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Finite Element Methods for PDEs with Algebraic Constraints
ERIC LINDSTROM

Department of Mathematical Sciences

University of Gothenburg

Abstract

The purpose of this report is to analyze numerical approximations of partial differential
equations with algebraic constraints. In particular we consider problems where the alge-
braic constraint forces the solution to be in the kernel of an interpolation operator. Such
constrained PDEs arise for example in numerical solutions of local problems in multiscale
methods. We will consider elliptic and parabolic PDEs and present some analytical results
as well and numerical simulations. The main points of interest will be to investigate if the
said problems are well posed, and to study the decay of the corresponding solutions.
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1

Introduction

The desire to simulate more and more complicated problems calls for sophisticated mod-
eling and efficient numerical methods. A particular case in the context of differential
equations are operator differential algebraic equations (operator DAEs), or partial differ-
ential algebraic equations (PDAEs) in the PDE case. In these problems the corresponding
solutions are constrained by some operator. These models show up in a variety of different
subjects, for example in models of fluid dynamics [23], multibody dynamics [11], electrical
circuits [4], reactive transportation [9] and gas transportation networks [1], just to name
a few.

However, in this report we will restrict ourselves to one very specific type of PDAE,
where we only consider an interpolation operator as the constraining operator. More
specifically, we are looking for solutions to PDEs in the kernel of a chosen interpolation
operator. This type of PDAEs intuitively brings the focus to scale, and multiscale methods
(see [2, 14, 16] for early works and examples of such methods) like the localized orthogonal
decomposition (LOD) [20, 21]. Multiscale methods targets partial differential equations with
highly irregular coefficients, where there is a scale of interest which is smaller than what
would be efficient to implement with the classical FEM. Situations where such methods
can be beneficial occurs for example in multifunctional materials, where microstuctural
properties of the material can result in macroscopic properties like negative optical refrac-
tion [10].

Solving general PDEs algebraically is often an insurmountable task, and therefore, we
have to use efficient numerical methods to approximate the solution. However, if we want
to approximate solutions numerically we have to lay the theoretical groundwork first.
This would include proving existence of solutions, as well as investigating approximation
errors and stability estimates. The PDAEs we study in this report introduce some com-
plexity into these questions. We will focus on one example of an elliptic PDE, the Poisson
equation, and one parabolic example, the heat equation.

In chapter 2 we prepare for the more complicated matters by establishing useful defini-
tions and rehearsing the classical FEM. It also includes a closer look on some interpolation
operators.

Thereafter, we approach the questions above both theoretically (chapter 3 and chap-
ter 4) and numerically (chapter 5). In the elliptic case, we acknowledge two different ways
of formulating our constrained problem, the saddle point formulation and the constrained
variational formula. We discuss how they have different benefits, and then show that
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they are equivalent, as well as well-posed. After that we show that the solution of said
problem decays exponentially when the problems involves a localized load vector with an
a priori decay estimate. We also investigate the approximation error when one replaces
the continuous setting with a discrete setting.

For the parabolic case (chapter 4), we assume a discrete setting immediately, partially
for sake of simplicity, but also from realizing the necessity of a discrete settings in imple-
mentations. Again we state the two formulations of the problem, similar to the elliptic
case, and prove that the problem has an unique solution. The a priori decay estimates of
these solutions are open problems, but we prove one temporal a posteriori error estimate,
and discuss how temporal and exponential spatial decay probably is inherited from the
corresponding unconstrained problem.

Finally, we study numerical solutions of the problems in chapter 5, which are imple-
mented using MATLAB. We do so by presenting solutions with different diffusion coeffi-
cients, and to confirm decay we compare them to solutions restricted to smaller domains.
The different diffusion coefficients help to bring out certain graphical aspects of the solu-
tion which are considered as plausible results of the acting constraints.
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Background

This first section will consist of definitions as well as some basic theory, that will serve us
later in the report and should make the reading more fluent.

2.1 Function Spaces

When dealing with PDEs, one often comes across Sobolev spaces. In this report we will
denote them as W (or W} (2) more precisely) which are defined by

WHQ) == {f € L(Q) : f* € LP(Q),Y|a| < k}. (2.1)
Here o = (o, . .., ®,) is a multi-index, and f(® is the mixed partial derivative
||
[ = o (2.2)

dx ... Qwon

Notice that the partial derivatives only have to exist in the weak sense from these defi-
nitions. Also, the cases where p = 2 are particularly important, since they form Hilbert
spaces, and thus have their own notation. We let H*(2) := W¥(Q) (or H* for short).

A frequently used notation in this context is
Hy(Q) :={ve H(Q) : (Tv)(z) =0, Ve N}, (2.3)
where I is the trace operator onto L In fact, we will let
V= Hy(Q) (2.4)

for convenience. We will also often make use of the standard H'!-norm

9 9 1/2
ol = Iy = (1oll32q0) + 1900520y (25)

Sometimes we will leave out the domain in the notation for norms when the chance of
misunderstandings is small. The L?-norm is generated by the standard L?-inner product
which is denoted by (e, e), not to be confused with the standard duality pairing between
V and V' := H~'(Q), denoted by (e, e). Note that the duality pairing reduces to the
L?-inner product if both functions are in L.
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In sections of the report where we consider parabolic settings we will come across
Bochner spaces like L?(0,7'; B) and H'(0,T; B), where B is some Banach space. Within
these spaces we make use of the standard Bochner-norms

T 1/2
2
rwmmm@:(A wmdﬁ , 2.6

T 1/2
2 112
|mmwmm—(éwwk+ww3w) . (27

When referencing Bochner spaces we will also often abbreviate by leaving out the domains.
We will also make use of some other norms in our proofs with discrete settings,

T
2 —n2 .12
HWVZ/|Wﬂm+WMA&7 28)
0
2 r 2
mm:/nwmmt 29)
0

Here, v refers to the temporal mean of v with respect to the fine temporal mesh, see defi-
nition in (4.2).

Now we will define the meshes used in this report, which is one key part of FEMs. This
is achieved with a collection of closed simplices, K. We will define Hy := diam(K) for
all K € Kp, and let H := maxgei,, Hx. Now, the size of elements are restricted by

min Hyx > pH
Kok K Z pi1,

where p > 0 is a constant. The shape of the elements are restricted and characterized by

Hg
max ————
Kekyg dlam(BK)

> 1.

Above, B is defined to be the largest ball that fits in X' € Kpy. These restrictions are
important for error analysis later in the report. We will denote the internal nodes of the
mesh with N and the number of internal nodes with Ny. Finally, we will denote a
fine mesh with K}, with the corresponding restrictions but with h < H, and the natural
notations AV, and N}, for the nodes and number of internal nodes, respectively.

With our domain (2 discretized we want to simplify the solution space where we search
for a solution. This is done by restricting the functions using the mesh. Let us define the
restricted function space Vy as

VH = Pl(,CH) N V,
where P1(K ) is the space of piecewise polynomials of degree < 1 on each K € Ky, or

in other words, functions that are piecewise affine with respect to the mesh. Notice that
this space is finite-dimensional, with dimension directly tied to the number of internal

4
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nodes in Ay. To span this space, we will make use of a basis of hat functions A,, € Vy,
corresponding to internal nodes z; € Ny such that

o (1) =
o 0, otherwise

forall z; € Ng. As with the meshes, we will define a fine-scale function space V}, as well,
defined in the same manner as Vj but using £y,

The meshes above suffice to construct our elliptic FEM formulation, and we will now
present the definitions corresponding to the parabolic case. The spatial discretization is
achieved through a mesh defined as above, K. To discretize in the time domain, we
simply divide the interval [0, 7| into equal parts of some length 7 > 0. We will let 7; =
iT,i=0,..., Ny, where we assume N+7 = T. We will also denote the collections of
sub-intervals [7;_1,7;], ¢ = 1,..., N7, as Jr. From this discretization we construct two
different function spaces,

Vi = {v e HL([0,T]) : v e PYTr)and v(0) = 0}, (2.10a)
Vi =P Tr). (2.10Db)

V7 is spanned by a nodal basis {¢;})\;, where

t . ) t
(= <7—_ — 1+ 1) ]]‘[Ti—laTi] + (Z +1-— 7—,) H[TuTiH]? (2.11)

with a slight modification to (., where we drop the second term. V7 is spanned by piece-
wise constant basis functions {x;}7, where y; := Li7,_, 7,)- These two function spaces
will in turn generate our trial and test spaces given as

VH,T =V x V7, (2.12a)
VH;]' = Vg X VT. (2.12b)

.....

