two cases. This is done for a range of values of n. A simple moving average
with respect to n is used in order to increase the readability of the resulting graphs, which
can be found in Figure 5. From the figure, we can see that there is a cancellation effect of
miscounts in the numerical error in case (a), where we gain a factor n−1/4 in the numerical
error. However, from case (b) we see that when systematic errors are present, the miscounts
do not affect the order of convergence of the numerical error. This means the “worst case”
bounds give an overly pessimistic bound of the numerical error when no systematic error in
the numerical approximations is present.
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Figure 5. Convergence of numerical error for (a) no systematic error and (b) systematic error in numerical
approximation.

8. Technical results and proofs. In this section, we collect technical results and proofs.
Lemma 8.1. If F is continuous, then with probability 1,

(8.1) sup
x∈R
Estatn,ε (x) + Enumn,ε (x)→ 0 and sup

x∈R
|Fn,ε(x)− F (x)| → 0
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as n→∞ and ε→ 0.
Proof of Lemma 8.1. First, Assumption 3.3 implies

(8.2) F+
n,ε(x)− F−

n,ε(x) ≤
#{i = 1, . . . , n : xi − 2εi ≤ x < xi + 2εi}

n
.

By the continuity of F , xi − xj �= 0 almost surely for all i �= j. Let ε̃ = mini 
=j |xi − xj| > 0.
For all i, choose εi = ε̃/4. Continuing from (8.2),

F+
n,ε(x)− F−

n,ε(x) ≤
#{i = 1, . . . , n : xi − ε̃/2 ≤ x < xi + ε̃/2}

n
≤ 1/n.

This implies supx∈R(F
+
n,ε(x)− F−

n,ε(x))→ 0 as n→∞ and ε→ 0.
From Lemma 8.1, we have

sup
x

(
Enumn,ε (x) + Estatn,ε (x)

)
≤ sup

x
(F+

n,ε − F−
n,ε(x)) + C1n

−1/2 → 0

as n → ∞ and ε → 0. The Glivenko–Cantelli theorem implies (see, for example, page 61 of
[11] and the references therein)

sup
x
|Fn,ε(x)− F (x)| ≤ sup

x
(F+

n,ε(x)− F−
n,ε(x)) + sup

x
|Fn(x)− F (x)| → 0

as n→∞ and ε→ 0.
Proof of Theorem 4.2. We set η(x) = −Estatn,ε (x)−Enumn,ε (x)+Fn,ε(x)−F (x). By Lemma 8.1,

sup
x
|η(x)| ≤ sup

x
Estatn,ε (x) + Enumn,ε (x) + sup

x
|Fn,ε(x)− F (x)| → 0

as n → ∞ and ε → 0. Now, from the definition of y+n,ε, y
−, and y+, |η(x)| → 0 implies the

result. If we let η(x) = Estatn,ε (x) + Enumn,ε (x) + Fn,ε(x) − F (x) instead, we can show the same
result for y−n,ε.

Proof of Theorem 4.3. Using the definition of y−n,ε and y
+
n,ε, and (3.3), we obtain

y+n,ε − y−n,ε ≤ inf{x ∈ R : F (x− 2εmax)− (K +C1)n
−1/2 ≥ p}

− inf{x ∈ R : F (x+ 2εmax) + (K + C1)n
−1/2 ≥ p}

≤ F−1(p + (K + C1)n
−1/2)− F−1(p− (K + C1)n

−1/2) + 4εmax

≤ 2�−1(K + C1)n
−1/2 + 4εmax,

with probability at least 1− 2e−2K2
.
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Proof of Theorem 5.2. First we show that, for y−n,ε ≤ x ≤ y+n,ε,

(8.3) F−
n,ε(x) ≥ F−

n,δ(x), F+
n,ε(x) ≤ F+

n,δ(x).

We let I−, I, and I+ be the following partition of {1, . . . , n}:

I− = {i = 1, . . . , n : xεi ≤ y−n,ε − εi},
I = {i = 1, . . . , n : y−n,ε − εi < xεi ≤ y+n,ε + εi},
I+ = {i = 1, . . . , n : y+n,ε + εi < xεi}.

Defining the predicate Pε,i(x) = [xεi + ε ≤ x], we have

(8.4) nF−
n,ε(x) = #{i = 1, . . . , n : Pε,i(x)} = #I− +#{i ∈ I : Pε,i(x)};

i.e., all elements in I−, some from I, and none from I+ satisfy the predicate and contribute
to the value of F−

n,ε(x). From (3.6) we have

(8.5) xζi − ζi ≤ xi ≤ x
η
i + ηi for any 0 ≤ ζi, ηi ≤ 1.

We investigate how Pδ,·(x) (i.e., the predicate with numerical error tolerance parameter δ)
acts on elements in I+:

(8.6) #{i ∈ I+ : Pδ,i(x)} ≤ #{i ∈ I+ : xεi − εi ≤ x} ≤ #{i ∈ I+ : y+n,ε < x} = 0,

where (8.5) and the definition of I+ were used in the inequalities. Now consider Pδ,·(x) on
elements in I:

(8.7) #{i ∈ I : Pδ,i(x)} = #{i ∈ I : xεi + ε ≤ x} = #{i ∈ I : Pε,i(x)},

since εi = δi for i ∈ I. Finally, for Pδ,·(x) on elements in I−, we obviously have

(8.8) #{i ∈ I− : Pδ,i(x)} ≤ #I− = #{i ∈ I− : Pε,i(x)}.

Combining (8.4), (8.6), (8.7), and (8.8) we get that

nF−
n,ε(x) ≥ #{i = I− ∪ I ∪ I+ : Pδ,i(x)} = nF−

n,δ(x),

which proves the first inequality in (8.3). A similar argument can be used for the second one.
Now we can continue with the main result. The following argument shows y+n,δ ≥ y+n,ε. An

analogous argument is used to show y−n,δ ≤ y−n,ε. First, note that

(8.9) Estatn,ε (x) ≤ Estatn,δ (x)

for all y−n,ε ≤ x ≤ y+n,ε satisfying (8.3) by the definition of Estatn,ε in (3.8), since the maximum
over a subset is not greater than the maximum over its superset. From the definition of y+n,ε
and inequalities (8.3) and (8.9) we have that for y−n,ε ≤ x < y+n,ε,

(8.10) p > F−
n,ε(x)− Estatn,ε (x) ≥ F−

n,δ(x)− E
stat
n,δ (x).
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Further, we obviously have y−n,ε ≤ yn ≤ y+n,δ. Now, if y−n,ε ≤ y+n,δ < y+n,ε, then considering

(8.10), there must exist an 0 ≤ η < y+n,ε − y+n,δ such that

F−
n,δ(y

+
n,δ + η)− Estatn,δ (y+n,δ + η) ≥ p > F−

n,δ(y
+
n,δ + η)− Estatn,δ (y+n,δ + η),

which is a contradiction. Hence, y+n,δ ≥ y+n,ε.
Proof of Theorem 5.4. The work using selective refinement is always less than or equal to

the work using full refinement. This is obvious, since the full refinement is equivalent to using
{i = 1, . . . , n : xi} as the set of realizations to refine in each iteration, i.e., realizations that
do not affect the values are refined, whereas the selective algorithm refines the realizations in
I(j), whose cardinality is at most n.

