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Finite Element Methods for PDEs with Algebraic Constraints
ERIC LINDSTRÖM
Department of Mathematical Sciences
University of Gothenburg

Abstract

The purpose of this report is to analyze numerical approximations of partial di�erential
equations with algebraic constraints. In particular we consider problems where the alge-
braic constraint forces the solution to be in the kernel of an interpolation operator. Such
constrained PDEs arise for example in numerical solutions of local problems in multiscale
methods. We will consider elliptic and parabolic PDEs and present some analytical results
as well and numerical simulations. The main points of interest will be to investigate if the
said problems are well posed, and to study the decay of the corresponding solutions.

v





Acknowledgements

First of all I would like to thank Axel Målqvist for being incredibly present and helpful while
guiding me through this interesting topic. Also, Roland Maier deserves a lot of gratitude
for delivering most of the code for this report and being a great asset when it came to
questions surrounding it. Lastly, I would like to thank my friends and family as well for
supporting me in this long journey, even long before this thesis.

Eric Lindström, Gothenburg, September 2021

vii





Contents

List of Figures xi

1 Introduction 1

2 Background 3
2.1 Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Nodal Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Clément Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Projective Quasi-Interpolant . . . . . . . . . . . . . . . . . . . . . . 7

2.3 A Brief Review of the Finite Element Method . . . . . . . . . . . . . . . . . 7
2.3.1 Elliptic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Parabolic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Elliptic PDE with Coarse Scale Constraints 11
3.1 Constrained Elliptic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Exponential Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Approximation Error . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Parabolic PDE with Coarse Scale Constraints 19
4.1 Constrained Parabolic Problem . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Alternative Formulation in Constrained Spaces . . . . . . . . . . . 24
4.1.2 Temporal and Spatial Decay . . . . . . . . . . . . . . . . . . . . . . 24

5 Numerical Experiments 27
5.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Elliptic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Parabolic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusion 43

ix



Contents

x



List of Figures

2.1 Example of highly irregular di�usion coe�cient. . . . . . . . . . . . . . . . . 8

5.1 Example of spatial mesh structure. . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Numerical load vector used in implementations illustrated (elliptic setting) . 29
5.3 Constant di�usion coe�cient and solution illustrated (elliptic setting) . . . . 30
5.4 Error plot corresponding to constant coe�cient (elliptic setting) . . . . . . . . 30
5.5 Randomized di�usion coe�cient and solution illustrated (elliptic setting) . . 31
5.6 Di�usion coe�cient with thin channel valued 0.01 and solution illustrated

(elliptic setting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.7 Di�usion coe�cient with thin channel valued 1 and solution illustrated (el-

liptic setting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.8 Oscillating di�usion coe�cient and solution illustrated (elliptic setting) . . . 32
5.9 Error plots corresponding to randomized, thin 0.01 valued channel, thin 1 val-

ued channel and oscillating di�usion coe�cients (elliptic setting) . . . . . . . 33
5.10 Numerical load vector used in implementations illustrated (parabolic setting) 34
5.11 Solution corresponding to constant coe�cient valued 1 (parabolic setting) . . 35
5.12 Solution corresponding to constant coe�cient valued 0.01 (parabolic setting) 35
5.13 The corresponding solution ψh,τ to temporally oscillating di�usion coe�cient

(parabolic setting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.14 Randomized di�usion coe�cient and solution illustrated (parabolic setting) . 37
5.15 Solution corresponding to channel valued 0.01 coe�cient illustrated (parabolic

setting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.16 Solution corresponding to coe�cient with channel valued 1 illustrated (parabolic

setting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.17 Error plots corresponding to constant di�usion coe�cient valued 1 (parabolic

setting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.18 Error plots corresponding to constant di�usion coe�cient valued 0.01 (parabolic

setting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.19 Error plots corresponding to randomized di�usion coe�cient (parabolic setting) 40
5.20 Error plots corresponding to temporally oscillating di�usion coe�cient (parabolic

setting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.21 Error plots corresponding to di�usion coe�cient with thin channel valued 0.01

(parabolic setting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.22 Error plots corresponding to di�usion coe�cient with thin channel valued 1

(parabolic setting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xi



List of Figures

xii



1
Introduction

The desire to simulate more and more complicated problems calls for sophisticated mod-
eling and e�cient numerical methods. A particular case in the context of di�erential
equations are operator di�erential algebraic equations (operator DAEs), or partial di�er-
ential algebraic equations (PDAEs) in the PDE case. In these problems the corresponding
solutions are constrained by some operator. These models show up in a variety of di�erent
subjects, for example in models of �uid dynamics [23], multibody dynamics [11], electrical
circuits [4], reactive transportation [9] and gas transportation networks [1], just to name
a few.

However, in this report we will restrict ourselves to one very speci�c type of PDAE,
where we only consider an interpolation operator as the constraining operator. More
speci�cally, we are looking for solutions to PDEs in the kernel of a chosen interpolation
operator. This type of PDAEs intuitively brings the focus to scale, and multiscale methods
(see [2, 14, 16] for early works and examples of such methods) like the localized orthogonal
decomposition (LOD) [20, 21]. Multiscale methods targets partial di�erential equations with
highly irregular coe�cients, where there is a scale of interest which is smaller than what
would be e�cient to implement with the classical FEM. Situations where such methods
can be bene�cial occurs for example in multifunctional materials, where microstuctural
properties of the material can result in macroscopic properties like negative optical refrac-
tion [10].

Solving general PDEs algebraically is often an insurmountable task, and therefore, we
have to use e�cient numerical methods to approximate the solution. However, if we want
to approximate solutions numerically we have to lay the theoretical groundwork �rst.
This would include proving existence of solutions, as well as investigating approximation
errors and stability estimates. The PDAEs we study in this report introduce some com-
plexity into these questions. We will focus on one example of an elliptic PDE, the Poisson
equation, and one parabolic example, the heat equation.

In chapter 2 we prepare for the more complicated matters by establishing useful de�ni-
tions and rehearsing the classical FEM. It also includes a closer look on some interpolation
operators.

Thereafter, we approach the questions above both theoretically (chapter 3 and chap-
ter 4) and numerically (chapter 5). In the elliptic case, we acknowledge two di�erent ways
of formulating our constrained problem, the saddle point formulation and the constrained
variational formula. We discuss how they have di�erent bene�ts, and then show that
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1. Introduction

they are equivalent, as well as well-posed. After that we show that the solution of said
problem decays exponentially when the problems involves a localized load vector with an
a priori decay estimate. We also investigate the approximation error when one replaces
the continuous setting with a discrete setting.

For the parabolic case (chapter 4), we assume a discrete setting immediately, partially
for sake of simplicity, but also from realizing the necessity of a discrete settings in imple-
mentations. Again we state the two formulations of the problem, similar to the elliptic
case, and prove that the problem has an unique solution. The a priori decay estimates of
these solutions are open problems, but we prove one temporal a posteriori error estimate,
and discuss how temporal and exponential spatial decay probably is inherited from the
corresponding unconstrained problem.

Finally, we study numerical solutions of the problems in chapter 5, which are imple-
mented using MATLAB. We do so by presenting solutions with di�erent di�usion coe�-
cients, and to con�rm decay we compare them to solutions restricted to smaller domains.
The di�erent di�usion coe�cients help to bring out certain graphical aspects of the solu-
tion which are considered as plausible results of the acting constraints.
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2
Background

This �rst section will consist of de�nitions as well as some basic theory, that will serve us
later in the report and should make the reading more �uent.

2.1 Function Spaces

When dealing with PDEs, one often comes across Sobolev spaces. In this report we will
denote them as W k

p (or W k
p (Ω) more precisely) which are de�ned by

W k
p (Ω) := {f ∈ Lp(Ω) : f (α) ∈ Lp(Ω),∀|α| ≤ k}. (2.1)

Here α = (α1, . . . , αn) is a multi-index, and f (α) is the mixed partial derivative

f (α) =
∂|α|f

∂xα1
1 . . . ∂xαnn

. (2.2)

Notice that the partial derivatives only have to exist in the weak sense from these de�-
nitions. Also, the cases where p = 2 are particularly important, since they form Hilbert
spaces, and thus have their own notation. We let Hk(Ω) := W k

2 (Ω) (or Hk for short).

A frequently used notation in this context is

H1
0 (Ω) := {v ∈ H1(Ω) : (Γv)(x) = 0, ∀x ∈ ∂Ω}, (2.3)

where Γ is the trace operator onto H1. In fact, we will let

V := H1
0 (Ω) (2.4)

for convenience. We will also often make use of the standard H1-norm

‖•‖V := ‖•‖H1(Ω) =
(
‖•‖2

L2(Ω) + ‖∇•‖2
L2(Ω)

)1/2

. (2.5)

Sometimes we will leave out the domain in the notation for norms when the chance of
misunderstandings is small. The L2-norm is generated by the standard L2-inner product
which is denoted by (•, •), not to be confused with the standard duality pairing between
V and V ′ := H−1(Ω), denoted by 〈•, •〉. Note that the duality pairing reduces to the
L2-inner product if both functions are in L2.

3



2. Background

In sections of the report where we consider parabolic settings we will come across
Bochner spaces like L2(0, T ;B) and H1(0, T ;B), where B is some Banach space. Within
these spaces we make use of the standard Bochner-norms

‖v‖L2(0,T ;B) =

(∫ T

0

‖v‖2
B dt

)1/2

, (2.6)

‖v‖H1(0,T ;B) =

(∫ T

0

‖v‖2
B + ‖v̇‖2

B dt

)1/2

. (2.7)

When referencing Bochner spaces we will also often abbreviate by leaving out the domains.
We will also make use of some other norms in our proofs with discrete settings,

‖v‖2
tr :=

∫ T

0

‖∇v̄‖2
L2 + ‖v̇‖2

H−1 dt, (2.8)

‖v‖2
te :=

∫ T

0

‖∇v‖2
L2 dt. (2.9)

Here, v̄ refers to the temporal mean of v with respect to the �ne temporal mesh, see de�-
nition in (4.2).