77777

above only varying by index, where H isreplacedby h,0 < h < H,and T by 7,0 < 7 < T.

Lastly, we will introduce an important concept to navigate in the mesh, namely element
patches. Let S € Ky be a collection of elements in Ky, then the element patch N(5) is
defined as

N(S) = J{K € Ky : KNS #0}.

This definition can be extended to any set S C (), and we are sometimes interested in a
patch around a single point z, where we let N(z) := N({z}). Also, for | > 2, we will use
the notation N'(S) = N(N'71(9)), to address the effects of layers in the mesh. Naturally
we let N1(S) := N(9).
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2.2 Interpolation

Interpolation is important in the analysis of finite element methods but also in the con-
struction of multiscale methods. In this section we will discuss three common interpolation
operators, specifically their benefits, restrictions and error bounds.

2.2.1 Nodal Interpolation

The first operator is also the simplest of the three (the order will be in increasing complex-
ity). Here we will denote the nodal interpolation operator with 7y, and it is defined for all
v e CHN)as

Tyvv(z) = Y v(@:)A,,(2).

z, ENH
For the nodal interpolation operator we have the error bound
v — INU”LQ(K) + h v — INU”Hl(K) S OINhi( HUHH?(K) )

where K € Ky, and (7, is a constant.

Note that even if this evaluation is powerful, the restrictions are too invasive for most
cases. The functions in H'! are generally not continuous when we move to higher dimen-
sions, more specifically H*(Q) Z C°(Q2) if Q@ C R?, d > 2. This means the operator is not
well-defined for all v € H'(£2) in these cases. Our next candidate will fix this issue.

2.2.2 Clément Interpolation

To define the Clément interpolation operator Zov, we need the concept of local patches as
defined in section 2.1. Using these patches we define Z; as

v(y)d
Tev(z) = Z %Ax(@

z,ENy

Note that this operator is defined for all v € L'(f2). The corresponding error bounds for
the operator reads

I _ICUHHI(K) < Czchk ||UHH1+s(K) VK € Ky, Yo € H(Q), (2.13)
where s = (0, 1].

One disadvantage compared to the nodal interpolation is that the Clément interpo-
lation operator is not a projection. Why this is a disadvantage may not be clear in this
moment for the reader but it simplifies future calculations.

Another down-side of the Clément interpolation operator is that it will not conserve
homogeneous boundary conditions. However, this can be compensated for by explicitly

setting 7 to zero in the boundary nodes. Even after this modiftication (2.13) still holds [8].

6
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2.2.3 Projective Quasi-Interpolant

In coming applications and code we will use a constructed interpolation operator, Z; :=
Eyo H%f’. Here, H;lf’ refers to the L?-projection onto piecewise affine functions, acting on
each element of Ky, and Ey is the notation for a weighting operator. It is calculated by

B = Y Bl @), veenn

kekrer V)

For convenience we interpret v|x as v on K and 0 elsewhere, to make it defined on the
entire set (2.

This particular operator is constructed to be a projection, and enjoys the following
error bound:

_ 2 2 ~ 2
Hi v~ Zuvlleey + IV @ao)l72 ) < C3, IVUllz2 vy, Vv E H', (2.14)

where OIH is a constant depending on the mesh constant y and the maximum amount
of neighbours an element K € Ky can have. With a slight change of constants and by
summation, one can manipulate (2.14) into a global bound,

H™ |[o = Zuvl 2 + IV (Zu0) 12y < O, 1V0ll12), Yo € HY. (2.15)

One issue with this interpolation operator is that it does not conserve boundary condi-
tions. However, this is easily fixed for homogeneous boundary conditions, by defining £’y
to be 0 on the boundary vertices. This definition also preserves (2.14) for functions v € V'
(see [13] for more details).

2.3 A Brief Review of the Finite Element Method

We will use the FEM to solve a PDAE. We start by recapitulating how the FEM is derived for
PDEs. This will grant some references to lean back on when we introduce finite element
methods for constrained problems, as they for instance arise in connection with multiscale
methods.

2.3.1 Elliptic

Now we will set up our elliptic model problem. Our domain 2 C R? is assumed to have
polyhedral shape with diam({2) ~ 1. We will restrict ourselves to an elliptic equation in
R?,

— div(AVu) = f. (2.16)
Here A : Q — R**?is allowed to be a highly irregular coefficient, but bounded by
A . A .
0 < o :=essinf inf M <[ :=esssup sup (A(@)v) - v < 0,
z€Q veR\{0} V- 2€Q  veR\{0} Vv
B :=[|Allo < o0. (2.17)
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0.9

-170.8

10.7

" 110.6

Figure 2.1: Example of highly irregular diffusion coefficient A visualized, valued 0.01 (black)
or 1 (white) in €.

We also assume that A is symmetric in this report, as well as f € H~(Q).
The first step toward a FEM is to convert (2.16) into its variational formulation
a(u,v) = /Q(AVU) -Voudx = /va dz, YvelV. (2.18)
Since the left-hand side is a bilinear, bounded form, and the right-hand side can be thought
of as a bounded linear functional, the Lax-Milligram Theorem [17, Theorem A.3 on p. 230]

tells us that (2.18) has a unique solution.

Using the solution space defined in section 2.1 and the variational formulation, the
classical Galerkin FEM reads: find uy € Vj such that

/(AVUH) -Vogdx = / fogdx, Yvg € Vg. (2.19)
Q Q

Since V}; can be spanned by simple hat-functions, we can represent uy as
Nug
ug(x) = Z UJ(L})AZ»(x),
i=1
where U 1(;) are scalars. Thus, (2.19) can be reduced to

Ny
ZUS)/(AVAi)-Aj dx:/fAj dz,
i=1 @ @

forall j = 1,..., N. The equations above can be expressed in matrix form as

AU = f, (2.20)
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where (A);; = a(A;, A;) is called the stiffness matrix, (f); = [, fA; dz is called load vector

and (U); = U g). When using this basis, the stiffness matrix turns out sparse because of
the support of the hat functions, which makes this an economic method to implement.

However, one issue with the classical FEM is its poor performance when applied to
multiscale problems. Without a fine enough mesh, irregular behaviour on a micro scale
can lead to macroscopic error. Occasions like these are examples when our constrained
problems arise as part of an alternative numerical approach.

2.3.2 Parabolic

In the parabolic case, we are still considering the same spatial domain €2, but now with an
added time domain, [0, 7], with " > 0. The problem we are considering is the parabolic
equation

uw—V - (AVu) = f in Q x (0,7, (2.21a)
u=20 on 09 x (0,7, (2.21Db)
u(0) =0 in Q. (2.21c)

Once again, A : [0,T] x 2 — R?*? is allowed to be highly irregular, as long as it serves
the constraints

Alt .
0 <a:= essinf inf M
(t,2)€(0,T)xQ vER?\{0} Vv
Alt .
< ess sup sup M = B < 00
(t,)€(0,T) x 2 veR2\{0} V-
B 1=l Ao < oo (2.22)

Additionally, we will also assume that A can be well-approximated by functions piecewise
constant on 7. This is to avoid technicalities which this report will not address. This
might feel invasive, but note that this assumption is applied on a fine grid, making it less
of a restriction. However, it is important to choose 7 small enough so that 7, resolves
small oscillations in A.