Next, we find a set Î(j) defined by a priori information only, with the property I(j) ⊆ Î(j);
i.e., Î(j) is a superset of the realizations refined in each iteration. We make use of the following
bounds:

(8.11)
y−n,ε ≥ inf{x ∈ R : #{i : xi − 2εmax ≤ x}/n + C1n

−1/2 ≥ p}
= F−1

n (p − C1n
−1/2)− 2εmax = y−−

n,ε

and

(8.12)

y+n,ε ≤ inf{x ∈ R : #{i : xi ≤ x− 2εmax}/n − C1n
−1/2 ≥ p}

= inf{x ∈ R : Fn(x− 2εmax)− C1n
−1/2 ≥ p}

= F−1
n (p + C1n

−1/2) + 2εmax = y++
n,ε .

Further, let δ = (2−j , . . . , 2−j) and ε = ε(j), i.e., the numerical error tolerance parameters for
full and selective refinement, respectively, after j iterations. For i ∈ I(j), we have εi = δi = 2−j

and the set I(j) cannot be made smaller (but possibly larger) by replacing ε with δ, which
implies the first set relation in (8.13). For the second set relation in (8.13), we have used (3.6)
together with inequality (8.11) and (8.12). We define Î(j) as

(8.13)

I(j) = {i = 1, . . . , n : y−n,ε − εi < xεi ≤ y+n,ε + εi}
⊆ {i = 1, . . . , n : y−n,ε − δi < xδi ≤ y+n,ε + δi}
⊆ {i = 1, . . . , n : y−−

n,ε − 2−j+1 < xi ≤ y++
n,ε + 2−j+1} = Î(j).

The cardinality of this set can be expressed as

#Î(j) = n(Fn(y
++
n,ε + 2−j+1)− Fn(y

−−
n,ε − 2−j+1))

= n(Fn(F
−1
n (p + C1n

−1/2) + 2−j+2)− Fn(F
−1
n (p− C1n

−1/2)− 2−j+2)).

Using the DKW inequality (see (3.3)), we obtain for a Lipschitz continuous F with Lip-
schitz constant L that the following holds with probability at least 1− 2e−2K2

: if x ≥ 0,

(8.14a)

Fn(F
−1
n (p) + x) ≤ F (F−1

n (p) + x) +Kn−1/2

≤ Fn(F
−1
n (p)) +

∫ F−1
n (p)+x

F−1
n (p)

F ′(y) dy + 2Kn−1/2

≤ p+ n−1 + Lx+ 2Kn−1/2,
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and similarly, if x ≤ 0,

(8.14b) Fn(F
−1
n (p) + x) ≥ p+ Lx− 2Kn−1/2.

Using (8.14), the total work for j iterations can be bounded from above by

J∑
j=0

W (j) ≤ n+ 2q
J−1∑
j=0

2qj#Î(j)

= n

(
1 + 2q

J−1∑
j=0

2qj
(
Fn

(
F−1
n

(
p+ C1n

−1/2
)
+ 4× 2−j

)

− Fn

(
F−1
n

(
p− C1n

−1/2
)
− 4× 2−j

)))

≤ n

⎛⎝1 + 2q
J−1∑
j=0

2qj
(
(2C1 + 4K)n−1/2 + 8L2−j + n−1

)⎞⎠ = T.

We use the assumption that J < 1
2 log2 n− log2 C3 + 1 and observe that we need to consider

three different cases for the geometric sums: case (1) for q < 1,

T = n

(
1 + 2q

(
((2C1 + 4K)n−1/2 + n−1)

2qJ − 1

2q − 1
+ 8L

2(q−1)J − 1

2(q−1) − 1

))

≤ n
(
1 + 2q

(
((2C1 + 4K)n−1/2 + n−1)

2q(1−log2 C3)nq/2 − 1

2q − 1
+ 8L

1

1− 2(q−1)

))
≤
(
(D1 +KD2)C

−q
3 + LD3

)
n−q/2n1+q/2;

case (2) for q = 1,

T = n

(
1 + 2q

(
((2C1 + 4K)n−1/2 + n−1)

2qJ − 1

2q − 1
+ 8LJ

))

≤ n
(
1 + 2q

(
((2C1 + 4K)n−1/2 + n−1)

2q(1−log2 C3)nq/2 − 1

2q − 1

+ 8L

(
(1/2) log2 n− log2C3 + 1

)))
≤
(
(D1 +KD2)C

−q
3 + LD3

)
n−1/2(log2 n)n

1+q/2;
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and case (3) for q > 1,

T = n

(
1 + 2q

(
((2C1 + 4K)n−1/2 + n−1)

2qJ − 1

2q − 1
+ 8L

2(q−1)J − 1

2(q−1) − 1

))

≤ n
(
1 + 2q

(
((2C1 + 4K)n−1/2 + n−1)

2q(1−log2 C3)nq/2 − 1

2q − 1

+ 8L
2(q−1)(1+log2 C3)n−1/2nq/2 − 1

2(q−1) − 1

))
≤
(
(D1 +KD2)C

−q
3 + LD3C

1−q
3

)
n−1/2n1+q/(2λ),

with probability at least 1 − 2e−2K2
, where D1, D2, and D3 depend on C1 and q. The total

work
∑J

j=0 Ŵ
(j) (using that 1/2 log2 n− log2C3 − 1 ≤ J) for full refinement can be bounded

below by

C−1
2

J∑
j=0

Ŵ (j) ≥ n+ 2q
J−1∑
j=0

2qjn = n

(
1 + 2q

2qJ − 1

2q − 1

)
≥ D4C

−q
3 n1+q/2,

where D4 depends on q. The ratio between the required work for the selective refinement and
the full refinement can be bounded above by

∑J
j=0W

(j)∑J
j=0 Ŵ

(j)
≤ min

⎛⎜⎝1,KC4(F,C1, C2, C3, q)

⎧⎪⎨⎪⎩
n−q/2 if q < 1

n−1/2 log2 n if q = 1

n−1/2 if q > 1

⎞⎟⎠
with probability at least 1− 2e−2K2

and with different constant KC4(F,C1, C2, C3, q) in the
three different cases.

9. Conclusion. In this paper, we consider the problem of estimating the p-quantile for a
given functional evaluated on numerical solutions of a deterministic model in which the model
input is subject to stochastic variation. Assuming a computational a posteriori error bound
for the functional computed from a specific numerical solution, we derive a computational a
posteriori error bound for the p-quantile estimators that takes into account the effects of both
the stochastic sampling error and the deterministic numerical solution error. Under general
assumptions, we prove asymptotic convergence of the p-quantile estimator bounds in the limit
of large sample size and decreasing numerical error.

The a posteriori error bound provides the capability of quantifying the effect of the numer-
ical accuracy of each sample on the computed p-quantile. We propose a selective refinement
algorithm for computing an estimate of the p-quantile with a desired accuracy in a compu-
tationally efficient fashion. The algorithm exploits the fact that the accuracy of a relatively
small subset of sample values significantly affects the accuracy of a p-quantile estimator. The
algorithm calls for refinement of the discretization in order to achieve the necessary accuracy
for only those solutions in the subset. The algorithm can lead to significant computational
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gain. For instance, if the numerical model is a first order discretization of a partial differen-
tial equation with spatial dimension greater than one, the reduction in computational work
(compared to standard Monte Carlo using n samples) is asymptotically proportional to n1/2.
The numerical experiments presented in the paper support this conclusion.