Now we will de�ne the meshes used in this report, which is one key part of FEMs. This
is achieved with a collection of closed simplices, KH . We will de�ne HK := diam(K) for
all K ∈ KH , and let H := maxK∈KH HK . Now, the size of elements are restricted by

min
K∈KH

HK ≥ ρH,

where ρ > 0 is a constant. The shape of the elements are restricted and characterized by

γ := max
K∈KH

HK

diam(BK)
> 1.

Above, BK is de�ned to be the largest ball that �ts in K ∈ KH . These restrictions are
important for error analysis later in the report. We will denote the internal nodes of the
mesh with NH and the number of internal nodes with NH . Finally, we will denote a
�ne mesh with Kh with the corresponding restrictions but with h < H , and the natural
notations Nh and Nh for the nodes and number of internal nodes, respectively.

With our domain Ω discretized we want to simplify the solution space where we search
for a solution. This is done by restricting the functions using the mesh. Let us de�ne the
restricted function space VH as

VH := P1(KH) ∩ V,

where P1(KH) is the space of piecewise polynomials of degree ≤ 1 on each K ∈ KH , or
in other words, functions that are piecewise a�ne with respect to the mesh. Notice that
this space is �nite-dimensional, with dimension directly tied to the number of internal
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2. Background

nodes in NH . To span this space, we will make use of a basis of hat functions Λxi ∈ VH ,
corresponding to internal nodes xi ∈ NH such that

Λxi(xj) =

{
1, if xi = xj

0, otherwise

for all xj ∈ NH . As with the meshes, we will de�ne a �ne-scale function space Vh as well,
de�ned in the same manner as VH but using Kh.

The meshes above su�ce to construct our elliptic FEM formulation, and we will now
present the de�nitions corresponding to the parabolic case. The spatial discretization is
achieved through a mesh de�ned as above, KH . To discretize in the time domain, we
simply divide the interval [0, T ] into equal parts of some length T > 0. We will let Ti =
iT , i = 0, . . . , NT , where we assume NT T = T . We will also denote the collections of
sub-intervals [Ti−1, Ti], i = 1, . . . , NT , as JT . From this discretization we construct two
di�erent function spaces,

V̂T := {v ∈ H1
0 ([0, T ]) : v ∈ P1(JT ) and v(0) = 0}, (2.10a)

VT := P0(JT ). (2.10b)

V̂T is spanned by a nodal basis {ζi}NTi=1, where

ζi =

(
t

T
− i+ 1

)
1[Ti−1,Ti] +

(
i+ 1− t

T

)
1[Ti,Ti+1], (2.11)

with a slight modi�cation to ζNT , where we drop the second term. VT is spanned by piece-
wise constant basis functions {χi}NTi=1 where χi := 1[Ti−1,Ti]. These two function spaces
will in turn generate our trial and test spaces given as

V̂H,T := VH × V̂T , (2.12a)
VH,T := VH × VT . (2.12b)

Note that the basis of V̂H,T and VH,T are naturally chosen as {ζiΛxj}i=1,...,NT ,xj∈NH and
{χiΛxj}i=1,...,NT ,xj∈NH respectively. Note that we may reference variations of the concepts
above only varying by index, whereH is replaced by h, 0 < h < H , and T by τ , 0 < τ < T .

Lastly, we will introduce an important concept to navigate in the mesh, namely element
patches. Let S ∈ KH be a collection of elements in KH , then the element patch N(S) is
de�ned as

N(S) :=
⋃
{K ∈ KH : K ∩ S 6= ∅}.

This de�nition can be extended to any set S ⊂ Ω, and we are sometimes interested in a
patch around a single point z, where we let N(z) := N({z}). Also, for l ≥ 2, we will use
the notation N l(S) = N(N l−1(S)), to address the e�ects of layers in the mesh. Naturally
we let N1(S) := N(S).

5



2. Background

2.2 Interpolation

Interpolation is important in the analysis of �nite element methods but also in the con-
struction of multiscale methods. In this section we will discuss three common interpolation
operators, speci�cally their bene�ts, restrictions and error bounds.

2.2.1 Nodal Interpolation
The �rst operator is also the simplest of the three (the order will be in increasing complex-
ity). Here we will denote the nodal interpolation operator with IN , and it is de�ned for all
v ∈ C1(Ω) as

INv(x) =
∑
xi∈NH

v(xi)Λxi(x).

For the nodal interpolation operator we have the error bound

‖v − INv‖L2(K) + hK ‖v − INv‖H1(K) ≤ CINh
2
K ‖v‖H2(K) ,

where K ∈ KH , and CIN is a constant.

Note that even if this evaluation is powerful, the restrictions are too invasive for most
cases. The functions in H1 are generally not continuous when we move to higher dimen-
sions, more speci�cally H1(Ω) 6⊆ C0(Ω) if Ω ⊂ Rd, d ≥ 2. This means the operator is not
well-de�ned for all v ∈ H1(Ω) in these cases. Our next candidate will �x this issue.

2.2.2 Clément Interpolation
To de�ne the Clément interpolation operator ICv, we need the concept of local patches as
de�ned in section 2.1. Using these patches we de�ne IC as

ICv(x) =
∑
xi∈NH

∫
N(xi)

v(y)dy∫
N(xi)

dy
Λxi(x).

Note that this operator is de�ned for all v ∈ L1(Ω). The corresponding error bounds for
the operator reads

‖v − ICv‖H1(K) ≤ CICh
s
K ‖v‖H1+s(K) ,∀K ∈ Kh, ∀v ∈ H

1+s(Ω), (2.13)

where s = (0, 1].

One disadvantage compared to the nodal interpolation is that the Clément interpo-
lation operator is not a projection. Why this is a disadvantage may not be clear in this
moment for the reader but it simpli�es future calculations.

Another down-side of the Clément interpolation operator is that it will not conserve
homogeneous boundary conditions. However, this can be compensated for by explicitly
setting IC to zero in the boundary nodes. Even after this modiftication (2.13) still holds [8].

6



2. Background

2.2.3 Projective Quasi-Interpolant
In coming applications and code we will use a constructed interpolation operator, IH :=
EH ◦Πdg

H . Here, Πdg
H refers to the L2-projection onto piecewise a�ne functions, acting on

each element of KH , and EH is the notation for a weighting operator. It is calculated by

EHv(z) =
∑

K∈KH : z∈K

|K|
|N(z)|

v|K(z), ∀z ∈ NH .

For convenience we interpret v|K as v on K and 0 elsewhere, to make it de�ned on the
entire set Ω.

This particular operator is constructed to be a projection, and enjoys the following
error bound:

H−2
K ‖v − IHv‖

2
L2(K) + ‖∇(IHv)‖2

L2(K) ≤ C̃2
IH ‖∇v‖

2
L2(N(K)) , ∀v ∈ H1, (2.14)

where C̃IH is a constant depending on the mesh constant γ and the maximum amount
of neighbours an element K ∈ KH can have. With a slight change of constants and by
summation, one can manipulate (2.14) into a global bound,

H−2 ‖v − IHv‖2
L2(Ω) + ‖∇(IHv)‖2

L2(Ω) ≤ C2
IH ‖∇v‖

2
L2(Ω) , ∀v ∈ H1. (2.15)

One issue with this interpolation operator is that it does not conserve boundary condi-
tions. However, this is easily �xed for homogeneous boundary conditions, by de�ning EH
to be 0 on the boundary vertices. This de�nition also preserves (2.14) for functions v ∈ V
(see [13] for more details).

2.3 A Brief Review of the Finite Element Method

We will use the FEM to solve a PDAE. We start by recapitulating how the FEM is derived for
PDEs. This will grant some references to lean back on when we introduce �nite element
methods for constrained problems, as they for instance arise in connection with multiscale
methods.

2.3.1 Elliptic

Now we will set up our elliptic model problem. Our domain Ω ⊂ Rd is assumed to have
polyhedral shape with diam(Ω) ≈ 1. We will restrict ourselves to an elliptic equation in
R2,

− div(A∇u) = f. (2.16)

Here A : Ω→ R2×2 is allowed to be a highly irregular coe�cient, but bounded by

0 < α := ess inf
x∈Ω

inf
v∈R\{0}

(A(x)v) · v
v · v

≤β := ess sup
x∈Ω

sup
v∈R\{0}

(A(x)v) · v
v · v

<∞,

β̄ :=‖A‖∞ <∞. (2.17)

7



2. Background

Figure 2.1: Example of highly irregular di�usion coe�cientA visualized, valued 0.01 (black)
or 1 (white) in Ω.

We also assume that A is symmetric in this report, as well as f ∈ H−1(Ω).

The �rst step toward a FEM is to convert (2.16) into its variational formulation

a(u, v) :=

∫
Ω

(A∇u) · ∇v dx =

∫
Ω

fv dx, ∀v ∈ V. (2.18)

Since the left-hand side is a bilinear, bounded form, and the right-hand side can be thought
of as a bounded linear functional, the Lax-Milligram Theorem [17, Theorem A.3 on p. 230]
tells us that (2.18) has a unique solution.

Using the solution space de�ned in section 2.1 and the variational formulation, the
classical Galerkin FEM reads: �nd uH ∈ VH such that∫

Ω

(A∇uH) · ∇vH dx =

∫
Ω

fvH dx, ∀vH ∈ VH . (2.19)

Since VH can be spanned by simple hat-functions, we can represent uH as

uH(x) =

NH∑
i=1

U
(i)
H Λi(x),

where U (i)
H are scalars. Thus, (2.19) can be reduced to

NH∑
i=1

U
(i)
H

∫
Ω

(A∇Λi) · Λj dx =

∫
Ω

fΛj dx,

for all j = 1, ..., NH . The equations above can be expressed in matrix form as

AU = f , (2.20)

8



2. Background

where (A)ij = a(Λi,Λj) is called the sti�ness matrix, (f)i =
∫

Ω
fΛi dx is called load vector

and (U)i = U
(i)
H . When using this basis, the sti�ness matrix turns out sparse because of

the support of the hat functions, which makes this an economic method to implement.

