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Abstract

We consider two problems encountered in simulation of fluid
flow through porous media. In macroscopic models based on
Darcy’s law, the permeability field appears as data.

The first problem is that the permeability field generally is
not entirely known. We consider forward propagation of un-
certainty from the permeability field to a quantity of interest.
We focus on computing p-quantiles and failure probabilities
of the quantity of interest. We propose and analyze improved
standard and multilevel Monte Carlo methods that use com-
putable error bounds for the quantity of interest. We show
that substantial reductions in computational costs are pos-
sible by the proposed approaches.

The second problem is fine scale variations of the perme-
ability field. The permeability often varies on a scale much
smaller than that of the computational domain. For stan-
dard discretization methods, these fine scale variations need
to be resolved by the mesh for the methods to yield accurate
solutions. We analyze and prove convergence of a multi-
scale method based on the Raviart–Thomas finite element.
In this approach, a low-dimensional multiscale space based
on a coarse mesh is constructed from a set of independent
fine scale patch problems. The low-dimensional space can
be used to yield accurate solutions without resolving the fine
scale.
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quantification for approximate p-quantiles for physical models with
stochastic inputs. SIAM/ASA J. Uncertain. Quantif., 2(1):828–
850, 2014.

II D. Elfverson, F. Hellman, and A. Målqvist. A multilevel Monte
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Chapter 1

Introduction

The field of numerical simulation of fluid flow through porous media
covers a large range of topics. In this thesis, we focus on two computa-
tional challenges for simulation of flows governed by Darcy’s law, both
stemming from properties of the permeability field. In applications such
as underground carbon dioxide sequestration, oil recovery and ground-
water flow, the permeability field is determined by the properties of the
porous medium.

First, the medium properties are generally not known. Even if di-
rect measurements (e.g. core samples or borehole flowmeter tests) and
indirect meaurements (e.g. geological facies identification) are available,
they cannot be used to reconstruct the properties of the medium in every
point of the domain of interest. Instead, we consider the medium prop-
erties uncertain. We are concerned only with the forward propagation
problem of uncertainty, where the uncertain data is random and follows
a known distribution from which random samples can be generated. The
forward propagation problem is important, being a crucial component
in the solution of inverse problems. We develop improved Monte Carlo
type methods for estimating p-quantiles and failure probabilities where
numerical simulations are used to solve the deterministic problems. The
methods are applied to and evaluated for porous media flow problems.
This topic is covered in Chapter 2 and Papers I–III.

Secondly, if the medium properties are known or drawn from some
distribution, they generally vary spatially at distances in the order of
meters, while the size of the computational domain is in the order of
10–100 km. Fractures, channel structures, and random spatial vari-
ability of the field have characteristic scale (fine scale) several orders
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4 Chapter 1. Introduction

of magnitude smaller than that of the domain (coarse scale). The fine
scale generally needs to be resolved by the numerical method for it to
yield an accurate numerical solution even for coarse scale features. This
can be very computationally demanding and upscaling approaches or
multiscale methods are employed to reduce the computational effort.
We analyze and evaluate a multiscale method for Poisson’s equation on
mixed form. This equation occurs frequently as the pressure equation
in many discretizations for fluid flows through porous media. This topic
is covered in Chapter 3 and Paper IV.

A porous medium consists of a solid material with a network of
cavities called pores through which fluid can flow. Figure 1.1 shows a

Figure 1.1: A cross section of a porous medium with two phases fill-
ing the pore space. Gray, white, and striped fields represent the solid,
wetting phase, and non-wetting phase, respectively.

schematic illustration of a cross section of a porous medium depicting
pore space, solid and two phases with a sharp interface. While fluid flow
thorugh a porous medium can be modeled using the Navier–Stokes equa-
tion or network models at microscopic level, this thesis discusses macro-
scopic models of single or two-phase flows. In a macroscopic model,
medium properties and state variables are averaged over a representa-
tive elementary volume (REV). For flows in this regime, Darcy’s law is
the most common form of the momentum equation in the literature: for
phases α = n,w (non-wetting and wetting, respectively) in domain Ω,

uα = −krα(sα)

µα
K(∇pα − ραg), (1.1)

where uα is Darcy flux (or velocity, bold-face denotes a vector quantity),
krα is relative permeability, µα is dynamic viscosity, sα is saturation, K
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is (intrinsic) permeability, pα is pressure, ρα is fluid density, and g is
gravitational acceleration. All quantities above are considered over an
REV. The parameters permeability K, saturation sα and relative per-
meability krα are specific to the macroscopic model. The permeability
K is a symmetric positive definite matrix reflecting to what degree the
pore structure in the REV allows for fluid flow in different directions.
The saturation 0 ≤ sα ≤ 1 of a phase is the fraction of the pore space
that is occupied by that phase. This means that at the macroscopic level
we do not recognize the sharp interface between phases. Relative perme-
ability 0 ≤ krα(sα) ≤ 1 is a nonlinear function of the saturation which
in product with intrinsic permeability forms the effective permeability.
It models the reduction in effective permeability when the pore space is
blocked by the presence of the other phase. In addition to Darcy’s law,
we have mass conservation for each phase,