Acknowledgment. D. Estep gratefully acknowledges Chalmers University of Technology
for the support provided by the appointment as Chalmers Jubilee Professor.

REFERENCES

[1] A. Agresti and B. A. Coull, Approximate is better than “exact” for interval estimation of binomial
proportions, Amer. Statist., 52 (1998), pp. 119–126.

[2] W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations, Lec-
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September 9, 2015

Abstract

We propose and analyze a method for computing failure proba-
bilities of systems modeled as numerical deterministic models (e.g.,
PDEs) with uncertain input data. A failure occurs when a functional
of the solution to the model is below (or above) some critical value.
By combining recent results on quantile estimation and the multilevel
Monte Carlo method we develop a method which reduces computa-
tional cost without loss of accuracy. We show how the computational
cost of the method relates to error tolerance of the failure probability.
For a wide and common class of problems, the computational cost
is asymptotically proportional to solving a single accurate realization
of the numerical model, i.e., independent of the number of samples.
Significant reductions in computational cost are also observed in nu-
merical experiments.

1 Introduction

This paper is concerned with the computational problem of finding the prob-
ability for failures of a modeled system. The model input is subject to un-
certainty with known distribution and a failure is the event that a functional
(quantity of interest, QoI) of the model output is below (or above) some
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critical value. The goal of this paper is to develop an efficient and accurate
multilevel Monte Carlo (MLMC) method to find the failure probability. We
focus mainly on the case when the model is a partial differential equation
(PDE) and we use terminology from the discipline of numerical methods for
PDEs. However, the methodology presented here is also applicable in a more
general setting.

A multilevel Monte Carlo method inherits the non-intrusive and non-
parametric characteristics from the standard Monte Carlo (MC) method.
This allows the method to be used for complex black-box problems for which
intrusive analysis is difficult or impossible. The MLMC method uses a hier-
archy of numerical approximations on different accuracy levels. The levels in
the hierarchy are typically directly related to a grid size or timestep length.
The key idea behind the MLMC method is to use low accuracy solutions as
control variates for high accuracy solutions in order to construct an estimator
with lower variance. Savings in computational cost are achieved when the
low accuracy solutions are cheap and are sufficiently correlated with the high
accuracy solutions. MLMC was first introduced in [10] for stochastic differen-
tial equations as a generalization of a two-level variance reduction technique
introduced in [17]. The method has been applied to and analyzed for elliptic
PDEs in [3, 5, 4, 19]. Further improvements of the MLMC method, such as
work on optimal hierarchies, non-uniform meshes and more accurate error
estimates can be found in [15, 6]. In the present paper, we are not interested
in the expected value of the QoI, but instead a failure probability, which is
essentially a single point evaluation of the cumulative distribution function
(cdf). For extreme failure probabilities, related methods include importance
sampling [14], importance splitting [13], and subset simulations [1]. Works
more related to the present paper include the results on MLMC methods for
computing payoffs of binary options [2] and non-parameteric density estima-
tion for PDE models in [9], and in particular [8]. In the latter, the selective
refinement method for quantiles was formulated and analyzed.

In this paper, we seek to compute the cdf at a given critical value. The cdf
at the critical value can be expressed as the expectation value of a binomially
distributed random variable Q that is equal to 1 if the QoI is smaller than the
critical value, and 0 otherwise. The key idea behind selective refinement is
that realizations with QoI far from the critical value can be solved to a lower
accuracy than those close to the critical value, and still yield the same value
of Q. The random variable Q lacks regularity with respect to the uncertain
input data, and hence we are in an unfavorable situation for application
of the MLMC method. However, with the computational savings from the
selective refinement it is still possible to obtain an asymptotic result for the
computational cost where the cost for the full estimator is proportional to
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the cost for a single realization to the highest accuracy.
The paper is structured as follows. Section 2 presents the necessary as-

sumptions and the precise problem description. It is followed by Section 3
where our particular failure probability functional is defined and analyzed
for the MLMC method. In Section 4 and Section 5 we revisit the multilevel
Monte Carlo and selective refinement method adapted to this problem and in
Section 6 we show how to combine multilevel Monte Carlo with the selective
refinement to obtain optimal computational cost. In Section 7 we give details
on how to implement the method in practice. The paper is concluded with
two numerical experiments in Section 8.

2 Problem formulation

We consider a model problem M, e.g., a (non-)linear differential operator
with uncertain data. We let u denote the solution to the model

M(ω, u) = 0,

where the data ω is sampled from a space Ω. In what follows we assume that
there exists a unique solution u given any ω ∈ Ω almost surely. It follows
that the solution u to a given model problemM is a random variable which
can be parameterized in ω, i.e., u = u(ω).

The focus of this work is to compute failure probabilities, i.e., we are not
interested in some pointwise estimate of the expected value of the solution,
E[u], but rather the probability that a given QoI expressed as a functional,
X(u) of the solution u, is less (or greater) than some given critical value y.
We let F denote the cdf of the random variable X = X(ω). The failure
probability is then given by

p = F (y) = Pr(X ≤ y). (1)

The following example illustrates how the problem description relates to real
world problems.

Example 1. As an example, geological sequestration of carbon dioxide (CO2)
is performed by injection of CO2 in an underground reservoir. The fate of
the CO2 determines the success or failure of the storage system. The CO2

propagation is often modeled as a PDE with random input data, such as a
random permeability field. Typical QoIs include reservoir breakthrough time
or pressure at a fault. The value y corresponds to a critical value which the
QoI may not exceed or go below. In the breakthrough time case, low values
are considered failure. In the pressure case, high values are considered failure.
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In that case one should negate the QoI to transform the problem to the form
of equation (1).

The only regularity assumption on the model is the following Lipschitz
continuity assumption of the cdf, which is assumed to hold throughout the
paper.

Assumption 2. For any x, y ∈ R,

|F (x)− F (y)| ≤ CL|x− y|. (2)

To compute the failure probability we consider the binomially distributed
variable Q = 1(X ≤ y) which takes the value 1 if X ≤ y and 0 otherwise.
The cdf can be expressed as the expected value of Q, i.e., p = F (y) = E[Q].

In practice we construct an estimator Q̂ for E[Q], based on approximate

sample values from X. As such, Q̂ often suffers from numerical bias from
the approximation in the underlying sample. Our goal is to compute the
estimator Q̂ to a given root mean square error (RMSE) tolerance ε, i.e., to
compute

e
[
Q̂
]

=

(
E
[(
Q̂− E[Q]

)2
])1/2

=

(
V
[
Q̂
]

+
(
E
[
Q̂−Q

])2
)1/2

≤ ε

to a minimal computational cost. The equality above shows a standard way
of splitting the RMSE into a stochastic error and numerical bias contribution.

The next section presents assumptions and results regarding the numeri-
cal discretization of the particular failure probability functional Q.

3 Approximate failure probability functional

We will not consider a particular approximation technique for computing Q̂,
but instead make some abstract assumptions on the underlying discretization.
We introduce a hierarchy of refinement levels ` = 0, 1, . . . and let X ′` and
Q′` = 1(X ′` ≤ y) be an approximate QoI of the model, and approximate
failure probability, respectively, on level `. One possible and natural way to
define the accuracy on level ` is by assuming

|X −X ′`| ≤ γ`, (3)

for some 0 < γ < 1. This means the error of all realizations on level ` are
uniformly bounded by γ`. In a PDE setting, typically an a priori error bound
or a posteriori error estimate,

|X(ω)−Xh(ω)| ≤ C(ω)hs,
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can be derived for some constants C(ω), s, and a discretization parameter h.