However, one issue with the classical FEM is its poor performance when applied to
multiscale problems. Without a �ne enough mesh, irregular behaviour on a micro scale
can lead to macroscopic error. Occasions like these are examples when our constrained
problems arise as part of an alternative numerical approach.

2.3.2 Parabolic
In the parabolic case, we are still considering the same spatial domain Ω, but now with an
added time domain, [0, T ], with T > 0. The problem we are considering is the parabolic
equation

u̇−∇ · (A∇u) = f in Ω× (0, T ], (2.21a)
u = 0 on ∂Ω× (0, T ], (2.21b)

u(0) = 0 in Ω. (2.21c)

Once again, A : [0, T ] × Ω → R2×2 is allowed to be highly irregular, as long as it serves
the constraints

0 < α := ess inf
(t,x)∈(0,T )×Ω

inf
v∈R2\{0}

(A(t, x)v) · v
v · v

≤ ess sup
(t,x)∈(0,T )×Ω

sup
v∈R2\{0}

(A(t, x)v) · v
v · v

=: β <∞

β̄ :=‖A‖∞ <∞. (2.22)

Additionally, we will also assume that A can be well-approximated by functions piecewise
constant on Jτ . This is to avoid technicalities which this report will not address. This
might feel invasive, but note that this assumption is applied on a �ne grid, making it less
of a restriction. However, it is important to choose τ small enough so that Jτ resolves
small oscillations in A.

Before we express our variational formulation, we introduce the bilinear form similar
to the A-induced one in the elliptic case

a(t; v, w) :=

∫
Ω

(A(t, x)∇v) · ∇w dx. (2.23)

Using this notation we can now write the variational formulation for the parabolic problem
as �nding u ∈ Vtr := L2(V ) ∩H1(H−1) with u(0) = 0 such that∫ T

0

〈u̇, v〉+ a(t;u, v) dt =

∫ T

0

〈f, v〉 dt (2.24)

for all v ∈ Vte := L2(V ). We assume f ∈ L2(H−1).

9



2. Background

Using (2.24) we will formulate our parabolic FEM problem. We want to �nd uh,τ ∈ V̂h,τ
such that ∫ T

0

〈u̇h,τ , vh,τ 〉+ a(t;uh,τ , vh,τ ) dt =

∫ T

0

〈f, vh,τ 〉 dt, (2.25)

for all vh,τ ∈ Vh,τ . Now, to exploit our earlier mentioned discretization, we will express
our trial function uh,τ as

uh,τ :=
Nτ∑
i=1

U
(i)
h,τζi, (2.26)

where U (i)
h,τ ∈ Vh, i = 1, . . . , Nτ . We also only consider test functions of the form vh,τ =

vhχi, where vh ∈ Vh and i = 0, . . . , Nτ . By doing this, we can solve (2.25) by each time-step
consecutively. Equivalently, we want to �nd functions U (i)

h,τ ∈ Vh such that∫ ti

ti−1

〈U (i−1)
h,τ ζ̇i−1, vh〉+ 〈U (i)

h,τ ζ̇i, vh〉+ a(t;U
(i−1)
h,τ ζi−1, vh) + a(t;U

(i)
h,τζi, vh) dt

=

∫ ti

ti−1

〈f, vh〉 dt (2.27)

for all vh ∈ Vh and i = 1, . . . , Nτ . This is exactly the well-known Crank-Nicholson scheme
which reads: �nd U (i)

h,τ ∈ Vh such that

〈U (i)
h,τ , vh〉+

τ

2
a(ti− 1

2
;U

(i)
h,τ , vh) =

∫ ti

ti−1

〈f, vh〉 dt+〈U (i−1)
h,τ , vh〉−

τ

2
a(ti− 1

2
;U

(i−1)
h,τ , vh), (2.28)

for all vh ∈ Vh and i = 1, . . . , Nτ .
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3
Elliptic PDE with Coarse Scale

Constraints

This report revolves around the realization that sometimes it might be interesting to solve
PDE’s in constrained subspaces. Loosely speaking we talk about cases where the solution
of the PDE is constrained by some operator, commonly referred to as operator DAEs (or
PDAEs in the PDE case). These problems arise naturally in many �elds of mathematics and
help to increase sophistication of mathematical modeling. Some examples of areas where
these problems arise are �uid dynamics [23], multibody dynamics [11] and gas network
simulations [1], as previously mentioned. The theory surrounding operator DAEs is vast,
and we will only consider a speci�c case.

In this report we will restrict ourselves to solutions living in the kernel of a chosen
interpolation operator from subsection 2.2.3. This chapter will be dedicated to formu-
late these problems in elliptic cases, and present some results about the properties of the
corresponding solutions. Since PDAEs introduce some complexity to otherwise classical
PDEs, we will discuss the existence and uniqueness of these solutions, as well as some
approximation theory. Problems as these are tightly connected to multiscale methods, and
applications can be found in the LOD [20, 21] for example.

3.1 Constrained Elliptic Problem

To begin analyzing our constrained elliptic problems, it seems only natural to begin with
the arguably simplest second order PDE, the elliptic problem we formulated in section 2.3.
Such a problem is often given as a saddle point problem. In our setting of constraining a
PDE on a coarse-scale level, the problem reads: �nd ϕ ∈ V and λϕ ∈ VH such that

a(ϕ,w) + (λϕ, IHw) = (f, w), ∀w ∈ V (3.1a)
(IHϕ, µH) = 0, ∀µH ∈ VH , (3.1b)

where f ∈ V ′. Note that this is a very speci�c case of an operator DAE, and if one is
interested in reading about a more general setting, one can do so in [12]. To see that there
exists a unique solution (3.1), we will use [5, Corollary 4.2.1 on p. 229].

Theorem 1. Assume that (2.17) holds. Then there exists unique solutions ϕ ∈ V and λϕ ∈
VH that solves (3.1). The solution ϕ is bounded by

‖ϕ‖V ≤
1

α
‖f‖V ′ (3.2)

11



3. Elliptic PDE with Coarse Scale Constraints

Proof. [5, Corollary 4.2.1] applies to our case if we can show that a(•, •) is bounded and
coercive, and that the operator (IH•, •) ful�lls the inf sup-condition

inf
vH∈VH

sup
v∈V

(IHv, vH)

‖v‖V ‖vH‖V
≥ δ, (3.3)

for some δ > 0. We will begin by showing that a(•, •) is bounded, which is true because
of (2.17),

a(v, v) ≤ β ‖∇v‖2
L2(Ω) ≤ β ‖v‖2

V . (3.4)

Similarly, a(•, •) is coercive by the following reasoning:

a(v, v) ≥ α ‖∇v‖2
L2(Ω) ≥

α

2

(
‖∇v‖2

L2(Ω) + C−2
P ‖v‖

2
L2(Ω)

)
≥ α

2
min

{
1, C−2

P
}
‖v‖2

V ,

(3.5)
where we used (2.17) in the �rst inequality, and the Poincaré inequality [17, Theorem A.6
on p. 238] in the second.

Lastly, to show that (3.3) holds, one can use v = vH , since VH ⊂ V

sup
v∈V

(IHv, vH)

‖v‖V ‖vH‖V
≥ (IHvH , vH)

‖vH‖2
V

=
‖vH‖2

L2(Ω)

‖vH‖2
V

≥
‖vH‖2

L2(Ω)

‖vH‖2
L2(Ω) (1 + C2

invH
−2)

=
1

(1 + C2
invH

−2)
,

where we made use of the inverse inequality [7, Theorem 4.5.11 on p. 112-113],

‖∇vH‖L2(Ω) ≤ CinvH
−1‖vH‖L2(Ω) ∀vH ∈ VH . (3.6)

Note that we might make use of and reference the inverse inequality applied to the �ne
function space Vh as well, where H is replaced by h. Since the reasoning above applies to
any vH ∈ VH , we have that

inf
vH∈VH

sup
v∈V

(IHv, vH)

‖v‖V ‖vH‖V
≥ 1

(1 + C2
invH

−2)
.

The existence and uniqueness of the solutions to (3.1) as well as (3.2) now follows from [5,
Corollary 4.2.1].

Another way to phrase our constrained problem is to �nd a solutionϕ ∈ W := ker(IH)
to

a(ϕ,w) =

∫
Ω

fw dx, ∀w ∈ W. (3.7)

The same bounds are acting on A as in (2.17), and we still assume f ∈ V ′, and thus, if one
realizes that W is a Hilbert space, the Lax-Milgram Theorem su�ces to show that (3.7)
has a unique solution. We will state this in a short, informal proof.

Theorem 2. Assume (2.17) holds. Then (3.7) has a unique solution.

12



3. Elliptic PDE with Coarse Scale Constraints

Proof. a(•, •) is bounded and coercive by the same reasoning as in (3.4) and (3.5). (f, •) is
bounded by applying the Hölder inequality,

|(f, w)| ≤ ‖f‖H−1 ‖w‖H1 , (3.8)

for all w ∈ W .

Finally, before applying the Lax-Milgram Theorem, we need W to be a Hilbert space.
One comes to the conclusion that W is a Hilbert space by noting that ker(IH) is a ker-
nel of a continuous linear operator, and thus a closed subspace, which makes W a closed
subspace of a Hilbert space, making W a Hilbert space aswell. Thereby we can apply the
Lax-Milgram Theorem on (3.7) and ensure the existence of an unique solution.

Using the existence and uniqueness arguments for solutions to (3.1) and to (3.7) re-
spectively, we will prove in Theorem 3 that the two problems are equivalent. The theorem
is a slight modi�cation of a proof in [19, Theorem 2.3.2 p. 18], and mostly varies from it by
notation.

Theorem 3. Assume that A is bounded as in (2.17), and let ϕ ∈ W be the solution to (3.7).
Additionally, let λϕ ∈ VH be the solution to the problem

(λϕ, wH) = (f, wH)− a(ϕ,wH) (3.9)

for all wH ∈ VH . Then (ϕ, λϕ) ∈ W × VH solves (3.1), and λϕ is the associated Lagrange
multiplier. The statements are thus equivalent.