Before we express our variational formulation, we introduce the bilinear form similar
to the A-induced one in the elliptic case

a(t;v,w) := /(A(t,m)Vv) -Vwdz. (2.23)
Q

Using this notation we can now write the variational formulation for the parabolic problem

as finding u € Vi, := L*(V) N HY(H ) with «(0) = 0 such that

T T
/ (U, v) + a(t;u,v)dt = / (f,v)dt (2.24)
0 0

forallv € Vi, := L*(V). We assume f € L*(H').
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Using (2.24) we will formulate our parabolic FEM problem. We want to find u;, . € Vh,T
such that

T T
/ <uh,fr7 Uh,7'> + a(t; Up,r, Uhﬂ') dt = / <f7 Uh,7'> dt, (2~25)
0 0

for all v, € Vj, ;. Now, to exploit our earlier mentioned discretization, we will express
our trial function uy, ; as

N,
e =y UG, (2.26)

i=1
where U ,(LZ)T € Vi =1,...,N,;. We also only consider test functions of the form v, , =

vpXi» Wwhere v, € V,andi = 0, ..., N,. By doing this, we can solve (2.25) by each time-step
consecutively. Equivalently, we want to find functions U, ,(LZ)T € V}, such that

ti o o o ;
/ (UG on) + (U Gon) + alt; ULV, vn) + alt; UG op) dt
t

~ / (o (2.27)

forall v, € V}, and ¢ =1,...,N-. This is exactly the well-known Crank-Nicholson scheme
which reads: find U }(in € V}, such that

i T i i i— T i
<U}(L,?r7 Uh>+§a(ti—%; U}(L;a Uh) = / <.f7 Uh> dt+<U}(L,T 1)7 Uh>_§a'(ti—%; U}(L,T 1)7 Uh)? (228)
ti—1

forallv, € V,andi=1,..., N,

10



3

Elliptic PDE with Coarse Scale
Constraints

This report revolves around the realization that sometimes it might be interesting to solve
PDE’s in constrained subspaces. Loosely speaking we talk about cases where the solution
of the PDE is constrained by some operator, commonly referred to as operator DAEs (or
PDAEs in the PDE case). These problems arise naturally in many fields of mathematics and
help to increase sophistication of mathematical modeling. Some examples of areas where
these problems arise are fluid dynamics [23], multibody dynamics [11] and gas network
simulations [1], as previously mentioned. The theory surrounding operator DAEs is vast,
and we will only consider a specific case.

In this report we will restrict ourselves to solutions living in the kernel of a chosen
interpolation operator from subsection 2.2.3. This chapter will be dedicated to formu-
late these problems in elliptic cases, and present some results about the properties of the
corresponding solutions. Since PDAEs introduce some complexity to otherwise classical
PDEs, we will discuss the existence and uniqueness of these solutions, as well as some
approximation theory. Problems as these are tightly connected to multiscale methods, and
applications can be found in the LOD [20, 21] for example.

3.1 Constrained Elliptic Problem

To begin analyzing our constrained elliptic problems, it seems only natural to begin with
the arguably simplest second order PDE, the elliptic problem we formulated in section 2.3.
Such a problem is often given as a saddle point problem. In our setting of constraining a
PDE on a coarse-scale level, the problem reads: find ¢ € V' and A\, € Vi such that

a(p,w) + (A, Zyw) = (f,w), Yw eV (3.1a)
(Zup, pu) = 0, Vg € Vi, (3.1b)

where f € V’. Note that this is a very specific case of an operator DAE, and if one is
interested in reading about a more general setting, one can do so in [12]. To see that there
exists a unique solution (3.1), we will use [5, Corollary 4.2.1 on p. 229].

Theorem 1. Assume that (2.17) holds. Then there exists unique solutions p € V and )\, €
Vi that solves (3.1). The solution ¢ is bounded by

1
||§0||v < a Hva/ (3.2)

11



3. Elliptic PDE with Coarse Scale Constraints

Proof. [5, Corollary 4.2.1] applies to our case if we can show that a(e, e) is bounded and
coercive, and that the operator (Zye, e) fulfills the inf sup-condition

7
i sup (LHUUH) s (3.3)
vHEVH yeV HUHV HUHHV

for some § > 0. We will begin by showing that a(e, @) is bounded, which is true because
of (2.17),
a(v,v) < B[Volj2q) < Blol - (3.4)

Similarly, a(e, @) is coercive by the following reasoning;:
> al|VolParg = = (I1V0) 2 + Ca2 0] ) = = min {1, Cp2} v
a(v,v) > o U||L2(Q) =9 | U||L2(Q) +Cp ||U||L2(Q) =9 rmn{  Up }||U||v,
(3.5)

where we used (2.17) in the first inequality, and the Poincaré inequality [17, Theorem A.6
on p. 238] in the second.

Lastly, to show that (3.3) holds, one can use v = vy, since Vy C V

2 2
sup (Zyv,vy) (Zgvm,vm) lvr 720 S vl 720)
vev [olly loally = Jlvnlf, loally,~ lloallze (1 + ChH2)
B 1
1+ ChH)

where we made use of the inverse inequality [7, Theorem 4.5.11 on p. 112-113],
IVvrllzz) < CH Hvall2@  Yom € Va. (3.6)

Note that we might make use of and reference the inverse inequality applied to the fine
function space V), as well, where H is replaced by h. Since the reasoning above applies to
any vy € Vy, we have that

inf (IHU,’UH) S 1
mr sup = .
onvis ey [olly Toally = (L+ CBH-2)

mv

The existence and uniqueness of the solutions to (3.1) as well as (3.2) now follows from [5,
Corollary 4.2.1].
O

Another way to phrase our constrained problem is to find a solution ¢ € W := ker(Zy)
to

a(p,w) = /wadac, Yw € W. (3.7)

The same bounds are acting on A as in (2.17), and we still assume f € V', and thus, if one
realizes that W is a Hilbert space, the Lax-Milgram Theorem suffices to show that (3.7)
has a unique solution. We will state this in a short, informal proof.

Theorem 2. Assume (2.17) holds. Then (3.7) has a unique solution.

12



3. Elliptic PDE with Coarse Scale Constraints

Proof. a(e,e) is bounded and coercive by the same reasoning as in (3.4) and (3.5). (f, e) is
bounded by applying the Holder inequality,

|(fs )l <Al lwll g s (3.8)
forallw € W.

Finally, before applying the Lax-Milgram Theorem, we need W to be a Hilbert space.
One comes to the conclusion that W is a Hilbert space by noting that ker(Zy) is a ker-
nel of a continuous linear operator, and thus a closed subspace, which makes IV a closed
subspace of a Hilbert space, making W a Hilbert space aswell. Thereby we can apply the

Lax-Milgram Theorem on (3.7) and ensure the existence of an unique solution.

O

Using the existence and uniqueness arguments for solutions to (3.1) and to (3.7) re-
spectively, we will prove in Theorem 3 that the two problems are equivalent. The theorem
is a slight modification of a proof in [19, Theorem 2.3.2 p. 18], and mostly varies from it by
notation.

Theorem 3. Assume that A is bounded as in (2.17), and let o € W be the solution to (3.7).
Additionally, let A\, € Vi be the solution to the problem

()‘%07wH) = (f7 wH) - CL((,O,U)H) (3-9)

forallwy € V. Then (¢, \,) € W x Vi solves (3.1), and A\, is the associated Lagrange
multiplier. The statements are thus equivalent.