Then we can choose X ′` = Xh with h =
(
C(ω)−1γ`

)1/s
to fulfill (3).

For an accurate value of the failure probability functional the condition in
(3) is unnecessarily strong. This functional is very sensitive to perturbations
of values close to y, but insensitive to perturbations for values far from y. This
insensitivity can be exploited. We introduce a different approximation X`,
and impose the following, relaxed, assumption on this approximation of X,
which allows for larger errors far from the critical value y. This assumption
is illustrated in Figure 1.

Assumption 3. The numerical approximation X` of X satisfies

|X −X`| ≤ γ` or |X −X`| < |X` − y| (4)

for a fix 0 < γ < 1.

y

γ`

X`

|X −X`|

|X −X`| ≤ γ`

|X −X`| < |X` − y|

Figure 1: Illustration of condition (4). The numerical error is allowed to be
larger than γ` far away from y.

We define Q` = 1(X` ≤ y) analogously to Q′`. Let us compare the impli-
cations of the two conditions (3) and (4) on the quality of the two respective
approximations. Denote by X ′` and Q′` stochastic variables obeying the error
bound (3) and its corresponding approximate failure functional, respectively,
and let X` obey (4). In a practical situation, Assumption 3 is fulfilled by
iterative refinements of X` until condition (4) is satisfied. It is natural to use
a similar procedure to achieve the stricter condition (3) for X ′`. We express
this latter assumption of using similar procedures for computing X` and X ′`
as

|X −X`| ≤ γ` implies X ′` = X`, (5)

i.e., for outcomes where X` is solved to accuracy γ`, X ′` is equal to X`. Under
that assumption, the following lemma shows that it is not less probable that
Q` is correct than that Q′` is.
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Lemma 4. Let X ′` and X` fulfill (3) and (4), respectively, and assume (5)
holds. Then Pr(Q` = Q) ≥ Pr(Q′` = Q).

Proof. We split Ω into the events A = {ω ∈ Ω : |X − X`| ≤ γ`} and its
complement Ω \ A. For ω ∈ A, using (5), we conclude that Q′` = Q`, hence

Pr(Q` = Q | A) = Pr(Q′` = Q | A).

For ω /∈ A, we have |X −X`| > γ`, and from (4) that |X −X`| < |X` − y|,
i.e., Q` = Q and hence

Pr(Q` = Q | Ω \ A) = 1.

Since Pr(Q′` = Q | Ω \ A) ≤ 1, we get Pr(Q` = Q) ≥ Pr(Q′` = Q).

Under Assumption 3 we can prove the following lemma on the accuracy
of the failure probability function Q`.

Lemma 5. Under Assumption 2 and 3, the statements

M1 |E[Q` −Q]| ≤ C1γ
`,

M2 V[Q` −Q`−1] ≤ C2γ
` for ` ≥ 1,

are satisfied where C1 and C2 do not depend on `.

Proof. We split Ω into the events B = {ω ∈ Ω : γ` ≥ |X` − y|} and its
complement Ω \ B. In Ω \ B, we have Q` = Q, since |X − X`| < |X` − y|
from (4). Also, we note that the event B implies |X − X`| ≤ γ`, hence
|X − y| ≤ 2γ`. Then,

|E[Q` −Q]| =
∣∣∣∣
∫

B

Q`(ω)−Q(ω) dP (ω)

∣∣∣∣ ≤
∫

B

1 dP (ω)

≤ Pr(|X − y| ≤ 2γ`) = F (y − 2γ`)− F (y + 2γ`)

≤ 4CLγ
`,

which proves M1. M2 follows directly from M1, since

V[Q` −Q`−1] = E
[
(Q` −Q`−1)2

]
− E[Q` −Q`−1]2

≤ E[Q` − 2Q`Q`−1 +Q`−1]

≤ |E[Q` −Q]|+ |2E[Q`Q`−1 −Q]|+ |E[Q`−1 −Q]|
≤ 2|E[Q` −Q]|+ 2|E[Q`−1 −Q]|
≤ C2γ

`,

where (Q`)
2 = Q` was used.
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Interesting to note with this particular failure probability functional is
that the convergence rate in M2 cannot be improved if the rate in M1 is
already sharp, as the following lemma shows.

Lemma 6. Let 0 < γ < 1 be fixed. If there is a 0 < c ≤ C1 such that the
failure probability functional satisfies

cγ` ≤ |E[Q` −Q]| ≤ C1γ
`

for all ` = 0, 1, . . ., then

V[Q` −Q`−1] ≤ C2γ
β`,

where β = 1 is sharp in the sense that the relation will be violated for suffi-
ciently large `, if β > 1.

Proof. Assume that V[Q` −Q`−1] ≤ Cγβ` for some constant C and β > 1.
For two levels k < `, such that cγk > C1γ

` we have that

|E[Q` −Qk]| ≥ ||E[Q` −Q]| − |E[Qk −Q]|| ≥
(
c− C1γ

`−k)γk = c̃γk,

with c̃ = c− C1γ
`−k > 0. For such ` and k, we have

c̃γk ≤ |E[Q` −Qk]| ≤
`−1∑

j=k

|E[Qj+1 −Qj]| ≤
`−1∑

j=k

E
[
(Qj+1 −Qj)

2
]

=
`−1∑

j=k

(
V[Qj+1 −Qj] + (E[Qj+1 −Qj])

2)

≤
`−1∑

j=k

(
Cγβj +O(γ2j)

)
≤ C̃γβk +O(γ2k).

For `, k → ∞ (keeping ` − k constant) we have a contradiction due to the
mismatching rates and hence β ≤ 1, which proves that the bound can not
be improved.

4 Multilevel Monte Carlo method

In this section, we present the multilevel Monte Carlo method in a general
context. Because of the low convergence rate of the variance in M2, the
MLMC method does not perform optimally for the failure probability func-
tional. The results presented here will be combined with the results from
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Section 5 to derive a new method to compute failure probabilities efficiently
in Section 6.

The (standard) MC estimator at refinement level ` of E[Q] using a sample
{ωi`}

N`
i=1, reads

Q̂MC
N`,`

=
1

N`

N∑̀

i=1

Q`(ω
i
`).