Proof. First of all, the solution to (3.9) exists and is unique by the Lax-Milgram Theorem
since the L2-inner product is bounded and coercive on VH . We can use Hölder’s inequality
to show it is bounded, since for all vH , wH ∈ VH we have

|(vH , wH)| ≤ ‖vH‖L2‖wH‖L2 ≤ ‖vH‖H1‖wH‖H1 .

That (•, •) is coercive follows from an application of (3.6),

(vH , vH) = ‖vH‖2
L2 ≥

1

2
(‖vH‖2

L2 + C−2
invH

2‖∇vH‖2
L2)

≥ 1

2
min{1, C−2

invH
2}‖vH‖2

H1 .

Now, let w ∈ V . To arrive at (3.1a), we use (3.9) to realize that

a(ϕ,w) = a(ϕ, IHw) + a(ϕ, (1− IH)w) + (f, w)− (f, IHw)− (f, (1− IH)w)

= −(λϕ, IHw) + (f, w) + a(ϕ, (1− IH)w)− (f, (1− IH)w).

Our next step is to note that (1− IH)w ∈ W and ϕ solves (3.7). Thus

a(ϕ, (1− IH)w)− (f, (1− IH)w) = 0.

where we used 3.9 and that IHw ∈ VH . To sum it up, we have

a(ϕ,w) = −(λϕ, IHw) + (f, w).

13



3. Elliptic PDE with Coarse Scale Constraints

The above reasoning holds for all w ∈ V , and thus we have shown (3.1a). To show
(3.1b), one just has to keep in mind that ϕ ∈ W and thus

IHϕ = 0

making it trivial. By combining the results in this proof and the uniqueness arguments in
Theorem 1 and Theorem 2, we have that the two problem formulations (3.1) and (3.7) are
equivalent.

The saddle point comes with a great advantage. Unlike in (3.7) we do not need an ex-
plicit description of the space W , and to solve that problem directly would include �nding
a local basis of W , which is not trivial. This is not an issue with (3.1).

3.1.1 Exponential Decay
In Theorem 4, we will prove an interesting property of ϕ, namely that it decays exponen-
tially if the right-hand side of (3.7) has local support. Thus, in the following theorem we
will assume that: {

f ∈ H−1,

∃K ∈ KH : supp(f) ⊆ K.
(3.10)

In applications like the LOD, this result can be useful to justify calculating localized
solutions to coarse scale constrained problems. Our theorem follows [20, Theorem 4.1
p. 38], but considers a slightly more general right-hand side for coherence sake.

Theorem 4. Assume that f is restricted by (3.10) and let ϕ ∈ W be the solution of (3.7).
Then ϕ is bounded by the following estimate:

∥∥A1/2∇ϕ
∥∥
L2(Ω\N l(K))

. exp

(
−c(3.11)

α

β̄
l

)
‖f‖H−1(Ω) , (3.11)

where l ∈ N0 and c(3.11) ≥ (8CIH (1 +CIHγ + γ))−1 > 0 is a constant which depends on the
shape regularity constants γ and ρ. The notation . should be interpreted as a . b if there
exists k > 0 independent of a and b such that a ≤ k · b.

Proof. Let l ≥ 4. We will introduce a function η ∈ VH by the following de�nition:{
η ≡ 0 in N l−3(K),

η ≡ 1 in Ω \N l−2(K).

Because of this de�nition and the properties of our mesh, we get some useful statement
immediately. Namely that

supp(η) = Ω \N l−3(K),

supp(∇η) = Ω \ ((Ω \N l−2(K)) ∪N l−3(K))

= N l−2(K) \N l−3(K) := R

14



3. Elliptic PDE with Coarse Scale Constraints

and ‖∇η‖L∞(K) ≤
γ
HK

. One consequence of this (and the positivity of A) is that

∥∥A1/2∇ϕ
∥∥
L2(Ω\N l(K))

=

∫
L2(Ω\N l(K))

(A∇ϕ) · ∇ϕ dx

≤
∫

Ω\N l−2(K)

(A∇ϕ) · ∇ϕ dx

≤
∫

Ω

η(A∇ϕ) · ∇ϕ dx. (3.12)

Now this right-hand side can be rewritten using the product rule as∫
Ω

η(A∇ϕ) · ∇ϕ dx =

∫
Ω

(A∇ϕ) · ∇(ηϕ) dx−
∫

Ω

∇η(A∇ϕ)ϕ dx

= a(ϕ, ηϕ)−
∫
R

∇η(A∇ϕ)ϕ dx.

This expression is now further expanded with the addition and subtraction of an interpo-
lated term,∫

Ω

η(A∇ϕ) · ∇ϕ dx = a(ϕ, (1− IH)(ηϕ)) + a(ϕ, IH(ηϕ))−
∫
R

∇η(A∇ϕ)ϕ dx. (3.13)

The �rst term in (3.13) can be reduced to 0. To see why, note that (1− IH)(ηϕ) ∈ W .
This is easy to see using the de�nition of W combined with the fact that our interpolation
operator IH is a projection. Since ϕ is the solution to (3.7), we then see that

a(ϕ, (1− IH)(ηϕ)) =

∫
Ω

f(1− IH)(ηϕ) dx = 0,

because of the support of ηϕ and f .

To �nd an upper bound on the second term of (3.13), we start by investigating the func-
tion IH(ηϕ). Since ϕ ∈ W and by the de�nition of η, one can arrive at supp(IH(ηϕ)) ⊆
N(R) (note that IH might "spread" the support by one layer of elements). Now, using the
de�nition of η, the product rule and the error bound for our interpolation operator (2.14)
one can derive

a(ϕ, IH(ηϕ)) =

∫
N(R)

(A∇ϕ) · ∇(IH(ηϕ)) dx

≤ β̄ ‖∇ϕ‖L2(N(R)) ‖∇(IH(ηϕ))‖L2(N(R))

≤ β̄ ‖∇ϕ‖L2(N l−1(K)\N l−4(K))CIH ‖∇(ηϕ)‖L2(N(N l−1(K)\N l−4(K)))

≤ CIH β̄ ‖∇ϕ‖L2(N l−1(K)\N l−4(K)) (‖∇ϕ‖L2(N l(K)\N l−3(K))

+ CIHγ ‖∇ϕ‖L2(N l−1(K)\N l−4(K)))

≤ CIH β̄(1 + CIHγ) ‖∇ϕ‖2
L2(N l(K)\N l−4(K))

≤ CIH
β̄

α
(1 + CIHγ)

∥∥A1/2∇ϕ
∥∥2

L2(N l(K)\N l−4(K))
.
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3. Elliptic PDE with Coarse Scale Constraints

Lastly, we can �nd an upper bound of the third term in (3.13) by similar strategies,

|
∫
R

∇η(A∇ϕ)ϕ dx| ≤ ‖∇η‖L∞(R) ‖(A∇ϕ)‖L2(R) ‖ϕ‖L2(R)

≤ β̄γ
∑
K⊂R

H−1
K ‖∇ϕ‖L2(K) ‖ϕ− IHϕ‖L2(K)

≤ C̃IH β̄γ
∑
K⊂R

‖∇ϕ‖L2(K) ‖∇ϕ‖L2(N(K))

≤ CIH β̄γ ‖∇ϕ‖
2
L2(N l(K)\N l−4(K))

≤ CIH
β̄γ

α

∥∥A1/2∇ϕ
∥∥2

L2(N l(K)\N l−4(K))
.

We can now use these bounds in (3.12) to get∥∥A1/2∇ϕ
∥∥2

L2(Ω\N l(K))
≤ C̃

∥∥A1/2∇ϕ
∥∥2

L2(N l(K)\N l−4(K))

= C̃(
∥∥A1/2∇ϕ

∥∥2

L2(Ω\N l−4(K))
−
∥∥A1/2∇ϕ

∥∥2

L2(Ω\N l(K))
).

where C̃ := CIH
β̄
α

(1 + CIHγ + γ). Therefore, it follows∥∥A1/2∇ϕ
∥∥2

L2(Ω\N l(K))
≤ C̃

C̃ + 1

∥∥A1/2∇ϕ
∥∥2

L2(Ω\N l−4(K))

One can also see by the relation of the domains of the norms that C̃ ≥ 1. The inequality
above can be used inductively to arrive at∥∥A1/2∇ϕ

∥∥2

L2(Ω\N l(K))
≤ δbl/4c

∥∥A1/2∇ϕ
∥∥2

L2(Ω)
= δbl/4ca(ϕ, ϕ) = δbl/4c

∫
K

fϕ dx

≤ δbl/4c ‖f‖H−1(Ω) ‖ϕ‖H1(K)

≤ δbl/4c ‖f‖H−1(Ω) (1 + CP) ‖∇ϕ‖L2(K)

≤ 1 + CP
α

δbl/4c ‖f‖H−1(Ω)

∥∥A1/2∇ϕ
∥∥
L2(K)

≤ 1 + CP
α

δbl/4c ‖f‖H−1(Ω)

∥∥A1/2∇ϕ
∥∥
L2(Ω)

,

where δ := C̃
C̃+1

for simplicity, and where we made use of the Poincaré inequality in the
third row. Thus, ∥∥A1/2∇ϕ

∥∥
L2(Ω\N l(K))

. δbl/4c ‖f‖H−1(Ω) . (3.14)
Notice that since δ < 1, this estimate holds for l < 4 as well (one can also attribute this

to the stability estimate (3.2)). Also, we have that

δbl/4c ≤ δ−1
(
δ

1
4

)l
≤ 2

(
δ

1
4

)l
= 2 exp

(
−1

4
log
(
δ−1
)
l

)
≤ 2 exp

(
−1

4

(
1

2C̃

)
l

)
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3. Elliptic PDE with Coarse Scale Constraints

where we used a rough estimate of log
(
C̃+1
C̃

)
motivated by its McLaurin-expansion in the

last step. This new factor applied in (3.14) �nishes the proof.