Proof. First of all, the solution to (3.9) exists and is unique by the Lax-Milgram Theorem
since the L2-inner product is bounded and coercive on V};. We can use Holder’s inequality
to show it is bounded, since for all vy, wy € Vi we have

(e, wi)| < llvrllrzllwnllee < llvallmllwml
That (e, @) is coercive follows from an application of (3.6),
1 _
(v, vm) = v ll7e > §(||UHH%2 + O H?||Von | 72)
1
> §min{1,C;3H2}||UHH§{1.

Now, let w € V. To arrive at (3.1a), we use (3.9) to realize that

CL((,O,U)) = CL((,O,IHU}) + a((p, (1 _IH)w) + (f7w) - (f:IHw) - (f’ (1 _IH>w)
= _()‘90711‘[7“0) + (f7 w) + CL(QO, (1 _IH)w> - (f7 (1 _IH)w)

Our next step is to note that (1 — Zy)w € W and ¢ solves (3.7). Thus

a(p, (1 = Zy)w) = (f, (1 = Zy)w) = 0.

where we used 3.9 and that Zyw € V. To sum it up, we have
(I((,O,UJ) = _(/\vaz’.Hw) + (fvw)

13



3. Elliptic PDE with Coarse Scale Constraints

The above reasoning holds for all w € V, and thus we have shown (3.1a). To show
(3.1b), one just has to keep in mind that ¢ € W and thus

making it trivial. By combining the results in this proof and the uniqueness arguments in
Theorem 1 and Theorem 2, we have that the two problem formulations (3.1) and (3.7) are
equivalent.

]

The saddle point comes with a great advantage. Unlike in (3.7) we do not need an ex-
plicit description of the space 1/, and to solve that problem directly would include finding
a local basis of W, which is not trivial. This is not an issue with (3.1).

3.1.1 Exponential Decay

In Theorem 4, we will prove an interesting property of ¢, namely that it decays exponen-
tially if the right-hand side of (3.7) has local support. Thus, in the following theorem we

will assume that:

H—l

Je ’ (3.10)
dK € Ky : supp(f) C K.

In applications like the LOD, this result can be useful to justify calculating localized
solutions to coarse scale constrained problems. Our theorem follows [20, Theorem 4.1
p. 38], but considers a slightly more general right-hand side for coherence sake.

Theorem 4. Assume that [ is restricted by (3.10) and let o € W be the solution of (3.7).
Then ¢ is bounded by the following estimate:

o
HA1/2V90HL2(Q\N1(K)) < exp (—0(3.11)51) 1l -1 » (3.11)

wherel € Ny and c311) > (8Cz, (1 + Cz,,v + 7))~ > 0 is a constant which depends on the
shape regularity constants v and p. The notation < should be interpreted as a < b if there
exists k > 0 independent of a and b such thata < k - b.

Proof. Let [ > 4. We will introduce a function 7 € Vj by the following definition:

n=0in N'73(K),
n=1inQ\ N(K).

Because of this definition and the properties of our mesh, we get some useful statement
immediately. Namely that

supp(n) = 2\ N'7°(K),
supp(Vn) = Q\ ((2\ N"*(K)) UN"*(K))
= N2(K)\N'3(K):=R

14



3. Elliptic PDE with Coarse Scale Constraints

and || V|| sy < 7=+ One consequence of this (and the positivity of A) is that

HA1/2V¢HL2(Q\NZ(K)) - /[P(Q\NZ(K))(AVSO) -Vedo
< / (AVp) - Vedz
Q\NI-2(K)
< / n(AVe) - Vodz. (3.12)
Q

Now this right-hand side can be rewritten using the product rule as

/ nN(AVy) - Vedr = / (AVy) - V(ne)dr — / Vn(AVe)pdz
Q Q Q
Za(%nw)—/vn(flvw)sodr-
R

This expression is now further expanded with the addition and subtraction of an interpo-
lated term,

/Qn(AVsO) -Vpdz = alp, (1 = Zu)(ny)) + ale, Zu(ne)) — /RVT](AVSO)sO dz. (3.13)

The first term in (3.13) can be reduced to 0. To see why, note that (1 — Zy)(ny) € W.
This is easy to see using the definition of ' combined with the fact that our interpolation
operator Zy is a projection. Since ¢ is the solution to (3.7), we then see that

alp, (1 — Tur) (1)) = / F(L— Zu)(ng) dz = 0,

because of the support of ¢ and f.

To find an upper bound on the second term of (3.13), we start by investigating the func-
tion Zy (ny). Since ¢ € W and by the definition of 7), one can arrive at supp(Zy (ny)) C
N(R) (note that Zp; might "spread” the support by one layer of elements). Now, using the
definition of 7, the product rule and the error bound for our interpolation operator (2.14)
one can derive

oo Tulne) = [ (AV9): VTu(ne)) da
N(R)
< BIVel L vimy IV @) 2 v ry
<pB HV%0HL2(NI—1(K)\NI—4(K)) Czy Hv(ngp)”LQ(N(Nl—l(K)\Nl—4(K)))
< Cry BVl a1 zep -1y IVl 2oy wvi-s ey
+ Cry v IVell 2 w1 o wi-a(cy))
< Oz, (1 + Cry) HVSDHiz(Nl(K)\NH(K))

B 1/2 2
< CIHa(l + CIH’V) HA / V(pHLQ(Nl(K)\Nl%(K)) :

15



3. Elliptic PDE with Coarse Scale Constraints

Lastly, we can find an upper bound of the third term in (3.13) by similar strategies,
| V(AT oo dal < [Vl sy DAV gy Il

< By Z Hy' ”vSO”L?(K) I _IHSDHL?(K)
KCR

< OIHB’Y Z HVSOHL2(K) HVSOHLz(N(K))

KCR

< Cz, By IIVSDHL2 NUE)\N-4(K))

By
< CIHE HA1/2V<pHL2(N, K)\N'=4(K)) *

We can now use these bounds in (3.12) to get

1420 iy < C AT ey i-siany

2
= C(llaY 2W|1L2 iy ~ 1AVl @iy

where C' := Cr, 2 ’(1+ Cz,,7 + 7). Therefore, it follows

e

”AWVS"HH(Q\M (K)) ‘PHH(Q\NH(K))

C+1

One can also see by the relation of the domains of the norms that C' > 1. The inequality
above can be used inductively to arrive at

1/2 sli/Al || 4172 _ sli/a _ sli/a
HA / V(pHL2(Q\Nl K)) A HA / VSOH =5/ Ja(% p) = gl /KfSOdZU
< U £l ||¢\|H1 o
< SN fll 1) 1+ Cp) IVl 2y
1+ CP /4 1/2
where 0 := C‘Ljﬂ for simplicity, and where we made use of the Poincaré inequality in the
third row. Thus,
1/2 1/4
|AY vg"HL?(Q\NZ(K)) SN gy - (3.14)

Notice that since § < 1, this estimate holds for [ < 4 as well (one can also attribute this
to the stability estimate (3.2)). Also, we have that

sl < 51 (5i)l

16



3. Elliptic PDE with Coarse Scale Constraints

where we used a rough estimate of log <%) motivated by its McLaurin-expansion in the

last step. This new factor applied in (3.14) finishes the proof.
O

Note that this proof is not only useful for localized right-hand sides, but one can easily
derive conclusions for the global case by realizing that Ui, K = €. In applications, as
mentioned earlier, this can allow for localized estimations of ¢ where one might truncate
solutions of the form:

a(pr,w) = / flgwdz, YweW, (3.15)
Q

where f|f is interpreted as being equal to some f (with potentially global support) on K,
and 0 elsewhere. Note that o = > . @K

3.1.2 Approximation Error

The last focus of this chapter will be addressing the issue that in numerical applications we
are restricted to finite-dimensional spaces, which means we have to approximate contin-
uous spaces, using fine meshes. In our case, that would mean that V}, takes the place of V/
in calculations, where & is small enough to resolve small oscillations in A. Our next result
will show that it is a reasonable approach, and that the approximation error which ensues
from this approach is well-behaved. Our theorem will be an application of [5, Theorem
5.2.5 on p. 278].