Note that the subscripts N` and ` control the statistical error and numerical
bias, respectively. The expected value and variance of the estimator Q̂MC

N`,`

are E
[
Q̂MC
N`,`

]
= E[Q`] and V

[
Q̂MC
N`,`

]
= N−1

` V[Q`], respectively. Referring to

the goal of the paper, we want the MSE (square of the RMSE) to satisfy

e
[
Q̂MC
N`,`

]2

= N−1
` V[Q`] + (E[Q` −Q])2 ≤ ε2/2 + ε2/2 = ε2,

i.e., both the statistical error and the numerical error should be less than
ε2/2. The MLMC method is a variance reduction technique for the MC

method. The MLMC estimator Q̂ML
{N`},L at refinement level L is expressed as

a telescoping sum of L MC estimator correctors:

Q̂ML
{N`},L =

L∑

`=0

1

N`

N∑̀

i=1

(
Q`(ω

i
`)−Q`−1(ωi`)

)
,

where Q−1 = 0. There is one corrector for every refinement level ` = 0, . . . , L,
each with a specific MC estimator sample size N`. The expected value and
variance of the MLMC estimator are

E
[
Q̂ML
{N`},L

]
=

L∑

`=0

E[Q` −Q`−1] = E[QL] and

V
[
Q̂ML
{N`},L

]
=

L∑

`=0

N−1
` V[Q` −Q`−1],

(6)

respectively. Using (6) the MSE for the MLMC estimator can be expressed
as

e
[
Q̂ML
{N`},L

]2

=
L∑

`=0

N−1
` V[Q` −Q`−1] + (E[QL −Q])2,

and can be computed at expected cost

C
[
Q̂ML
{N`},L

]
=

L∑

`=0

N`c`,
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where c` = C[Q`] + C[Q`−1]. Here, by C[·] we denote the expected compu-
tational cost to compute a certain quantity. Given that the variance of the
MLMC estimator is ε2/2 the expected cost is minimized by choosing

N` = 2ε−2
√

V[Q` −Q`−1]/c`

L∑

k=0

√
V[Qk −Qk−1]ck (7)

(see Appendix A), and hence the total expected cost is

C
[
Q̂ML
{N`},L

]
= 2ε−2

(
L∑

`=0

√
V[Q` −Q`−1]c`

)2

. (8)

If the product V[Q` −Q`−1]c` increases (or decreases) with ` then dominating
term in (8) will be ` = L (or ` = 0). The values N` can be estimated on
the fly in the MLMC algorithm using (7) while the cost c` can be estimated
using an a priori model. The computational complexity to obtain a RMSE
less than ε of the MLMC estimator for the failure probability functional is
given by the theorem below. In the following, the notation a . b stands for
a ≤ Cb with some constant C independent of ε and `.

Theorem 7. Let Assumption 2 and 3 hold (so that Lemma 5 holds) and
C[Q`] . γ−r`. Then there exists a constant L and a sequence {N`} such that
the RMSE is less than ε, and the expected cost of the MLMC estimator is

C
[
Q̂ML
{N`},L

]
.





ε−2 r < 1

ε−2(log ε−1)2 r = 1

ε−1−r r > 1.

(9)

Proof. For a proof see, e.g., [5, 10].

The most straight-forward procedure to fulfill Assumption 3 in practice
is to refine all samples on level ` uniformly to an error tolerance γ`, i.e.,
to compute X ′` introduced in Section 3, for which |X −X ′`| ≤ γ`. Typical
numerical schemes for computing X ′` include finite element, finite volume, or
finite difference schemes. Then the expected cost C[Q′`] typically fulfill

C[Q′`] = γ−q`, (10)

where q depends on the physical dimension of the computational domain,
the convergence rate of the solution method, and computational complexity
for assembling and solving the linear system. Note that one unit of work is
normalized according to equation (10). Using Theorem 7, with Q′` instead
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of Q` (which is possible, since Q′` trivially fulfills Assumption 3) we obtain a
RMSE of the expected cost less than ε−1−q = ε−1C[Q′`] for the case q > 1.

In the next section we describe how the selective refinement algorithm
computes X` (hence Q`) that fulfills Assumption 3 to a lower cost than its
fully refined equivalent X ′`. The theorem above can then be applied with
r = q − 1 instead of r = q.

5 Selective refinement algorithm

In this section we modify the selective refinement algorithm proposed in [8]
for computing failure probabilities (instead of quantiles) and for quantifying
the error using the RMSE. The selective refinement algorithm computes X`

so that
|X −X`| ≤ γ` or |X −X`| < |X` − y|

in Assumption 3 is fulfilled without requiring the stronger (full refinement)
condition

|X −X`| ≤ γ`.

In contrast to the selective refinement algorithm in [8], Assumption 3 can
be fulfilled by iterative refinement of realizations over all realizations inde-
pendently. This allows for an efficient totally parallell implementation. We
are particularly interested in quantifying the expected cost required by the
selective refinement algorithm, and showing that the X` resulting from the
algorithm fulfills Assumption 3.

Algorithm 1 exploits the fact that Q` = Q for realizations satisfying
|X−X`| < |X`−y|. That is, even if the error of X` is greater than γ`, it might
be sufficiently accurate to yield the correct value of Q`. The algorithm works
on a per-realization basis, starting with an error tolerance 1. The realization
is refined iteratively until Assumption 3 is fulfilled. The advantage is that
many samples can be solved only with low accuracy and hence the average
cost per Q` is reduced. Lemma 8 shows that X` computed using Algorithm 1
satisfies Assumption 3.

Lemma 8. Approximations X` computed using Algorithm 1 satisfy Assump-
tion 3.

Proof. At each iteration in the while-loop of Algorithm 1, γj is the error
tolerance of X`(ω

i
`), i.e., |X(ωi`)−X`(ω

i
`)| ≤ γj. The stopping criterion hence

implies Assumption 3 for X`(ω
i
`).

The expected cost for computing Q` using Algorithm 1 is given by the
following lemma.
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Algorithm 1 Selective refinement algorithm

1: Input arguments: level `, realization i, critical value y, and tolerance
factor γ

2: Compute X ′0(ωi`)
3: Let j = 0
4: while j < ` and γj ≥ |X ′j(ωi`)− y| do
5: Let j = j + 1
6: Compute X ′j(ω

i
`)

7: end while
8: Let X`(ω

i
`) = X ′j(ω

i
`)

Lemma 9. The expected cost to compute the failure probability functional
using Algorithm 1 can be bounded as

C[Q`] .
∑̀

j=0

γ(1−q)j.

Proof. Consider iteration j, i.e., when X`(ω
i
`) has been computed to tolerance

γj−1. We denote by Ej the probability that a realization enters iteration j.
For j ≤ `,

Pr(Ej) = Pr(y − γj−1 ≤ X` ≤ y + γj−1)

≤ Pr(y − 2γj−1 ≤ X ≤ y + 2γj−1)

= F (y + 2γj−1)− F (y − 2γj−1)

≤ 4CLγ
j−1.

Every realization is initially solved to tolerance 1. Using that the cost for
solving a realization to tolerance γj is γ−qj, we get that the expected cost is

C[Q`] = 1 +
∑̀

j=1

Pr(Ej)γ
−qj ≤ 1 +

∑̀

j=1

4CLγ
j−1γ−qj .

∑̀

j=0

γ(1−q)j

which concludes the proof.

6 Multilevel Monte Carlo using the selective

refinement strategy

Combining the MLMC method with the algorithm for selective refinement
there can be further savings in computational cost. We call this method
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multilevel Monte Carlo with selective refinement (MLMC-SR). In particular,
for q > 1 we obtain from Lemma 9 that the expected cost for one sample can
be bounded as

C[Q`] .
∑̀

j=0

γ(1−q)j . γ(1−q)`. (11)

Applying Theorem 7 with r = q − 1 yields the following result.

Theorem 10. Let Assumption 2 and Assumption 3 hold (so that Lemma 5
holds) and suppose that Algorithm 1 is executed to compute Q`. Then there
exists a constant L and a sequence {N`} such that the RMSE is less than ε,
and the expected cost for the MLMC estimator with selective refinement is

C
[
Q̂ML
{N`},L

]
.





ε−2 q < 2

ε−2(log ε−1)2 q = 2

ε−q q > 2.