Note that this proof is not only useful for localized right-hand sides, but one can easily
derive conclusions for the global case by realizing that ∪K∈KHK = Ω. In applications, as
mentioned earlier, this can allow for localized estimations of ϕ where one might truncate
solutions of the form:

a(ϕK , w) =

∫
Ω

f |Kw dx, ∀w ∈ W, (3.15)

where f |K is interpreted as being equal to some f (with potentially global support) on K ,
and 0 elsewhere. Note that ϕ =

∑
K∈KH ϕK .

3.1.2 Approximation Error
The last focus of this chapter will be addressing the issue that in numerical applications we
are restricted to �nite-dimensional spaces, which means we have to approximate contin-
uous spaces, using �ne meshes. In our case, that would mean that Vh takes the place of V
in calculations, where h is small enough to resolve small oscillations in A. Our next result
will show that it is a reasonable approach, and that the approximation error which ensues
from this approach is well-behaved. Our theorem will be an application of [5, Theorem
5.2.5 on p. 278].

Theorem 5. Assume that A is bounded as in (2.17) and that (ϕ, λϕ) ∈ V × VH solves (3.1).
Further assume that (ϕh, λϕ) ∈ Vh × VH solves the following discretized problem:

a(ϕh, wh) + (λϕ, IHwh) = (f, wh), ∀wh ∈ Vh, (3.16a)
(IHϕh, µH) = 0, ∀µH ∈ VH . (3.16b)

Then the following bound on the approximation error holds:

‖ϕ− ϕh‖V ≤ C(3.17) inf
wh∈Vh

‖ϕ− wh‖V , (3.17)

where C(3.17) is a constant independent of h and H .

Proof. The theorem directly follows from [5, Theorem 5.2.5 on p. 278] and the results in
(3.5) and (3.3), concerning the coercivity of a(•, •) and the inf-sup condition on (IH•, •).
Note that ker(IH |Vh) ⊆ ker(IH |V ) obviously holds true in our case, which is why we can
enjoy the improved error estimate (3.17).

The in�mum on the right-hand side in (3.17) might look abstract, but one should keep in
mind that this especially holds for interpolation estimates of ϕ. Thus, one could concretize
it further by restricting it with interpolation errors. For example, we could use the error
bound (2.13) for the Clemént operator to get the reference error

‖ϕ− ϕh‖V . inf
wh∈Vh

‖ϕ− wh‖V . ‖ϕ− ICϕ‖V . hs ‖ϕ‖H1+s . (3.18)
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3. Elliptic PDE with Coarse Scale Constraints

Note that we have to assume v ∈ H1+s(Ω), s ∈ (0, 1], to end up with some factor of h,
which is important since it ensures that we can get a better approximation of ϕ if we use
a �ner mesh.

18



4
Parabolic PDE with Coarse Scale

Constraints

This chapter will be structurally similar to chapter 3, but in the parabolic setting derived
from (2.21). Structurally we will discuss the same results concerning existence and unique-
ness of solutions, but we are more limited in proofs concerning the behavior of the solu-
tions, since some problems like a priori error estimates for spatial decay are still open.
The chapter follows [18] to a large extent, only distilled to relevant matters and with some
minor modi�cations.

4.1 Constrained Parabolic Problem

Again, we will introduce our coarse-scale constrained parabolic problem as a saddle point
problem. However, in this chapter we will consider a fully discrete setting, partially for
sake of simplicity but also because as we saw in chapter 3 we eventually have to consider a
discrete setting for implementations. Thus the saddle point problem reads: �nd ψh,τ ∈ V̂h,τ
and the associated Lagrange-multipliers (λ

(0)
ψ , . . . , λ

(NT )
ψ ) ∈ VH × · · · × VH such that

∫ T

0

〈ψ̇h,τ , wh,τ 〉+ a(t; ψh,τ , wh,τ ) dt+

NT∑
i=1

∫ Ti

Ti−1

〈λ(i)
ψ , IHwh,τ 〉 dt =

∫ T

0

〈f, wh,τ 〉 dt,

(4.1a)
NT∑
j=0

〈IHψh,τ (Tj), µ(j)
H 〉 = 0, (4.1b)

for all wh,τ ∈ Vh,τ , all µ(j)
H ∈ VH , j = 0, . . . , NT and where f ∈ L2(H−1).

We will show that (4.1) has a unique solution in a coming theorem, and the reader may
recognize the approach from the previous chapter. Before we go into the theorem, we will
state a useful notation which will be used numerous times throughout the proof,

v̄ =
1

τ

Nτ∑
i=1

∫ T

0

v(t; •)χi dt. (4.2)

Put into words, this function is the temporal mean with respect to our �ne temporal mesh.
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4. Parabolic PDE with Coarse Scale Constraints

The coming proof is the combination of [18, Lemma 2.3 on p. 5] and [18, Lemma 3.3
on p. 10] (inspired by [22]), only with a slight modi�cation to the right-hand side bound.

Theorem6. Assume that (2.22) holds. Then (4.1) has a unique solution (ψh,τ , µ
(0)
H , . . . , µ

(NT )
H ) ∈

V̂h,τ × VH × · · · × VH . It is also bounded by the expression

‖ψh,τ‖tr ≤ c−1
A ‖f‖L2(H−1) , (4.3)

where cA = min{α,C−1
projα

1/2β−1/2}.

Proof. We will make use of [3, Theorem 2.1 and Corollary 2.1 on p. 1239-1240], but to do
so we have to show inf-sup conditions for the following operators:

A : V̂h,τ × Vh,τ −→ R,

A(vh,τ , wh,τ ) :=

∫ T

0

〈v̇h,τ , wh,τ 〉+ a(t; vh,τ , wh,τ ) dt (4.4)

Bi : VH × Vh,τ −→ R,

Bi(λH , wh,τ ) :=

∫ Ti

Ti−1

〈λH , IHwh,τ 〉 dt, (4.5)

Cj : V̂h,τ × VH −→ R,
Cj(vh,τ , µH) := 〈IHvh,τ (Tj), µH〉, (4.6)

for 1 ≤ i ≤ NT and 0 ≤ j ≤ NT . This combined with the bounds of the right-hand sides
of (4.1) will grant us the results in Theorem 6.

inf-sup condition for A: To prove our condition we will make use of another operator,
Eh : Vh,τ −→ Vh,τ , This operator is characterized by the equation

a(t; Ehv(t), wh) = 〈v(t), wh〉 (4.7)

for all wh ∈ Vh and t ∈ [0, T ]. From this we can derive that if vh,τ ∈ V̂h,τ , vh,τ 6= 0, then
v̄h,τ + Ehv̇h,τ ∈ Vh,τ , where v̄h,τ is the temporal mean from (4.2). Further we have that

A(vh,τ , v̄h,τ + Ehv̇h,τ ) =

∫ T

0

〈v̇h,τ , v̄h,τ + Ehv̇h,τ 〉+ a(t; vh,τ , v̄h,τ + Ehv̇h,τ ) dt

=

∫ T

0

a(t; Ehv̇h,τ , v̄h,τ + Ehv̇h,τ ) + a(t; v̄h,τ , v̄h,τ + Ehv̇h,τ ) dt

=

∫ T

0

a(t; v̄h,τ + Ehv̇h,τ , v̄h,τ + Ehv̇h,τ ) dt, (4.8)

where we used (4.7) and that a(t; vh,τ , wh,τ ) = a(t; v̄h,τ , wh,τ ) for any wh,τ ∈ Vh,τ . We will
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4. Parabolic PDE with Coarse Scale Constraints

keep expressing (4.8) as

A(vh,τ , v̄h,τ + Ehv̇h,τ )

=

∫ T

0

a(t; v̄h,τ + Ehv̇h,τ , v̄h,τ + Ehv̇h,τ ) dt

=

∫ T

0

a(t; v̄h,τ , v̄h,τ ) dt+ 2

∫ T

0

a(t; Ehv̇h,τ , v̄h,τ ) dt+

∫ T

0

a(t; Ehv̇h,τ , Ehv̇h,τ ) dt

≥
∫ T

0

a(t; v̄h,τ , v̄h,τ ) dt+ 2

∫ T

0

〈v̇h,τ , v̄h,τ 〉 dt+ ≤ C−2
projβ

−1

∫ T

0

‖v̇h,τ‖2
H−1 dt

=

∫ T

0

a(t; v̄h,τ , v̄h,τ ) dt+ ‖vh,τ (T )‖2
L2 dt+ ≤ C−2

projβ
−1

∫ T

0

‖v̇h,τ‖2
H−1 dt

≥
∫ T

0

a(t; v̄h,τ , v̄h,τ )+ ≤ C−2
projβ

−1 ‖v̇h,τ‖2
H−1 dt, (4.9)

where we used (4.7) again and vh,τ ∈ V̂h,τ in the fourth row. In the third row we used that
‖vh,τ‖2

H−1 ≤ C2
projβa(t; Ehvh,τ , Ehvh,τ ), which comes from the following reasoning:

‖vh,τ (t)‖H−1 = sup
w∈V

〈vh,τ (t), w〉
‖w‖H1

≤ sup
w∈V

〈vh,τ (t),Πhw〉
1

Cproj
‖Πhw‖H1

= Cproj sup
w∈Vh

〈vh,τ (t), wh〉
‖wh‖H1

= Cproj sup
w∈Vh

a(t; Ehvh,τ , wh)
‖wh‖H1

≤ Cproj sup
w∈Vh

‖(A1/2∇(Ehvh,τ ))(t)‖L2‖(A1/2∇wh)(t)‖L2

‖wh‖H1

≤ Cproj sup
w∈Vh

β1/2‖(A1/2∇(Ehvh,τ ))(t)‖L2‖∇wh‖L2

‖wh‖H1

≤ Cprojβ
1/2‖(A1/2∇(Ehvh,τ ))(t)‖L2

= (C2
projβa(t; Ehvh,τ , Ehvh,τ ))1/2, (4.10)

where Πh : V −→ Vh is the L2-projection onto Vh. In the reasoning above we made use
of the stability estimates of Πh in H1 (see [6] for more details) in the second row, (4.7) in
the fourth, Hölder’s inequality in the �fth and (2.17) in the sixth.