Theorem 5. Assume that A is bounded as in (2.17) and that (¢, \,) € V' x Vi solves (3.1).
Further assume that (pp,, \,) € Vi, X Vi solves the following discretized problem:

a(pn, wn) + (Ap, Zawp) = (f,wn), Vwy, € Vh, (3.16a)

(Zrpn, prr) = 0, Vi € Vi (3.16b)

Then the following bound on the approximation error holds:
[ —enlly < Ciany inf [lo —wslly (3.17)
wp EVY,

where C(317) is a constant independent of h and H.

Proof. The theorem directly follows from [5, Theorem 5.2.5 on p. 278] and the results in
(3.5) and (3.3), concerning the coercivity of a(e, ®) and the inf-sup condition on (Zye,e).
Note that ker(Zy|y;, ) C ker(Zy|v) obviously holds true in our case, which is why we can

enjoy the improved error estimate (3.17).
O

The infimum on the right-hand side in (3.17) might look abstract, but one should keep in
mind that this especially holds for interpolation estimates of . Thus, one could concretize
it further by restricting it with interpolation errors. For example, we could use the error
bound (2.13) for the Clemént operator to get the reference error

le —enlly S wiréfv,h le —wnlly S lle —Zeelly S Rl gies - (3.18)

17



3. Elliptic PDE with Coarse Scale Constraints

Note that we have to assume v € H'™(Q), s € (0, 1], to end up with some factor of h,
which is important since it ensures that we can get a better approximation of ¢ if we use

a finer mesh.

18



4

Parabolic PDE with Coarse Scale
Constraints

This chapter will be structurally similar to chapter 3, but in the parabolic setting derived
from (2.21). Structurally we will discuss the same results concerning existence and unique-
ness of solutions, but we are more limited in proofs concerning the behavior of the solu-
tions, since some problems like a priori error estimates for spatial decay are still open.
The chapter follows [18] to a large extent, only distilled to relevant matters and with some
minor modifications.

4.1 Constrained Parabolic Problem

Again, we will introduce our coarse-scale constrained parabolic problem as a saddle point
problem. However, in this chapter we will consider a fully discrete setting, partially for
sake of simplicity but also because as we saw in chapter 3 we eventually have to consider a
discrete setting for implementations. Thus the saddle point problem reads: find ¢, . € Vhi

and the associated Lagrange-multipliers (/\Ep . )\(NT ) € Vg X - -+ x Vg such that

T T
/ (Vnes whr) + alt; Yoz, whr) dt+2/ A Tywn,r) dt = / (fwnz)dt,
0 Ti1 0

(4.1a)
Nt
> (Tutpn(Ty), 157) = 0, (4.1b)
§=0

for all wy,, € Vip, all u) € Viy, 5 =0,..., Ny and where f € L*(H™?).

We will show that (4.1) has a unique solution in a coming theorem, and the reader may
recognize the approach from the previous chapter. Before we go into the theorem, we will
state a useful notation which will be used numerous times throughout the proof,

Z / o)y, dt. (4.2)

Put into words, this function is the temporal mean with respect to our fine temporal mesh.
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4. Parabolic PDE with Coarse Scale Constraints

The coming proof is the combination of [18, Lemma 2.3 on p. 5] and [18, Lemma 3.3
on p. 10] (inspired by [22]), only with a slight modification to the right-hand side bound.

Theorem 6. Assume that (2.22) holds. Then (4.1) has a unique solution (¢, ., u(HO), ey u(,j[VT)) €
Vie X Vg X -+ x V. It is also bounded by the expression

||77Dha7||tr < cil HfHL?(H—l) ) (4.3)

where cy = min{a, C, /2 371/2}.

Proof. We will make use of [3, Theorem 2.1 and Corollary 2.1 on p. 1239-1240], but to do
so we have to show inf-sup conditions for the following operators:

A VhJ X VhJ — R,

A(vprs Whyr) 1= /T@h,ﬂwh,T) + a(t; vz, wpy) dt (4.4)
B; VHOX Vi — R,
Bi(Ag, wp,) = /TTi (A, Zywy, ) dt, (4.5)
i—1
¢ Vi X Vg — R,
& (n,rs ) = Lo (1}), o), (4.6)

for 1 <v < Ny and 0 < j < Ny. This combined with the bounds of the right-hand sides
of (4.1) will grant us the results in Theorem 6.

inf-sup condition for 2U: To prove our condition we will make use of another operator,
En + Vi — Vir, This operator is characterized by the equation

a(t; Epu(t), wy) = (v(t), wp) (4.7)

for all wy, € Vj, and ¢t € [0,T]. From this we can derive that if v, , € th vp,r # 0, then
Upr + Epvp+ € Vi r, where Uy, ; is the temporal mean from (4.2). Further we have that

T
A(vp,r, Uy + Eplpr) = / (Oh,r, Onyr + Enlnz) + alt; Vnr, Opr + Eplp,) dt
0
T
= / a(t; EnOnr, Unr + Enng) + alt; Unr, Opr + Epnr) dt
0
T
= / a(t; Onr + Eplnyr, Unr + Enln,r) di, (4.8)
0

where we used (4.7) and that a(t; vj, ,, wp,) = a(t; O, wy ) for any wy, , € Vi .. We will
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4. Parabolic PDE with Coarse Scale Constraints

keep expressing (4.8) as

A(vh 7, Opr + Eplnr)

T
= / a(t; Unr + Enlnyr, Opr + Ennr) dt
0
T T T
= / a(t; @h77—7 @hﬂ') dt + 2 / a(t; gh/[)hﬂW @h,r) dt + / a(t; gh?.)hﬂW gh/[)hﬂ') dt
0 0 0
T T T
> / a(t; Opr, Un,r) At + 2 / (Ohyr, Unr) dt+ < Cp2671 / [0n, |51 it
0 0 0
g 2 g 2
= [t O 0 e+ (D) e < o2 [ el
0 0

T
2/ a(t; On,r, Upe)+ < Coif™! [ onr|[5,1 dt, (4.9)
0

where we used (4.7) again and v, ; € ‘A/;W in the fourth row. In the third row we used that

th,Tﬂz,l < O3 Ba(t; Envn,r, Envn,r ), which comes from the following reasoning:

<vh7(t),w>
Vp (T _, =Sup ———
|| h,T( )”H 1 e ||7~U|| )

<Uh77— (t), th>
wev ﬁ”nthHl
t
— Cpy sUD (vp (1), wp)
wevi,  |lwall g
a(t; Epvnr, wp)

= Cpry SU
ey Nwnllm

< Oy sUD [(AYV2V (Epvp,r)) ()] L2 ]| (AY2Vwy) (E) || 2

weV, l|wn || a1
< Oy sUD BYA(AYV2V (Eyon,-)) (E) || 22 || Vwn]| 2

weVi, l|wn || 1
< B2 |(APV (Eun)) ()] 12
= (Cﬁmjﬁa(t; ghvh,‘m ghvh,f))l/2a (4~10)

where II;, : V' — V}, is the L?-projection onto V},. In the reasoning above we made use
of the stability estimates of ITj, in H' (see [6] for more details) in the second row, (4.7) in
the fourth, Holder’s inequality in the fifth and (2.17) in the sixth.