(12)

Proof. For q > 1, follows directly from Theorem 7 since Lemma 5 holds with
r = q − 1. For q ≤ 1, we use the rate ε−2 from the case 1 < q < 2, since the
cost cannot be worsened by making each sample cheaper to compute.

In a standard MC method we have ε−2 ∼ N where N is the number of
samples and ε−q ∼ C[Q′L] where C[Q′L] is the expected computational cost for
solving one realization on the finest level without selective refinement. The
MLMC-SR method then has the following cost,

C
[
Q̂ML
{N`},L

]
.

{
N q < 2

C[Q′L] q > 2.
(13)

A comparison of MC, MLMC with full refinement (MLMC), and MLMC with
selective refinement (MLMC-SR), is given in Table 1. To summarize, the best
possible scenario is when the cost is ε−2, which is equivalent with a standard
MC method where all samples can be obtained with cost 1. This complexity
is obtained for the MLMC method when q < 1 and for the MLMC-SR method
when q < 2. For q > 2 the MC method has the same complexity as solving
N problem on the finest level NC[Q′L], MLMC has the same cost as N1/2

problem on the finest level N1/2C[Q′L], and MLMC-SR method as solving
one problem on the finest level C[Q′L].
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Method 0 ≤ q < 1 1 < q < 2 q > 2

MC ε−2−q ε−2−q ε−2−q

MLMC ε−2 ε−1−q ε−1−q

MLMC-SR ε−2 ε−2 ε−q

Table 1: Comparison of work between MC, MLMC with full refinement
(MLMC), and MLMC with selective refinement (MLMC-SR) for different
q.

7 Heuristic algorithm

In this section, we present a heuristic algorithm for the MLMC method with
selective refinement. Contrary to Theorem 10, this algorithm does not guar-
antee that the RMSE is O(ε), since we in practice lack a priori knowledge
of the constants C1 and C2 in Lemma 5. Instead, the RMSE needs to be
estimated. Recall the split of the MSE into a numerical and statistical con-
tribution: (

E
[
Q− Q̂

])2

≤ 1

2
ε2 and V

[
Q̂
]
≤ 1

2
ε2. (14)

With Q̂ being the multilevel Monte Carlo estimator Q̂ML
{N`},L, we here present

heuristics for estimating the numerical and statistical error of the estimator.
For both estimates and ` ≥ 1, we make use of the trinomially distributed

variable Y`(ω) = Q`(ω) − Q`−1(ω). We denote the probabilities for Y` to
be −1, 0 and 1 by p−1, p0 and p1, respectively. For convenience, we drop
the index ` for the probabilities, however, they do depend on `. In order to

estimate the numerical bias E
[
Q− Q̂ML

{N`},L

]
= E[Q−QL], we assume that

M1 holds approximately with equality, i.e., |E[Q−Q`]| ≈ C1γ
`. Then the

numerical bias can be overestimated, |E[Q−Q`]| ≤ |E[Y`]|(γ−1 − 1)−1, since

|E[Y`]| = |E[Q` −Q]− E[Q`−1 −Q]|
≥ ||E[Q` −Q]| − |E[Q`−1 −Q]||
≈
∣∣C1γ

` − C1γ
`−1
∣∣

= C1γ
`(γ−1 − 1).

Hence, we concentrate our effort on estimating |E[Y`]|.
It has been observed that the accuracy of sample estimates of mean and

variance of Y` might deteriorate for deep levels ` � 1, and a continuation
multilevel Monte Carlo method was proposed in [6] as a remedy for this. That

13



idea could be applied and specialized for this functional to obtain more accu-
rate estimates. However, in this work we use the properties of the trinomially
distributed Y` to construct a method with optimal asymptotic behavior, pos-
sibly with increase of computational cost by a constant.

We consider the three binomial distributions [Y` = 1], [Y` = −1] and
[Y` 6= 0] which have parameters p1, p−1 and p1 + p−1, respectively ([·] is the
Iverson bracket notation). These parameters can be used in estimates for
both the expectation value and variance of the trinomially distributed Y`.
Considering a general binomial distribution B(n, p), we want to estimate p.
For our distributions, as the level ` increases, p approaches zero, why we
are concerned with finding stable estimates for small p. It is important that
the parameter is not underestimated, since it is used to control the numer-
ical bias and statistical error and could then cause premature termination.
We propose an estimation method that is easy to implement, and that will
overestimate the parameter in case of accuracy problems, rather than un-
derestimate it, while keeping the asymptotic rates given in Lemma 5 for the
estimators.

The standard unbiased estimator of p is p̂ = xn−1, where x is the number
of observed successes. The proposed alternative (and biased) estimator is
p̃ = (x + k)(n + k)−1 for a k > 0. This corresponds to a Bayesian estimate
with prior beta distribution with parameters (k + 1, 1). Observing that

|E[Y`]| = |p1 − p−1|,
V[Y`] = p1 + p−1 − (p1 − p−1)2 (15)

and considering Lemma 5 (assuming equality with the rates), we conclude
that all three parameters p ∝ γ` (where ∝means asymptotically proportional
to, for ` � 1). With the standard estimator p̂, the relative variance can
be expressed as V[p̂](E[p̂])−2. This quantity should be less than one for an
accurate estimate. We now examine its asymptotic behavior. The parameter
n is the optimal number of samples at level ` (equation (7)) and can be
expressed as

n ∝ γ
1
2
`q− 1

2
L(2+q), (16)

where we used that ε ∝ γL, C[Y`] ∝ γ(1−q)` and V[Y`] ∝ γ`. Then we have

V[p̂]

E[p̂]2
=
n−1p(1− p)

p2
=

1− p
np

∝ γ
2+q
2

(L−`).

In particular, for ` = L, the relative variance is asymptotically constant, but
we don’t know a priori how big this constant is. When it is large (greater
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than 1), the relative variance of p̂ might be very large. An analogous analysis
on p̃ yields

V[p̃]

E[p̃]2
=

(n+ k)−2np(1− p)
(n+ k)−2(np+ k)2

=
np(1− p)
(np+ k)2

≤ np

(np+ k)2
. (17)

Maximizing the bound in (17) with respect to np, gives

V[p̃]

E[p̃]2
≤ 1

4k
.

Choosing for instance k = 1 gives a maximum relative variance of 1/4. Choos-
ing a larger k gives larger bias, but smaller relative variance. The bias of this
estimator is significant if np� k, however, that is the case when we have too
few samples to estimate the parameter accurately, and then p̃ instead acts
as a bound. The estimate p̃ keeps the asymptotic behavior E[p̃] ∝ γ`, since

E[p̃] =
np+ k

n+ k
∝ np+ k

n
= p+

k

n

∝ γ` + γ−
1
2
`q+ 1

2
L(2+q) = γ`(1 + γ

1
2

(L−`)(2+q)) ≤ 2γ` ∝ p

where we used that ` < L and k is constant.
Now, estimating the parameters p1, p−1 and p1 + p−1 as p̃1, p̃−1 and p̃±1,

respectively, using the estimator p̃ above (note that the sum p1 + p−1 is
estimated separately from p1 and p−1) we can bound (approximately) the
expected value and variance of Y` in (15):

|E[Y`]| ≤ max(p1, p−1) ≈ max(p̃1, p̃−1) (18)

and
V[Y`] ≤ p1 + p−1 ≈ p̃±1 (19)

for ` ≥ 1. For ` = 0, the sample size is usually large enough to use the sample
mean and variance as accurate estimates. Since the asymptotic behavior of
p̃ is γ`, the rates in Lemma 5 still holds and Theorem 10 applies (however,
with approximate quantities).