Now we can �nally make use of (4.9) to begin showing the inf-sup condition for A. Let
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4. Parabolic PDE with Coarse Scale Constraints

vh,τ ∈ V̂h,τ . Then

sup
wh,τ∈Vh,τ

A(vh,τ , wh,τ )

‖wh,τ‖te
≥ A(vh,τ , v̄h,τ + Ehv̇h,τ )

‖v̄h,τ + Ehv̇h,τ‖te

=

∫ T
0
a(t; v̄h,τ + Ehv̇h,τ , v̄h,τ + Ehv̇h,τ ) dt

(
∫ T

0
(∇(v̄h,τ + Ehv̇h,τ ))2 dt)1/2

=

∫ T
0

∥∥A1/2∇(v̄h,τ + Ehv̇h,τ )
∥∥2

L2 dt

(
∫ T

0
‖∇(v̄h,τ + Ehv̇h,τ )‖2

L2 dt)1/2

≥
α1/2

∫ T
0

∥∥A1/2∇(v̄h,τ + Ehv̇h,τ )
∥∥2

L2 dt

(
∫ T

0
‖A1/2∇(v̄h,τ + Ehv̇h,τ )‖2

L2 dt)1/2

≥ α1/2

(∫ T

0

a(t; v̄h,τ + Ehv̇h,τ , v̄h,τ + Ehv̇h,τ ) dt

)1/2

≥ α1/2

(∫ T

0

a(t; v̄h,τ , v̄h,τ ) + C−2
projβ

−1 ‖v̇h,τ‖2
H−1 dt

)1/2

≥ min{α,C−1
projα

1/2β−1/2} ‖vh,τ‖tr . (4.11)

Now, if we take the in�mum of our left-hand side of (4.11) and re-organize the terms, we
get the inf-sup condition for A

inf
vh,τ∈V̂h,τ

sup
wh,τ∈Vh,τ

A(vh,τ , wh,τ )

‖vh,τ‖tr ‖wh,τ‖te
≥ cA, (4.12)

where
cA := min{α,C−1

projα
1/2β−1/2}. (4.13)

inf-sup condition for
∑

iBi: Let (λ
(1)
H , . . . , λ

(NT )
H ) ∈ VH × · · · × VH be arbitrary and

nonzero, and let ‖(λ(1)
H , . . . , λ

(NT )
H )‖VH×...×VH :=

∑NT
i=1 ‖∇λ

(i)
H ‖L2 .

Now, we de�ne w̃h,τ :=
∑NT

i=1 λ
(i)
H 1[Ti−1,Ti] ∈ Vh,τ , which will grant us the inequalities

sup
wh,τ∈Vh,τ

∑NT
i=1 Bi(λ

(i)
H , wh,τ )

‖(λ(1)
H , . . . , λ

(NT )
H )‖VH×...×VH ‖wh,τ‖te

≥
∑NT

i=1 Bi(λ
(i)
H , w̃h,τ )

‖(λ(1)
H , . . . , λ

(NT )
H )‖VH×...×VH ‖w̃h,τ‖te

=

∑NT
i=1 T ‖λ

(i)
H ‖2

L2

(
∑NT

i=1 ‖λ
(i)
H ‖2

L2)1/2(
∑NT

i=1 T ‖∇λ
(i)
H ‖2

L2)1/2

= T 1/2

∑NT
i=1 ‖λ

(i)
H ‖2

L2∑NT
i=1 ‖∇λ

(i)
H ‖2

L2

. (4.14)

This expression can be further bounded by an application of the (3.6),

T 1/2

∑NT
i=1 ‖λ

(i)
H ‖2

L2∑NT
i=1 ‖∇λ

(i)
H ‖2

L2

≥ T 1/2

∑NT
i=1 ‖λ

(i)
H ‖2

L2

C2
invH

−2
∑NT

i=1 ‖λ
(i)
H ‖2

L2

= C−2
invH

2T 1/2 > 0. (4.15)
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4. Parabolic PDE with Coarse Scale Constraints

If we combine (4.14) and (4.15) while applying the in�mum, we have our inf-sup condition
for
∑

iBi.

inf-sup condition for
∑

j Cj : For this condition we will construct ηi ∈ V̂τ such that

ηi :=

(
t

T
− i+ 1

)
1[Ti−1,Ti] +

(
i+ 1− t

T

)
1[Ti,Ti+1], (4.16)

for i = 1 . . . NT . Now we choose non-zero (µ
(1)
H , . . . , µ

(NT )
H ) ∈ VH × · · · × VH and let

vh,τ :=
∑NT

i=1 ηiµ
(i)
H ∈ V̂h,τ . Examining the norm of vh,τ , we �nd that

‖vh,τ‖tr =

(∫ T

0

‖∇v̄h,τ‖2
L2 + ‖v̇h,τ‖2

H−1 dt

)1/2

=

(∫ T

0

∥∥∥ NT∑
i=1

η̄i∇µ(i)
H

∥∥∥2

L2
+
∥∥∥ NT∑
i=1

η̇iµ
(i)
H

∥∥∥2

H−1
dt

)1/2

≤

(
2

∫ T

0

NT∑
i=1

η̄2
i ‖∇µ

(i)
H ‖

2
L2 +

NT∑
i=1

η̇2
i ‖µ

(i)
H ‖

2
L2 dt

)1/2

=

(
2

NT∑
i=1

(∫ T

0

η̄2
i ‖∇µ

(i)
H ‖

2
L2 + η̇2

i ‖µ
(i)
H ‖

2
L2 dt

))1/2

≤

(
2T

NT∑
i=1

‖∇µ(i)
H ‖

2
L2 +

4

T

NT∑
i=1

‖µ(i)
H ‖

2
L2

)1/2

. (4.17)

By using this bound on vh,τ and the seminorm on VH × · · · × VH mentioned earlier in this
proof, we get

sup
wh,τ∈V̂h,τ

∑NT
i=1 Ci(wh,τ , µ

(i)
H )

‖wh,τ‖tr ‖(µ
(1)
H , . . . , µ

(NT )
H )‖VH×···×VH

≥
∑NT

i=1〈IHvh,τ (Tj), µ
(j)
H 〉

‖vh,τ‖tr ‖(µ
(1)
H , . . . , µ

(NT )
H )‖VH×···×VH

≥
∑NT

i=1 ‖µ
(i)
H ‖2

L2(
2T
∑NT

i=1 ‖∇µ
(i)
H ‖2

L2 + 4
T
∑NT

i=1 ‖µ
(i)
H ‖2

L2

)1/2 (∑NT
i=1 ‖∇µ

(i)
H ‖2

L2

)1/2

≥
∑NT

i=1 ‖µ
(i)
H ‖2

L2(
2T C2

invH
−2
∑NT

i=1 ‖µ
(i)
H ‖2

L2 + 4
T
∑NT

i=1 ‖µ
(i)
H ‖2

L2

)1/2 (
C2

invH
−2
∑NT

i=1 ‖µ
(i)
H ‖2

L2

)1/2

=

∑NT
i=1 ‖µ

(i)
H ‖2

L2(
2T C2

invH
−2 + 4

T

)1/2
(C2

invH
−2)

1/2∑NT
i=1 ‖µ

(i)
H ‖2

L2

≥ 1
2T +1

2
C2

invH
−2 + 2

T

:= γ(H, T ) > 0, (4.18)
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4. Parabolic PDE with Coarse Scale Constraints

where we made use of (3.6) and Young’s inequality. If we apply the in�mum to (4.18) we
have the inf-sup condition for

∑
i Ci.

Because of our assumption on f we have that our right-hand side in (4.1a) is bounded.
This combined with the proven inf-sup conditions grants us the existence and uniqueness
of the solution to (4.1), as well as the bound in (4.3) from [3, Theorem 2.1 and Corollary 2.1
on p. 1239-1240].

4.1.1 Alternative Formulation in Constrained Spaces

Similar to the elliptic case, (4.1) can be rephrased as a PDE in a constrained subspace. To
do so, we de�ne the following subspaces:

Ŵh,τ := {wh,τ ∈ V̂h,τ : IHwh,τ (Ti) = 0, ∀i = 0, . . . , NT }, (4.19)

Wh,τ := {wh,τ ∈ Vh,τ :
1

T

∫ Ti

Ti−1

IHwh,τ dt∀i = 1, . . . NT }. (4.20)

Using these, our constrained problem simply reads: �nd ψh,τ ∈ Ŵh,τ such that

A(vh,τ , wh,τ ) =

∫ T

0

〈f, wh,τ 〉 dt ∀wh,τ ∈ Wh,τ . (4.21)

We will not prove that (4.21) is well de�ned, but instead comment on the equivalence to
(4.1) which indeed exists. One should acknowledge the parallels between this chapter and
chapter 3, namely that there existing di�erent ways to formulate the same problem. How-
ever, we will leave out the formal proof in this report and point the interested reader to [18].

4.1.2 Temporal and Spatial Decay

As for results concerning decay in our parabolic case, we restrict ourselves to a proof of
an a posteriori upper bound of the temporal localization, Theorem 7, while the a priori
estimate of spatial decay remains an open problem. We make use of parts of [18, Lemma
4.1 on p. 15], with the very slight modi�cation of including a localized f in the calculations.

Theorem 7. Let ψh,τ ∈ V̂h,τ be the solution to (4.1). Additionally, assume that f is localized
in time, such that f1[T2,T ] ≡ 0. Then we have the a posteriori temporal error for ψh,τ ,

∥∥ψh,τ1[Ti,T ]

∥∥
tr ≤ (1+c−1

A )

(
CIHHT −1/2 + max{ 1√

2
,
β̄√
3
}T 1/2

)
‖∇ψh,τ (Ti)‖L2 , (4.22)

for i ≥ 2.