Now we can finally make use of (4.9) to begin showing the inf-sup condition for 2. Let
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4. Parabolic PDE with Coarse Scale Constraints

Uphr € ‘A/h,T. Then

sup A(vhr whyr)  A(Vnrs Unr + Enlny)
wh,‘rEVh,‘r Hwhﬂ— ||te - ||1_}h77— + 5hvh77— ||te

fOT a(t; 'Dh,‘r -+ gh'l')h,‘r? @h,r + Shi]h,r) dt
(Jo (V (Tnr + Enion,r))? dt)1/2
_ fOT ||A1/2V(?7h,r + 5h@h,r)||iz dt
LNV (Bhr + Endnr)|[22 dt)1/2
/2 [T|| AV2V (5, , + é’h@h,T)Hiz dt
T A2V (Ghr + Enns) |5 dE)12

1/2

T
> ol/? </ a(t; vpr + Enlnr, Unr + Eplnr) dt)
0

- 1/2
> (11/2 </ a(t; @h,ﬂ'a Eh,’r) + C’P_rgl - thﬂ'”?{—l dt)
0

> min{c, Cpma' 2872} o< |, (4.11)

roj

Now, if we take the infimum of our left-hand side of (4.11) and re-organize the terms, we
get the inf-sup condition for 2

Ql(Uh,‘r ) wh,T)

inf sup > ey, (4.12)
vh,TGVh,T wh,TGVh,T ”UthHtl' Hwh7T“te
where
¢y := min{a, Cj;(}jozl/Qﬁ_lm}. (4.13)

inf-sup condition for ). B;: Let ()\g), ce A%VT)) € Vg x -+ x Vp be arbitrary and
nonzero, and let ||\, ..., A3 7)) [vyx. vy == 3o VA2

Now, we define w0y, , := ZZ]\Z A;?]l[TMTZ.] € Vj.», which will grant us the inequalities

sup SV B, w ) S SN B, (A )
1 N — 1 N ~
€V [ AN v lonelle — TS AN v mr

B S TIN 12
(M IS I2) AN TV AL [2)172
_ i Sl

S IVAY 12

(4.14)

This expression can be further bounded by an application of the (3.6),

N- 7 N- 7
e TG o e SN ey s
SMAVALZ, T e HR M AR,
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4. Parabolic PDE with Coarse Scale Constraints

If we combine (4.14) and (4.15) while applying the infimum, we have our inf-sup condition

for >, B;.

inf-sup condition for ), &;: For this condition we will construct 7; € V. such that

t ) ) t
n;, ‘= (7—, — 1+ 1) :H'[TFLTH + (Z -+ 1-— 7—,) ]]-[Ti,Ti+1}7 (416)

fori = 1. NT Now we choose non-zero (ug),...,ug\[ ) € Vg x -+ x Vy and let

T
N '
HZﬁNu%
v %
Zm Vil |!L2+Zm\|u |!L2dt>
=1
1/2
<2TZHW |\Lz+TZHu ||L2> : (4.17)

Up,r 1= Zz f m,uH € Vh . Examining the norm of v, ,, we find that
1/2
_ 2 . 2
fonclle = ([ 19001 + el )
- 1/2
(/ S]] o)
< ( [
. 1/2
>3 ([ Vb + 113 )
By using this bound on v;, ; and the seminorm on V X - - - X Vi mentioned earlier in this
proof, we get

N 7
SN € (wpr, 1)

sup

. 1 N-
wnr i lwnlly (- - ,ﬂ; ) Vi v
SN Tron (1), 1))
- N-
ol G5 iy ™) igxvie

S 12
(T S IVl + 2 55 @iz (Y ivadie.)
E ”M HL2
) 1/2 1/2
(27 B2 2 30 + £ 2 13 )  (Co =2 2 1122 )
S 12
e ) T S

mv
1

> 2T+102 H- 2+_

mv

Y(H,T) >0, (4.18)

v

v
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4. Parabolic PDE with Coarse Scale Constraints

where we made use of (3.6) and Young’s inequality. If we apply the infimum to (4.18) we
have the inf-sup condition for ), €;.

Because of our assumption on f we have that our right-hand side in (4.1a) is bounded.
This combined with the proven inf-sup conditions grants us the existence and uniqueness
of the solution to (4.1), as well as the bound in (4.3) from [3, Theorem 2.1 and Corollary 2.1
on p. 1239-1240]. [

4.1.1 Alternative Formulation in Constrained Spaces

Similar to the elliptic case, (4.1) can be rephrased as a PDE in a constrained subspace. To
do so, we define the following subspaces:

Wir = {wnr € Vir : Tywp.(T}) =0,Y¥i=0,..., N}, (4.19)
1[5

Wh,T = {w;w S Vhﬂ' : 7—,/ IHwh,T dtVe = 1,... NT}- (4.20)
T 1

Using these, our constrained problem simply reads: find ¢, » € VAV;W such that

T
Q[<Uhﬂ'7 whﬂ') = / <f7 wh,T> dt vwh,T S Wh,‘r- (421)
0

We will not prove that (4.21) is well defined, but instead comment on the equivalence to
(4.1) which indeed exists. One should acknowledge the parallels between this chapter and
chapter 3, namely that there existing different ways to formulate the same problem. How-
ever, we will leave out the formal proof in this report and point the interested reader to [18].

4.1.2 Temporal and Spatial Decay

As for results concerning decay in our parabolic case, we restrict ourselves to a proof of
an a posteriori upper bound of the temporal localization, Theorem 7, while the a priori
estimate of spatial decay remains an open problem. We make use of parts of [18, Lemma
4.1 on p. 15], with the very slight modification of including a localized f in the calculations.

Theorem 7. Let )y, , € ‘A/h,T be the solution to (4.1). Additionally, assume that f is localized
in time, such that 1z, ) = 0. Then we have the a posteriori temporal error for {, -,

18

| onr Lz |, < (1+cy) (CIHHT_1/2 - max{\/g, 7

}TW) [V (T s (4.22)

forv > 2.
Proof. To arrive at (4.22), we define a ¢ € f/hﬁ such that

Tig1—t
7

77Z)h,T = 77Z)h,7'1]-[0,Ti] + wh,T(E)ﬂ-[Ti,THl] + ¢h,7" (423)

24



4. Parabolic PDE with Coarse Scale Constraints

Note that this implies ¢y, ; 1jo,7;) = 0 and ¢p, - L7, 77 = ¥nr 17, 7). It also means that

T
/<¢hmwm>+a( Oh,ry W) dt + Z/ IHth)dt

Jj=i+1

T
:/ <wh77wh7'>+a( wh‘ﬂth dt+ Z/ ¢7IHth>d

T j=i+1
n (T ) = alts 2 (1), )
B /T,T<f7 Wh,r) At + :“ 1 (Ve (T3), wnr) — alt; 'TZH (1), )l
B :*1 1 —=(Wnr(T3), whr) — alt; ‘TZH th( i), W) dt (4.24)
and
(Zuénr(T), n7)) =, (4.25)
for all wy » € Vi, 7, ,ug) € Vi, j =1,..., Ny. To arrive at an upper bound for ¢;, , we will

make use of [3, Corollary 2.1] once again, similar to Theorem 6, but to do so we need to
show that the right-hand side of (4.24) is bounded. We have that

T Tig1—t
<wh7’( )th>_a(t;%th( )th)dt
T;
1/2
1 [ [T V2 Ty 2
<7 ([t a) s ([ E @) a) ol
T T; T; T L2

_ (T-W onr (T2 + %TW ||vwh,7m>||p) o |,
—( L2y (T3) — T i>>||L2+%Tl/2||v¢h,7<mnm) sl

B
< (CIHHT vy %TW) 190 (T sl (4.26)

where we used the global application of (2.14) for the last inequality. Thus, from the same
arguments as in Theorem 6 we can derive:

b

; Cr, HT V% +
Jonl, < i (o -

Tm) 1940 (T2 (2.27)
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Next, we note that:
‘ Tipn —t
T tr

1 Tiv1 ) 1/2 Tiv1
([ el ) (]
Ti Ti

- 1
= T e (Tl + 5T IV e (T

_ 1
S (CIHHT 1/2 + ET1/2) Hv/l/)h,T(ﬂ)HLQ )

wh,T<7—;> jn‘[Tr,‘,,Ti_A'_l}

Tip1—t
T

where we once again applied (2.14) in the last step.