The algorithm for the MLMC method using selective refinement is pre-
sented in Algorithm 2. The termination criterion is the same as was used in
the standard MLMC algorithm [10], i.e.,

max(γ|E[YL−1]|, |E[YL]|) < 1√
2

(γ−1 − 1)ε, (20)

where |E[YL−1]| and |E[YL]| are estimated using the methods presented above.
A difference from the standard MLMC algorithm is that the initial sample
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size for level L is NL = Nγ−L instead of NL = N , for some N . This is what
is predicted by equation (16) and is necessary to provide accurate estimates
of the expectation value and variance of Y` for deep levels. Other differ-
ences from the standard MLMC algorithm is that the selective refinement
algorithm (Algorithm 1) is used to compute Q̂MC

N`,L
, and that the estimates of

expectation value and variance of Y` are computed according to the discussion
above.

Algorithm 2 MLMC method using selective refinement

1: Pick critical value y, cost model parameter q, tolerance factor γ, initial
number of samples N , parameter k, and final tolerance ε

2: Set L = 0
3: loop
4: Let NL = Nγ−L and compute Q̂MC

N`,L
using selective refinement (Al-

gorithm 1)
5: Estimate V[Q` −Q`−1] using (18)
6: Compute the optimal {N`}L`=0 using (7) and cost model (11)

7: Compute Q̂MC
N`,`

for all levels ` = 0, . . . , L using selective refinement

(Algorithm 1)
8: Estimate E[Q` −Q`−1] using (19)
9: Terminate if converged by checking inequality (20)

10: Set L = L + 1
11: end loop
12: The MLMC-SR estimator is Q̂ML

{N`},L =
∑L

`=0 Q̂
MC
N`,`

8 Numerical experiments

Two types of numerical experiments are presented in this section. The first
experiment (in Section 8.1) is performed on a simple and cheap modelM so
that the asymptotic results of the computational cost, derived in Theorem 10,
can be verified. The second experiment (in Section 8.2) is performed on a
PDE model M to show the method’s applicability to realistic problems. In
our experiments we made use of the software FEniCS [18] and SciPy [16].

8.1 Failure probability of a normal distribution

In this first demonstrational experiment, we let the quantity of interest X
belong to the standard normal distribution and we seek to find the probability
of X ≤ y = 0.8. The true value of this probability is Pr(X ≤ 0.8) =
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Φ(0.8) ≈ 0.78814 and we hence have a reliable reference solution. We define
approximations Xh of X as follows. First, we let our input data ω belong to
the standard normal distribution, and let X(ω) = ω. Then, we let Xh(ω) =
ω + h(2U(ω, h) − 1 + b)/(1 + b), where b = 0.1 and U(ω, h) is a uniformly
distributed random number between 0 and 1. Since we have an error bound
|Xh −X| ≤ h, the selective refinement algorithm (Algorithm 1) can be used
to construct a function X` satisfying Assumption 3. With this setup it is very
cheap to compute Xh to any accuracy h, however, for illustrational purposes
we assume a cost model C[Xh] = h−q with q = 1, 2, and 3 to cover the three
cases in Theorem 10.

For the three values of q, and eight logarithmically distributed values
of ε between 10−3 and 10−1, we performed 100 runs of Algorithm 2. All
parameters used in the simulations are presented in Table 2.

Parameter Value

y 0.8
q 1, 2, 3
γ 0.5
N 10
k 1
ε (10−3, 10−1)

Table 2: Parameters used for the demonstrational experiment.

For convenience, we denote by Q̂i the MLMC-SR estimator Q̂ML
{N`},L of the

failure probability from run i = 1, . . . ,M with M = 100. For each tolerance
ε and cost parameter q, we estimated the RMSE of the MLMC-SR estimator
by

e
[
Q̂ML
{N`},L

]
=

(
E
[(
Q̂ML
{N`},L − E[Q]

)2
])1/2

≈

(
1

M

M∑

i=1

(
Q̂i − E[Q]

)2
)1/2

.

Also, for each of the eight tolerances ε, we computed the run-specific estima-
tion errors |Q̂i − E[Q]|, i = 1, . . . ,M . In Figure 2 we present three plots of
the RMSE vs. ε, one for each value of q. We can see that the method yields
solutions with the correct accuracy.

In order to verify Theorem 10, we estimated the expected cost for each
tolerance ε and value of q by computing the mean of the total cost over the
100 runs. The cost for each realization was computed using the cost model
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(b) Case q = 2.
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(c) Case q = 3.

RMSE

|Q̂i − 0.78814]|
ǫ

(d) Legend.

Figure 2: RMSE (square markers and line) plotted vs. tolerance for the
experiment described in Section 8.1. The dashed line is the tolerance ε and
the dots are the individual errors for the 100 runs at each tolerance.

in equation (10). The cost for realizations differs not only between levels `,
but also within a level ` owing to the selective refinement algorithm. For
each run i, the costs of all realizations were summed to obtain the total cost
for that run. We computed a mean of the total costs for the 100 runs. A
plot of the result can be found in Figure 3. As the tolerance ε decreases the
expected cost approaches the rates given in Theorem 10. The reference costs
are multiplied by constants to align well with the estimated expected costs.
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Figure 3: Computed mean total cost (diamond, triangle, square markers and
lines) plotted with theoretical reference cost (dashed lines) for the experiment
described in Section 8.1. The reference costs for the three values of q are:
20ε−2 for q = 1; 2 log(ε−1)2ε−2 for q = 2; and 6ε−3 for q = 3.

8.2 Single-phase flow in media with lognormal perme-
ability

We consider Darcy’s law on a unit square [0, 1]2 on which we have im-
pearmeable upper and lower boundaries, high pressure on the left boundary
(Γ1) and low pressure on the right boundary (Γ2). We define the spaces
H1
f (D) = {v ∈ H1(D) : v|Γ1 = f and v|Γ2 = 0}, and let n denote the unit

normal of D .
The weak form of the partial differential equation reads: find u ∈ H1

1 (D)
such that

(a(ω, ·)∇u,∇v) = 0 in D , (21)

for all v ∈ H1
0 (D), and a is a stationary log-normal distributed random field

a(ω, ·) = exp(κ(ω, ·)), (22)

over D , where κ(·, x) has zero mean and is normal distributed with exponen-
tial covariance, i.e., for all x1, x2 ∈ D we have that

V[κ(·, x1)κ(·, x2)] = σ2 exp

(
−‖x1 − x2‖2

ρ

)
. (23)
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We choose σ = 1 and ρ = 0.1 in the numerical experiment.
We are interested in the boundary flux on the right boundary, i.e., the

functional X(ω) =
∫

Γ2
n · a(ω)∇u dx = (a(ω, ·)∇u,∇g), for any g ∈ H1(D),

g|Γ1 = 0 and g|Γ2 = 1. The last equality comes by a generalized Green’s
identity, see [12, Chp. 1, Corollary 2.1].