φ
∂sα
∂t

+∇ · uα = fα, (1.2)

where φ is porosity (pore space fraction of REV) and fα is a source
or sink mass flux. Here we assumed incompressibility of the fluids and
solid. In addition to (1.1) and (1.2) we define a relation between the
phase pressures by a capillary pressure curve and further let sw+sn = 1
to close the system. In a single-phase system we omit subscript α, use
s ≡ 1 to make (1.1) and (1.2) form the pressure equation,

A−1u +∇p = 0,

∇ · u = f,
(1.3)

where A = kr
µ K. The gravitational force was discarded for simplicity.

We refer to [8, 20] for texts on multiphase flow modelling.
The nonlinear PDE in (1.1) and (1.2) is used as model in Paper III

and the linear PDE (1.3) is used as model in examples in Papers I, II
and as principal object of investigation in Paper IV.





Chapter 2

Quantiles and failure
probabilities

We consider the problem of forward propagation of uncertainties. The
permeability field K is modeled as a random field with a known high-
dimensional distribution, from which we can generate independent real-
izations. We define a quantity of interest X (a functional of the solution
uα, sα and pα) which also follows a distribution, however unknown, be-
ing a response to K of the multiphase flow model. We focus entirely
on the two problems of estimating failure probabilities and quantiles for
the distribution of X. More precisely, the first problem is to find the
failure probability p for a critical value y of X,

p = Pr(X ≤ y), (2.1)

or equivalently, p = F (y) where F is the cumulative distribution function
(cdf) of X. The second problem is the inverse: given p find the p-
quantile, y = F−1(p). This inverse is defined as the smallest y satisfying
(2.1). Quantities of interest considered in this thesis are: the flow over
a part Γ of the domain boundary for single-phase flow in Paper I and
II, and sweep efficiency for two-phase flow in Paper III. The flow over Γ
for single-phase flow is defined as

X =

∫

Γ
u · ndγ, (2.2)

where n is the outgoing unit normal vector of Γ. For two-phase flow,
the sweep efficiency is the fraction of the domain Ω that is swept by the
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8 Chapter 2. Quantiles and failure probabilities

non-wetting phase at time T , i.e.

X = |Ω|−1

∫

Ω
χ(0,1](sn(T )) dx, (2.3)

where χA is the indicator function for the set A.
The literature on methods for propagating uncertainty through nu-

merical models is vast. One approach is the stochastic Galerkin method
[16] which discretizes physical dimensions (space and time) together
with stochastic dimensions and is thus an intrusive method. Stochastic
collocation [7, 31], stochastic point collocation [9] and pseudospectral
projection [28] are non-intrusive methods, based on interpolation, re-
sponse surfaces and projections in the stochastic space. Further, there
are deterministic methods for numerical quadrature in high dimensions:
sparse grids [30, 15], lattice rules [29], and quasi Monte Carlo methods
[26]. There is also the Monte Carlo method and multilevel Monte Carlo
method [17, 19] that perform independently of stochastic dimension,
but converge slowly. The specific problems of computing p-quantiles
and pointwise evaluation of a cdf have also been studied recently. A
multilevel Monte Carlo method for cdf estimation is proposed and an-
alyzed in [5] for a direct approach and also more recently in [18] where
smoothness in the cdf is exploited to lower the costs by regularization.
In this work, we consider non-intrusive standard and multilevel Monte
Carlo methods [17]. In particular, we focus on how to use a posteriori
error bounds of the quantity of interest to reduce the computational cost
of Monte Carlo methods. The main idea is selective refinement (intro-
duced in Paper I), which makes use of a hierarchy of approximations for
X (of increasing accuracy and cost) and exploits error bounds on X to
refine only a subset of all generated realizations to the most accurate
and costly level.

We turn our attention to estimation of p-quantiles and failure prob-
abilities. Here, the cdf F is central. Figure 2.1a illustrates how the
cdf relates with the (failure) probability p and p-quantile y. An em-
pirical cdf FN (illustrated in Figure 2.1b) can be constructed using a
sample Xi of size N . Each jump in FN corresponds to a realization
Xi. Confidence bands F−N and F+

N for the true F can be formed using
e.g. the Dvoretzky–Kiefer–Wolfowitz-inequality or pointwise confidence
intervals for N ·FN (x) (which is binomially distributed). Then for some
prescribed probability, it holds that

F−N (x) ≤ F (x) ≤ F+
N (x), (2.4)
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for all (or a few) x simultaneously. This confidence band can be used to
give a measure of the statistical error in p or y, depending on which of
them is unknown.