Proof. To arrive at (4.22), we de�ne a φ ∈ V̂h,τ such that

ψh,τ = ψh,τ1[0,Ti] +
Ti+1 − t
T

ψh,τ (Ti)1[Ti,Ti+1] + φh,τ . (4.23)
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4. Parabolic PDE with Coarse Scale Constraints

Note that this implies φh,τ1[0,Ti] ≡ 0 and φh,τ1[Ti+1,T ] = ψh,τ1[Ti+1,T ]. It also means that

∫ T

Ti

〈φ̇h,τ , wh,τ 〉+ a(t;φh,τ , wh,τ ) dt+

NT∑
j=i+1

∫ Ti

Ti−1

〈λ(i)
ψ , IHwh,τ 〉 dt

=

∫ T

Ti

〈ψ̇h,τ , wh,τ 〉+ a(t;ψh,τ , wh,τ ) dt+

NT∑
j=i+1

∫ Ti

Ti−1

〈λ(i)
ψ , IHwh,τ 〉 dt

+

∫ Ti+1

Ti

1

T
〈ψh,τ (Ti), wh,τ 〉 − a(t;

Ti+1 − t
T

ψh,τ (Ti), wh,τ ) dt

=

∫ T

Ti

〈f, wh,τ 〉 dt+

∫ Ti+1

Ti

1

T
〈ψh,τ (Ti), wh,τ 〉 − a(t;

Ti+1 − t
T

ψh,τ (Ti), wh,τ ) dt

=

∫ Ti+1

Ti

1

T
〈ψh,τ (Ti), wh,τ 〉 − a(t;

Ti+1 − t
T

ψh,τ (Ti), wh,τ ) dt (4.24)

and

〈IHφh,τ (Tj), µ(j)
H 〉 = 0, (4.25)

for all wh,τ ∈ Vh,τ , µ(j)
H ∈ VH , j = i, . . . , NT . To arrive at an upper bound for φh,τ we will

make use of [3, Corollary 2.1] once again, similar to Theorem 6, but to do so we need to
show that the right-hand side of (4.24) is bounded. We have that

∫ Ti+1

Ti

1

T
〈ψh,τ (Ti), wh,τ 〉 − a(t;

Ti+1 − t
T

ψh,τ (Ti), wh,τ ) dt

≤

 1

T

(∫ Ti+1

Ti

‖ψh,τ (Ti)‖2
L2 dt

)1/2

+ β̄

(∫ Ti+1

Ti

∥∥∥∥Ti+1 − t
T

∇ψh,τ (Ti)
∥∥∥∥2

L2

dt

)1/2
 ‖wh,τ‖te

=

(
T −1/2 ‖ψh,τ (Ti)‖L2 +

β̄√
3
T 1/2 ‖∇ψh,τ (Ti)‖L2

)
‖wh,τ‖te

=

(
T −1/2 ‖ψh,τ (Ti)− IH(ψh,τ (Ti))‖L2 +

β̄√
3
T 1/2 ‖∇ψh,τ (Ti)‖L2

)
‖wh,τ‖te

≤
(
CIHHT −1/2 +

β̄√
3
T 1/2

)
‖∇ψh,τ (Ti)‖L2 ‖wh,τ‖te , (4.26)

where we used the global application of (2.14) for the last inequality. Thus, from the same
arguments as in Theorem 6 we can derive:

‖φh,τ‖tr ≤ c−1
A

(
CIHHT −1/2 +

β̄√
3
T 1/2

)
‖∇ψh,τ (Ti)‖L2 . (4.27)
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Next, we note that:∥∥∥∥Ti+1 − t
T

ψh,τ (Ti)1[Ti,Ti+1]

∥∥∥∥
tr

=
1

T

(∫ Ti+1

Ti

‖ψh,τ (Ti)‖2
L2 dt

)1/2

+

(∫ Ti+1

Ti

∥∥∥∥Ti+1 − t
T

∇ψh,τ (Ti)
∥∥∥∥2

L2

dt

)1/2

= T −1/2 ‖ψh,τ (Ti)‖L2 +
1√
2
T 1/2 ‖∇ψh,τ (Ti)‖L2

≤
(
CIHHT −1/2 +

1√
2
T 1/2

)
‖∇ψh,τ (Ti)‖L2 , (4.28)

where we once again applied (2.14) in the last step.

Finally we arrive at (4.22) by the following reasoning:

∥∥ψh,τ1[Ti,T ]

∥∥
tr =

∥∥∥∥Ti+1 − t
T

ψh,τ (Ti)1[Ti,Ti+1] + φh,τ

∥∥∥∥
tr

(4.29)

≤
∥∥∥∥Ti+1 − t
T

ψh,τ (Ti)1[Ti,Ti+1]

∥∥∥∥
tr

+ ‖φh,τ‖tr

≤ (1 + c−1
A )

(
CIHHT −1/2 + max{ 1√

2
,
β̄√
3
}T 1/2

)
‖∇ψh,τ (Ti)‖L2 .

Theorem 7 is useful since we can acquire a bound for ψh,τ by just evaluating it at one
�xed point in time. It also grants us a valuable tool to investigate the solution, since it
may be su�cient to just evaluate the solution a couple of �xed points in time to con�rm
the nature of the decay. While more results are not formally in print concerning a priori
estimates of decay, it is likely that the spatial decay is similar to what we found true for
elliptic problems in chapter 3, which we will see in our results in chapter 5.
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5
Numerical Experiments

This chapter will be dedicated to presenting the numerical results from implementations in
MATLAB. The implementations will consider the two earlier mentioned constrained prob-
lems. This way we can observe some of the discussed properties, like decay for example.
We will con�rm some of the theory that is shown in earlier chapters, but also discuss some
other phenomena and investigate some open problems especially in the parabolic case.

5.1 Prerequisites

We will not go into much details concerning the code used in the report, and we point
the interested reader to read more about the elliptic code and parabolic code in [20] and
[18] respectively. The only purpose of this section is to establish some parameters and
constructions to increase comprehension in coming sections.

First of all, note that we have to approximate the continuous setting with a �ne-scale
one. This was motivated through Theorem 5 in the elliptic case, and in chapter 4 we
assume it immediately. We will discuss this further in chapter 6.

Figure 5.1: K0 (to the left) and the resulting mesh after one instance of uniform re�nement
(to the right).

The coarse- and �ne-scale grids will be constructed in the same way in both the elliptic
and the parabolic case. We start of with a simple grid K0 which is re�ned uniformly
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5. Numerical Experiments

for some number of instances. This grid and one instance of re�nement is illustrated in
Figure 5.1. To arrive at our coarse-scale grid KH we go through this process four times
and for our �ne-scale grid seven times, or in other words, H = 2−4 and h = 2−7. Also,
for our construction of f and spatial error analysis we choose a speci�c element K ∈ KH .
This element stays the same through our experiment, and has vertices in (0.6875, 0.5),
(0.6875, 0.5625) and (0.75, 0.5).

For the temporal discretization, the coarse and �ne grid are simply assembled by di-
viding our interval into subintervals of length 2−4 and 2−7 respectively.

Finally, we have to choose our di�usion coe�cient A. This is achieved through one
spatial parameter, Nε, and one temporal parameter, Nδ . This in practice means that A is
divided into N2

ε squares over Ω, and these squares stay constant on temporal intervals of
lengthNδ . Throughout all of the examples we have usedNε = Nδ := 25. This is motivated
by that we want A to be detailed on a scale which is not resolved by KH , but by Kh.
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5. Numerical Experiments

5.2 Elliptic case

The code we have implemented would be equivalent to solving Equation 3.16, and we will
study the behavior of the solution while changing the di�usion coe�cient A. We will use
a load vector f ful�lling Equation 3.10, simply constructed as f ≡ 1 on K ∈ KH with ver-
tices in (0.6875, 0.5), (0.6875, 0.5625) and (0.75, 0.5), and 0 elsewhere. The implemented
f is shown in Figure 5.2.

Figure 5.2: Localized f used in implementations illustrated.

In our �rst numerical result we have used a constant di�usion coe�cient, A ≡ 1.
The result is presented in Figure 5.3, and one can see that the decay property we proved
in Theorem 4 seems to be con�rmed here aswell. One can also see that the underlying
mesh vaguely appears, as the edges of the mesh often corresponds to smaller values in the
solution. In Figure 5.4 we have constructed an error plot, where we plot the relative error
between ϕh and ϕh|N l(K) in L2-norm and H1-seminorm. Here we interpret N0(K) as just
being K . The plot makes it easier to interpret the nature of the decay, which appears to
be exponential, as would be expected from the theory.

Next, in Figure 5.5 we used a highly irregular A, where the domain Ω is divided into
a grid of squares, and every square is randomly assigned a value of 1 or 0.01. The ob-
servations concerning exponential decay and the mesh standing out appears once again,
although it is less clear. One can also sense a vague resemblance of the di�usion coe�cient
in the solution. This will be clearer in future examples. We also con�rm the exponential
decay in Figure 5.9a in both norms, however, the plot looks less smooth and more random-
ized than in previous example.

To make the mentioned phenomenon where the solution imitates the di�usion coef-
�cient clearer, we have implemented a di�usion coe�cient with a thin channel running
through it in Figure 5.6, valued 0.01 in the channel and 1 everywhere else. Now one can
clearly see the resemblance of the di�usion coe�cient. One can also note that the decay of
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5. Numerical Experiments

Figure 5.3: Constant di�usion coe�cient to the left, corresponding solution ϕh to the right.

Figure 5.4: Relative error plot visualizing spatial decay with constant di�usion coe�cient.

the solution is signi�cantly slower within channel. In Figure 5.9b we also observe a quick
decay, which also aligns with what we see in Figure 5.6 (see [15]).