Finally we arrive at (4.22) by the following reasoning:

Tiyg —t
Hwhﬂ'ﬂ[Ti,T] ||tr - ' T Unr (1) Vg 140) + Ohr
tr
Tign —t
< [F et | -+l
tr

V¢h,r (l-rz)

2 1/2
dt)
L2

(4.28)

(4.29)

< () (Cn HT 2 4 max{ o, ST ) (90, )

]

Theorem 7 is useful since we can acquire a bound for ¢, ; by just evaluating it at one
fixed point in time. It also grants us a valuable tool to investigate the solution, since it
may be sufficient to just evaluate the solution a couple of fixed points in time to confirm
the nature of the decay. While more results are not formally in print concerning a priori
estimates of decay, it is likely that the spatial decay is similar to what we found true for
elliptic problems in chapter 3, which we will see in our results in chapter 5.
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5

Numerical Experiments

This chapter will be dedicated to presenting the numerical results from implementations in
MATLAB. The implementations will consider the two earlier mentioned constrained prob-
lems. This way we can observe some of the discussed properties, like decay for example.
We will confirm some of the theory that is shown in earlier chapters, but also discuss some
other phenomena and investigate some open problems especially in the parabolic case.

5.1 Prerequisites

We will not go into much details concerning the code used in the report, and we point
the interested reader to read more about the elliptic code and parabolic code in [20] and
[18] respectively. The only purpose of this section is to establish some parameters and
constructions to increase comprehension in coming sections.

First of all, note that we have to approximate the continuous setting with a fine-scale
one. This was motivated through Theorem 5 in the elliptic case, and in chapter 4 we
assume it immediately. We will discuss this further in chapter 6.

1 1
0.8 0.8
0.6 0.6
y y
0.4 0.4
0.2 0.2

0 0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 5.1: ICy (to the left) and the resulting mesh after one instance of uniform refinement
(to the right).

The coarse- and fine-scale grids will be constructed in the same way in both the elliptic
and the parabolic case. We start of with a simple grid Ky which is refined uniformly
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5. Numerical Experiments

for some number of instances. This grid and one instance of refinement is illustrated in
Figure 5.1. To arrive at our coarse-scale grid Ky we go through this process four times
and for our fine-scale grid seven times, or in other words, H = 2=%and h = 277. Also,
for our construction of f and spatial error analysis we choose a specific element K € .
This element stays the same through our experiment, and has vertices in (0.6875,0.5),
(0.6875,0.5625) and (0.75,0.5).

For the temporal discretization, the coarse and fine grid are simply assembled by di-
viding our interval into subintervals of length 274 and 277 respectively.

Finally, we have to choose our diffusion coefficient A. This is achieved through one
spatial parameter, V., and one temporal parameter, N;. This in practice means that A is
divided into N? squares over (), and these squares stay constant on temporal intervals of
length N;. Throughout all of the examples we have used N. = N; := 2°. This is motivated
by that we want A to be detailed on a scale which is not resolved by Ky, but by /C;,.

28



5. Numerical Experiments

5.2 Elliptic case

The code we have implemented would be equivalent to solving Equation 3.16, and we will
study the behavior of the solution while changing the diffusion coefficient A. We will use
a load vector f fulfilling Equation 3.10, simply constructed as f = 1 on K € Ky with ver-
tices in (0.6875,0.5), (0.6875,0.5625) and (0.75,0.5), and 0 elsewhere. The implemented
f is shown in Figure 5.2.

10.9
10.8
10.7
0.6
0.5
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0.3
0.2

0.1

X

Figure 5.2: Localized f used in implementations illustrated.

In our first numerical result we have used a constant diffusion coefficient, A = 1.
The result is presented in Figure 5.3, and one can see that the decay property we proved
in Theorem 4 seems to be confirmed here aswell. One can also see that the underlying
mesh vaguely appears, as the edges of the mesh often corresponds to smaller values in the
solution. In Figure 5.4 we have constructed an error plot, where we plot the relative error
between ¢y, and ¢p| yi(x) in L*-norm and H'-seminorm. Here we interpret N°(K) as just
being K. The plot makes it easier to interpret the nature of the decay, which appears to
be exponential, as would be expected from the theory.

Next, in Figure 5.5 we used a highly irregular A, where the domain (2 is divided into
a grid of squares, and every square is randomly assigned a value of 1 or 0.01. The ob-
servations concerning exponential decay and the mesh standing out appears once again,
although it is less clear. One can also sense a vague resemblance of the diffusion coefficient
in the solution. This will be clearer in future examples. We also confirm the exponential
decay in Figure 5.9a in both norms, however, the plot looks less smooth and more random-
ized than in previous example.

To make the mentioned phenomenon where the solution imitates the diffusion coef-
ficient clearer, we have implemented a diffusion coefficient with a thin channel running
through it in Figure 5.6, valued 0.01 in the channel and 1 everywhere else. Now one can
clearly see the resemblance of the diffusion coefficient. One can also note that the decay of
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Figure 5.3: Constant diffusion coefficient to the left, corresponding solution yy, to the right.
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Figure 5.4: Relative error plot visualizing spatial decay with constant diffusion coefficient.

the solution is significantly slower within channel. In Figure 5.9b we also observe a quick
decay, which also aligns with what we see in Figure 5.6 (see [15]).

Further stressing the point made in the previous paragraph, we implemented an "in-
verted" version of the thin channel diffusion coefficient. By inverted here we mean that
the coeflicient is valued 1 within the channel, and 0.01 everywhere else. The result is
presented in Figure 5.7, and this time we note a faster decay of the solution within the
channel. Note that the error plot in Figure 5.9c is very similar to our previous example,
only slightly slower.
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Figure 5.6: Diffusion coefficient with thin channel valued 0.01 to the left, corresponding

solution oy, to the right.
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Figure 5.7: Diffusion coefficient with thin channel valued 1 to the left, corresponding solution
©p, to the right.
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Lastly, in order to further visualize the properties discussed we have implemented an
oscillating diffusion coefficient, which oscillates between 0.01 and 1 in the z-direction, and
is constant in the y-direction. This is shown in Figure 5.8, and while the mesh is hard to
distinguish, one can see the the solution is oscillating slightly. The error plot in Figure 5.9d
shows a very quick decay.

0.8 0.8
0.6 1 0.6
y

0.4 0.4
0.2 0.2

0 0
0 0.5 1 0 0.5 1
X X

Figure 5.8: Oscillating coefficient to the left, corresponding solution @y, to the right.
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(a) Relative error plot visualizing spatial
decay with randomized diffusion coeffi-
cient, corresponding to Figure 5.5
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(c) Relative error plot visualizing spatial
decay with diffusion coefficient with thin
channel valued 1 running through, corre-
sponding to Figure 5.7.
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(b) Relative error plot visualizing spatial
decay with diffusion coefficient with thin
channel valued0.01 running through, cor-
responding to Figure 5.6
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(d) Relative error plot visualizing spatial
decay with oscillating diffusion coefficient,
corresponding to Figure 5.8.

Figure 5.9: Error plots corresponding to randomized, thin 0.01 valued channel, thin 1 valued

channel and oscillating diffusion coefficients.
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5.3 Parabolic case

We will approach our investigation of the parabolic case in a similar manner as the elliptic
case. This time we will use a simple load vector f which is localized in both space and
time. It is defined as f = 1 on K x [0,0.125] for K € Ky with vertices in (0.6875,0.5),
(0.6875,0.5625) and (0.75,0.5), and as f = 0 everywhere else. The implemented function
f is visualized in Figure 5.10.
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Figure 5.10: Localized f used in implementations at anyt € [0,0.125].