To generate realizations of a(ω, ·), the circulant embedding method in-
troduced in [7] is employed. The mesh resolution for the input data of the
realizations generated on level ` in the MLMC-SR algorithm is chosen such
that the finest mesh needed on level ` is not finer than the chosen mesh. For
a fixed realization on level ` we don’t know how fine data we need, because of
the selective refinement procedure. This means that the complexity obtained
for the MLMC-SR algorithm do not apply for the generation of data. The
circulant embedding method has log-linear complexity. A remedy for the
complexity of generating realizations is to use a truncated Karhunen-Loève
expansion that can easily be refined. However, numerical experiments show
that we are in a regime where the time spent on generating realizations using
circulant embedding is negligible compared to the time spent in the linear
solvers.

The PDE is discretized using a FEM-discretization with linear Lagrange
elements. We have a family of structured nested meshes Thm , where a mesh
hm is the maximum element diameter of the given mesh. The data a(ω, ·) is
defined in the grid points of the meshes. Using the circulant embedding we
get an exact representation of the stochastic field in the grid points of the
given mesh. This can be interpreted as not making any approximation of the
stochastic field but instead making a quadrature error when computing the
bilinear form.

The functional for a discretization on mesh m is defined as Xhm(ω) =
(a(ω, ·)∇uhm ,∇g). The convergence rates in energy norm for log-normal
data is h1/2−δ for any δ > 0 [4]. Using postprocessing, it can be shown that
the error in the functional converges twice as fast [11], i.e, |Xhm−Xhm(ω)| ≤
Chs−2δ for s = 1. We use a multigrid solver that has linear α = 1 (up to log-
factors) complexity. The work for one sample can then be computed as γ−q`

where γ` is the numerical bias tolerance for the sample and q ≈ 2α/s = 2,
which was also verified numerically. The error is estimated using the dual
solution computed on a finer mesh. Since it can be quite expensive to solve
a dual problem for each realization of the data, the error in the functional
can also be computed by estimating the constant C and s either numerically
or theoretically.

We choose γ = 0.5, N = 10, and k = 1 in the MLMC-SR algorithm, see
Section 7 for more information on the choices of parameters. The problem
reads: find the probability p for X ≤ y = 1.5 to the given RMSE ε. We
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Parameter Value

y 1.5
q 2
γ 0.5
N 10
k 1
ε 10−1, 10−1.5, 10−2

ρ 0.1
σ 1

Table 3: Parameters used for the single-phase flow experiment. The param-
eters y, q, γ,N, k, ε are used in the MLMC-SR algorithm and ρ, σ to define
the log-normal field.

ε Mean p Sample std Target std (ε/
√

2)

10−1 0.8834 6.472 · 10−2 7.071 · 10−2

10−1.5 0.8890 1.873 · 10−2 2.236 · 10−2

10−2 0.8933 5.557 · 10−3 7.071 · 10−3

Table 4: The mean failure probability p and sample standard deviation (std)
is computed using 100 MLMC-SR estimators and compared to the target std
which is the statistical part of the RMSE error ε.

compute p for ε = 10−1, 10−1.5, and 10−2. All parameters used in the simu-
lation are presented in Table 3. To verify the accuracy of the estimator we
compute 100 simulations of the MLMC-SR estimator for each RMSE ε and
present the sample standard deviation (square root of the sample variance)
of the MLMC-SR estimators in Table 4. We see that in all the three cases
the sample standard deviation is smaller than the statistical contribution
ε/
√

2 of the RMSE ε. Since the exact flux is unknown, the numerical con-
tribution in the estimator has to be approximated to be less than ε/

√
2 as

well, which is done in the termination criterion of the MLMC-SR algorithm
so it is not presented here. The mean number of samples computed to the
different tolerances on each level of the MLMC-SR algorithm is computed
from 100 simulations of the MLMC-SR estimator for ε = 10−2 and are shown
in Table 5. The table shows that the selective refinement algorithm only
refines a fraction of all problems to the highest accuracy level j = `. Using a
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` 0 1 2 3 4

Mean N` 16526.81 9045.41 4524.83 1471.63 738.63

j = 0 16526.81 4520.99 2265.23 734.21 366.90
j = 1 4524.42 1486.62 484.11 244.69
j = 2 772.98 232.33 116.77
j = 3 20.98 9.76
j = 4 0.51

Table 5: The distribution of realizations solved to different tolerance levels j
for the case ε = 10−2. The table is based on the mean of 100 runs.

MLMC method (without selective refinement) N` problem would be solved
to the highest accuracy level. Using the cost model γ−q` for ε = 10−2 we
gain a factor ∼ 6 in computational cost for this particular problem using
MLMC-SR compared to MLMC. From Theorem 10 the computational cost
for MLMC-SR and MLMC increase as ε−2 log(ε−1)2 and ε−3, respectively.

A Derivation of optimal level sample size

To determine the optimal sample level size N` in equation (7), we minimize
the total cost keeping the variance of the MLMC estimator equal to ε2/2,
i.e.,

min
L∑

`=0

N`c`

subject to
L∑

`=0

N−1
` V[Y`] = ε2/2,

(24)

where Y` = Q` − Q`−1. We reformulate the problem using a Lagrangian
multiplier µ for the constraint. Define the objective function

g(N`, µ) =
L∑

`=0

N`c` + µ

(
L∑

`=0

N−1
` V[Y`]− ε2/2

)
. (25)

The solution is a stationary point (N`, µ) such that ∇N`,µg(N`, µ) = 0. De-

noting by N̂` and µ̂ the components of the gradient, we obtain

∇N`,µg(N`, µ) =
(
c` − µN−2

` V[Y`]
)
N̂` +

(
L∑

`=0

N−1
` V[Y`]− ε2/2

)
µ̂. (26)
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Choosing N` =
√
µV[Y`]/c` makes the N̂` components zero. The µ̂ compo-

nent is zero when
∑L

`=0N
−1
` V[Y`] = ε2/2. Plugging inN` yields 2ε−2

∑L
`=0

√
V[Y`]c` =√

µ and hence the optimal sample size is

N` = 2ε−2
√

V[Y`]/c`

L∑

k=0

√
V[Yk]ck. (27)

References

[1] S.-K. Au and J. L. Beck. Estimation of small failure probabilities in high
dimensions by subset simulation. Probabilistic Engineering Mechanics,
16(4):263–277, 2001.

[2] R. Avikainen. On irregular functionals of SDEs and the Euler scheme.
Finance Stoch., 13(3):381–401, 2009.

[3] A. Barth, C. Schwab, and N. Zollinger. Multi-level Monte Carlo finite
element method for elliptic PDEs with stochastic coefficients. Numer.
Math., 119(1):123–161, 2011.

[4] J. Charrier, R. Scheichl, and A. L. Teckentrup. Finite element error
analysis of elliptic PDEs with random coefficients and its application to
multilevel Monte Carlo methods. SIAM J. Numer. Anal., 51(1):322–352,
2013.

[5] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup. Multilevel
Monte Carlo methods and applications to elliptic PDEs with random
coefficients. Comput. Vis. Sci., 14(1):3–15, 2011.

[6] N. Collier, A.-L. Haji-Ali, F. Nobile, E. von Schwerin, and R. Tempone.
A continuation multilevel Monte Carlo algorithm. BIT, 55:399–432,
2015.

[7] C. Dietrich and G. Newsam. Fast and exact simulation of stationary
gaussian processes through circulant embedding of the covariance ma-
trix. SIAM J. Sci. Comput., 18(4):1088–1107, 1997.

[8] D. Elfverson, D. Estep, F. Hellman, and A Målqvist. Uncertainty quan-
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