Further stressing the point made in the previous paragraph, we implemented an "in-
verted" version of the thin channel di�usion coe�cient. By inverted here we mean that
the coe�cient is valued 1 within the channel, and 0.01 everywhere else. The result is
presented in Figure 5.7, and this time we note a faster decay of the solution within the
channel. Note that the error plot in Figure 5.9c is very similar to our previous example,
only slightly slower.
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5. Numerical Experiments

Figure 5.5: Randomized di�usion coe�cient to the left, corresponding solutionϕh to the right.

Figure 5.6: Di�usion coe�cient with thin channel valued 0.01 to the left, corresponding
solution ϕh to the right.

Figure 5.7: Di�usion coe�cient with thin channel valued 1 to the left, corresponding solution
ϕh to the right.
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Lastly, in order to further visualize the properties discussed we have implemented an
oscillating di�usion coe�cient, which oscillates between 0.01 and 1 in the x-direction, and
is constant in the y-direction. This is shown in Figure 5.8, and while the mesh is hard to
distinguish, one can see the the solution is oscillating slightly. The error plot in Figure 5.9d
shows a very quick decay.

Figure 5.8: Oscillating coe�cient to the left, corresponding solution ϕh to the right.
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(a) Relative error plot visualizing spatial
decay with randomized di�usion coe�-
cient, corresponding to Figure 5.5

(b) Relative error plot visualizing spatial
decay with di�usion coe�cient with thin
channel valued 0.01 running through, cor-
responding to Figure 5.6

(c) Relative error plot visualizing spatial
decay with di�usion coe�cient with thin
channel valued 1 running through, corre-
sponding to Figure 5.7.

(d) Relative error plot visualizing spatial
decaywith oscillating di�usion coe�cient,
corresponding to Figure 5.8.

Figure 5.9: Error plots corresponding to randomized, thin 0.01 valued channel, thin 1 valued
channel and oscillating di�usion coe�cients.
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5.3 Parabolic case

We will approach our investigation of the parabolic case in a similar manner as the elliptic
case. This time we will use a simple load vector f which is localized in both space and
time. It is de�ned as f ≡ 1 on K × [0, 0.125] for K ∈ KH with vertices in (0.6875, 0.5),
(0.6875, 0.5625) and (0.75, 0.5), and as f ≡ 0 everywhere else. The implemented function
f is visualized in Figure 5.10.

Figure 5.10: Localized f used in implementations at any t ∈ [0, 0.125].

We will apply di�erent di�usion coe�cients in (4.1). We have also chosen T = 5 as
upper time limit while studying the systems. This limit is arbitrary, and one could use a
lower or higher one, but this limit is su�cient for making the discussed features of our
solutions to emerge. Note also that the time limit essentially works as truncating the
solution, and does not a�ect the solution up until that point in time.

In our �rst example we will use a constant di�usion coe�cient, A ≡ 1. The result is
shown in Figure 5.11. Firstly, one can con�rm that some sort of temporal decay seems
to be taking place, since the whole solution seems to fade with time. But one can also
suspect that there is an exponential spatial decay present from these images. Note how
the solution achieves signi�cantly higher values around K , where f is supported, and
then fades out toward the edges. As in the elliptic case, we also see some hints of the
spatial grid in the solution, although much less clearly. We have also implemented an
error plot for our solution, in this case seen in Figure 5.17. The plots illustrate the relative
errors of truncated solutions, spatially and temporally. More speci�cally, we compare ψh,τ
to ψh,τ |N l(K) for l = 1, . . . , 25 and ψh,τ1[0,Ti] for i = 0, . . . , 5 · 24 to con�rm spatial and
temporal decay respectively. All of the error plots seem to con�rm the earlier proposals of
temporal decay and exponential spatial decay.
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Figure 5.11: The corresponding solution ψh,τ to A ≡ 1 at times t ≈ 0.001, 1, 2.5, 4.99.

Figure 5.12: The corresponding solution ψh,τ to to A ≡ 0.01 at times t ≈ 0.001, 1, 2.5, 4.99.
Note the adjusted scales.
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We have also implemented a second constant di�usion coe�cient, A ≡ 0.1, where
the corresponding plots are shown in Figure 5.12. The same observations goes as for our
previous case, but this time the temporal and spatial decay is much faster, which becomes
very clear if we compare Figure 5.18 to Figure 5.17, where we adjust the axis for this special
case. This tells us that the magnitude of A a�ects the decay.

In Figure 5.14 we see the results after implementing a highly irregular, randomized
coe�cientA. Its range is divided into space-time rectangles and randomly assigned values
between 0.01 and 1. As in previous cases we see a clear temporal decay. However, if
one compares it to the decay in Figure 5.11 and looks at Figure 5.19 and Figure 5.17, it is
signi�cantly slower here. This might be explained by that we are comparing a di�usion
coe�cient which are constant in time to a coe�cient which is not.

Figure 5.13: The corresponding solution ψh,τ to temporally oscillating di�usion coe�cient at
times t ≈ 0.001, 1, 2.5, 4.99. The coe�cient is de�ned as A(t, x) := sin(2πt).

Another interesting comparison is between Figure 5.13 and Figure 5.14. In Figure 5.13,
we have implemented a di�usion coe�cient which only oscillates in time. It is a discretized
version of a sine wave oscillating between 0.01 and 1, with a period of 1. Even though
neither our randomized coe�cient or oscillating coe�cient is constant in time, we see that
regularity pays an important role in the decay. In Figure 5.20 this is con�rmed as well,
since one can see that the temporal error decreases much faster than in Figure 5.19. Note
also how the temporal error graph seems to oscillate in unison with the coe�cient.
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Figure 5.14: A randomized highly varying di�usion coe�cient A (to the left) and the corre-
sponding solution ψh,τ (to the right) at times t ≈ 0.001, 1, 2.5, 4.99.
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One observation we are yet to make, is how the solution imitates the di�usion coef-
�cient, which we saw more clearly in the elliptic case. To make this phenomenon more
apparent, we construct two coe�cients which are constant in time, but spatially con-
structed with a thin channel running through the domain. The results are presented in
Figure 5.15 and Figure 5.16, where one can clearly see the coe�cient re�ected in the so-
lution. We also note that in Figure 5.16, the solution decays signi�cantly slower within
the value channel, and in Figure 5.16 the opposite seems to happens. The temporal errors
in Figure 5.21 and Figure 5.22 do not di�er much, but the "high"-valued channel A has
a signi�cantly faster spatial decay. Note also the signi�cant bump in spatial decay in
Figure 5.22. This bump and increase of speed in the decay coincides with l = 10, which
happens to be the point where N l(K) completely covers the channel, which could explain
the phenomenon.

Figure 5.15: The corresponding solution ψh,τ to di�usion coe�cient with thin channel valued
0.01 (see Figure 5.6) at times t ≈ 0.001, 1, 2.5, 4.99.

Lastly, one phenomenon which is di�cult to convey in pictures, is that in all cases of
di�erent di�usion coe�cients, the solution seemed to radiate waves of higher and lower
values originating at the element where f is supported. One might suspect that this be-
haviour stems from the fact that the solution has a temporal coarse scale constraint here,
and that is what we see materialized.
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Figure 5.16: The corresponding solution ψh,τ to di�usion coe�cient with thin channel valued
1 (see Figure 5.7) at times t ≈ 0.001, 1, 2.5, 4.99.

Figure 5.17: Relative error plots illustrating temporal (to the left) and spatial decay (to the
right) for constant di�usion coe�cient valued 1. Corresponds to Figure 5.11
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Figure 5.18: Relative error plots illustrating temporal (to the left) and spatial decay (to the
right) for constant di�usion coe�cient valued 0.01. Corresponds to Figure 5.12.

Figure 5.19: Relative error plots illustrating temporal (to the left) and spatial decay (to the
right) for randomized di�usion coe�cient. Corresponds to Figure 5.14.

Figure 5.20: Relative error plots illustrating temporal (to the left) and spatial decay (to the
right) for temporally oscillating di�usion coe�cient. Corresponds to Figure 5.13.
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Figure 5.21: Relative error plots illustrating temporal (to the left) and spatial decay (to the
right) for di�usion coe�cient with thin channel valued 0.01. Corresponds to Figure 5.15.

Figure 5.22: Relative error plots illustrating temporal (to the left) and spatial decay (to the
right) for di�usion coe�cient with thin channel valued 1. Corresponds to Figure 5.16.
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6
Conclusion

The purpose of this report was to investigate the nature of coare-scale constrained prob-
lems, a special type of PDAEs. This was done both theoretically, by literature studies,
and numerically, using MATLAB. The questions we chose to focus on was existence and
uniqueness of solutions, as well as the nature of the decay of said solutions.

From the evidence put forth in this report we can expect these solutions to coarse-scale
constrained equations to be well-behaved.

In the elliptic case we showed in chapter 3 that our designated problem has a unique
solution, and later that it could be well-approximated by some �nite element method.
We also showed that the solution decays exponentially when we have a localized load
vector. Lastly in section 5.2, we con�rmed the claim of exponential decay numerically
with MATLAB code, as well as noted some additional features. For example, we saw how
the solution re�ects di�erent di�usion coe�cient visually, and how the mesh structure
appears vaguely in the solution, likely because of the coarse-scale constraint.

In the parabolic case we restricted ourselves to a fully discrete case for our theoretical
proofs in chapter 4, which was a practical choice since the theory is closer to implemen-
tations that way. Again, we proved that the constrained problem in question has a unique
solution and provided a stability estimate. As for the questions surrounding decay, we re-
stricted ourselves to a proof of an a posteriori bound for the solution, but pointed out that
one could suspect that there is also exponential spatial decay present from our numerical
results in chapter 5. The mathematical proof of this is an open problem currently.

As far as future ventures in this subject goes, one might want to look into more general
elliptic and parabolic equations, since we restricted this report to one PDE for each case
with a second order term. One could introduce various lower order terms, which could
prove convenient since the problems then becomes formulated in more general terms.
One could also investigate how the choice of right-hand sides a�ects the solution, since
we only made use of one for each case in this report.

Lastly, another natural progression from this report could also be to investigate hyper-
bolic problems with coarse scale constraints, where many of properties that we discussed
here are still open problems.
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