We will apply different diffusion coefficients in (4.1). We have also chosen 7" = 5 as
upper time limit while studying the systems. This limit is arbitrary, and one could use a
lower or higher one, but this limit is sufficient for making the discussed features of our
solutions to emerge. Note also that the time limit essentially works as truncating the
solution, and does not affect the solution up until that point in time.

In our first example we will use a constant diffusion coefficient, A = 1. The result is
shown in Figure 5.11. Firstly, one can confirm that some sort of temporal decay seems
to be taking place, since the whole solution seems to fade with time. But one can also
suspect that there is an exponential spatial decay present from these images. Note how
the solution achieves significantly higher values around K, where f is supported, and
then fades out toward the edges. As in the elliptic case, we also see some hints of the
spatial grid in the solution, although much less clearly. We have also implemented an
error plot for our solution, in this case seen in Figure 5.17. The plots illustrate the relative
errors of truncated solutions, spatially and temporally. More specifically, we compare 9, -
to V- |niry for I = 1,...,2% and ¢y Loz, for i = 0,...,5 - 2! to confirm spatial and
temporal decay respectively. All of the error plots seem to confirm the earlier proposals of
temporal decay and exponential spatial decay.
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Figure 5.11: The corresponding solution iy, . to A = 1 at timest ~ 0.001, 1, 2.5,4.99.
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Figure 5.12: The corresponding solution vy, , to to A = 0.01 at timest ~ 0.001, 1, 2.5, 4.99.
Note the adjusted scales.
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We have also implemented a second constant diffusion coefficient, A = 0.1, where
the corresponding plots are shown in Figure 5.12. The same observations goes as for our
previous case, but this time the temporal and spatial decay is much faster, which becomes
very clear if we compare Figure 5.18 to Figure 5.17, where we adjust the axis for this special
case. This tells us that the magnitude of A affects the decay.

In Figure 5.14 we see the results after implementing a highly irregular, randomized
coefficient A. Its range is divided into space-time rectangles and randomly assigned values
between 0.01 and 1. As in previous cases we see a clear temporal decay. However, if
one compares it to the decay in Figure 5.11 and looks at Figure 5.19 and Figure 5.17, it is
significantly slower here. This might be explained by that we are comparing a diffusion
coefficient which are constant in time to a coefficient which is not.
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Figure 5.13: The corresponding solution 1y, , to temporally oscillating diffusion coefficient at
timest ~ 0.001,1,2.5,4.99. The coefficient is defined as A(t, z) := sin(2xt).

Another interesting comparison is between Figure 5.13 and Figure 5.14. In Figure 5.13,
we have implemented a diffusion coefficient which only oscillates in time. It is a discretized
version of a sine wave oscillating between 0.01 and 1, with a period of 1. Even though
neither our randomized coeflicient or oscillating coeflicient is constant in time, we see that
regularity pays an important role in the decay. In Figure 5.20 this is confirmed as well,
since one can see that the temporal error decreases much faster than in Figure 5.19. Note
also how the temporal error graph seems to oscillate in unison with the coefficient.
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Figure 5.14: A randomized highly varying diffusion coefficient A (to the left) and the corre-
sponding solution vy, - (to the right) at timest ~ 0.001, 1, 2.5, 4.99.
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One observation we are yet to make, is how the solution imitates the diffusion coef-
ficient, which we saw more clearly in the elliptic case. To make this phenomenon more
apparent, we construct two coefficients which are constant in time, but spatially con-
structed with a thin channel running through the domain. The results are presented in
Figure 5.15 and Figure 5.16, where one can clearly see the coefficient reflected in the so-
lution. We also note that in Figure 5.16, the solution decays significantly slower within
the value channel, and in Figure 5.16 the opposite seems to happens. The temporal errors
in Figure 5.21 and Figure 5.22 do not differ much, but the "high"-valued channel A has
a significantly faster spatial decay. Note also the significant bump in spatial decay in
Figure 5.22. This bump and increase of speed in the decay coincides with [ = 10, which
happens to be the point where N'(K) completely covers the channel, which could explain
the phenomenon.
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Figure 5.15: The corresponding solution 1y, - to diffusion coefficient with thin channel valued
0.01 (see Figure 5.6) at timest ~ 0.001, 1,2.5,4.99.

Lastly, one phenomenon which is difficult to convey in pictures, is that in all cases of
different diffusion coefficients, the solution seemed to radiate waves of higher and lower
values originating at the element where f is supported. One might suspect that this be-
haviour stems from the fact that the solution has a temporal coarse scale constraint here,
and that is what we see materialized.
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Figure 5.16: The corresponding solution 1y, . to diffusion coefficient with thin channel valued
1 (see Figure 5.7) at times t ~ 0.001, 1,2.5,4.99.
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Figure 5.17: Relative error plots illustrating temporal (to the left) and spatial decay (to the
right) for constant diffusion coefficient valued 1. Corresponds to Figure 5.11
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Figure 5.18: Relative error plots illustrating temporal (to the left) and spatial decay (to the
right) for constant diffusion coefficient valued 0.01. Corresponds to Figure 5.12.
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Figure 5.19: Relative error plots illustrating temporal (to the left) and spatial decay (to the
right) for randomized diffusion coefficient. Corresponds to Figure 5.14.

E-llYnr = ner Lo llzen /1n sl am)] F-llnr — nrlvio ez /on 7 2|
10° - 10° \
N N
\ g
¥ T
5 —
‘\Nw‘.\ 10 T o
5 N‘\‘ &\ﬂ\\
107 e,
. N
R .
N
. 10710
1010 | | | | ‘ ‘ |
0 20 40 60 80 0 5 10 15 20
i 1

Figure 5.20: Relative error plots illustrating temporal (to the left) and spatial decay (to the
right) for temporally oscillating diffusion coefficient. Corresponds to Figure 5.13.
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Figure 5.21: Relative error plots illustrating temporal (to the left) and spatial decay (to the
right) for diffusion coefficient with thin channel valued 0.01. Corresponds to Figure 5.15.
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Figure 5.22: Relative error plots illustrating temporal (to the left) and spatial decay (to the
right) for diffusion coefficient with thin channel valued 1. Corresponds to Figure 5.16.
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6

Conclusion

The purpose of this report was to investigate the nature of coare-scale constrained prob-
lems, a special type of PDAEs. This was done both theoretically, by literature studies,
and numerically, using MATLAB. The questions we chose to focus on was existence and
uniqueness of solutions, as well as the nature of the decay of said solutions.

From the evidence put forth in this report we can expect these solutions to coarse-scale
constrained equations to be well-behaved.

In the elliptic case we showed in chapter 3 that our designated problem has a unique
solution, and later that it could be well-approximated by some finite element method.
We also showed that the solution decays exponentially when we have a localized load
vector. Lastly in section 5.2, we confirmed the claim of exponential decay numerically
with MATLAB code, as well as noted some additional features. For example, we saw how
the solution reflects different diffusion coeflicient visually, and how the mesh structure
appears vaguely in the solution, likely because of the coarse-scale constraint.

In the parabolic case we restricted ourselves to a fully discrete case for our theoretical
proofs in chapter 4, which was a practical choice since the theory is closer to implemen-
tations that way. Again, we proved that the constrained problem in question has a unique
solution and provided a stability estimate. As for the questions surrounding decay, we re-
stricted ourselves to a proof of an a posteriori bound for the solution, but pointed out that
one could suspect that there is also exponential spatial decay present from our numerical
results in chapter 5. The mathematical proof of this is an open problem currently.

As far as future ventures in this subject goes, one might want to look into more general
elliptic and parabolic equations, since we restricted this report to one PDE for each case
with a second order term. One could introduce various lower order terms, which could
prove convenient since the problems then becomes formulated in more general terms.
One could also investigate how the choice of right-hand sides affects the solution, since
we only made use of one for each case in this report.

Lastly, another natural progression from this report could also be to investigate hyper-

bolic problems with coarse scale constraints, where many of properties that we discussed
here are still open problems.
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