-3 0 y 3

x

0

p
1

(a) Cdf F (solid), probability p and
p-quantile y (dashed).

-3 0 y 3

x

0

p
1

(b) Empirical cdf FN (solid) and con-
fidence band F−

N and F+
N (dotted).

Figure 2.1: Illustration of a cdf, the empirical cdf and its confidence
band.

In addition to the statistical error giving rise to the confidence bands,
there is generally a numerical error from computing the sample approx-
imately. That is, neither F nor FN are computable. We consider situ-
ations where the numerical error is controllable, e.g. by solving a PDE
numerically to a certain error tolerance in the quantity of interest by
adaptive mesh refinement, or by introducing a hierarchy of uniform
meshes for which the quantity of interest converges. More precisely,
we let X` be approximations of X with exponentially decreasing error
with level `, i.e.

|X −X`| ≤ Cγ`, (2.5)

for a positive C and 0 < γ < 1. To fix ideas, consider X` as a functional
of a discrete solution to a PDE with mesh size h = 2−`. Naturally,
the cost to compute X` is greater for large `. This hierarchy is used in
the multilevel Monte Carlo method, and also in the proposed selective
refinement algorithm. In particular, the selective refinement algorithm
(presented in slightly different versions in Papers I–III), exploits that less
accurate but cheaper approximations of X can be used when |y −X| is
large without sacrificing accuracy of the failure probability or quantile
estimate. This allows for a reduction in the computational cost for
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estimating p or y.

In Paper I, the proposed algorithm to compute a p-quantile y is to
take a sample of random input and initially only compute approxima-
tions on level 0. An approximation of y with numerical and statistical
bounds is obtained. A subset of all realizations are selected for refine-
ment to the next level. Only the realizations that can potentially affect
the p-quantile bound are included in the subset, and a confidence band
similar to (2.4) is used to determine this subset. The selective refinement
is repeated until the numerical and statistical errors of the p-quantile are
balanced. We compare this with full refinement of all realizations. Un-
der mild assumptions on F , the asymptotic ratio of computational cost
between selective refinement and full refinement is O(N−1/2) as N →∞.
This holds if the numerical and statistical errors are balanced.

Regarding the problem of computing a failure probability p given y,
a standard Monte Carlo (MC) method can be applied directly to the
random variable Q = χ(−∞,y](X) (where χA is the indicator function
for the set A), since

p = E [Q], (2.6)

where E [·] denotes expected value. Note that Q attains only the values
1 and 0 with probability p and 1−p, respectively. This method basically
amounts to counting the number of failures obtained in the sample. In
practice, we can only compute approximations Q` (defined in the natural
way based on the hierarchy X`). The MC estimator Q̂MC

N,L of E [QL] is
the mean

Q̂MC
N,L =

1

N

N∑

i=1

QiL (2.7)

of a sample QiL of N independent random variables with the same dis-
tribution as QL. We call E [Q−QL] the numerical bias, an error in-
troduced by using an approximation QL rather than the true Q. The
computational cost for this estimator is N times the cost for computing
QL. To quantify this, we use a cost model for QL: the cost to compute
QL with numerical bias TOL is O(TOL−q) for some q > 0. For an
MC estimator, we have that the standard deviation converges with rate
N−1/2. Now, choosing N and L to balance the standard deviation with
numerical bias, we get that the computational cost is O(TOL−2−q).

The multilevel Monte Carlo (MLMC) method [17, 19] is a variance
reduction technique that uses the full hierarchy Q` (0 ≤ ` ≤ L) to esti-
mate E [QL]. It can be interpreted as a recursive application of control
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variates. A new random variable Z is formed using Q and an a priori
known random variable R correlated with Q and with known expected
value:

Z = E [R] +Q−R. (2.8)

The variance Var [Z] = Var [Q−R] is smaller than Var [Q] if Q and
R are sufficiently correlated. Now, Z (with lower variance) is sampled
instead of Q. A smaller sample is needed to obtain the same variance of
the estimator. For this to be beneficial, it is required that i) realizations
of R are sufficiently cheap to generate and ii) the expected value of R
is known (or can be estimated). In the multilevel Monte Carlo method,
less accurate and cheap approximations are used as control variates for
more accurate and expensive approximations. We expand E [QL] in a
telescoping sum of L levels (and level 0):

E [QL] = E [Q0] +

L∑

`=1

E [Q` −Q`−1]. (2.9)

The expected values on the right hand side in (2.9) are estimated using
standard MC estimators, with individual sample sizes N` for each level
`:

Q̂ML
{N`},L =

1

N0

N0∑

i=1

Qi0 +
L∑

`=1

1

N`

N∑̀

i=1

Y i
` , (2.10)

where Y` = Q` − Q`−1. Then N` are chosen such that the expected
computational cost is minimized with constraint that the standard de-
viation of the estimator is equal to TOL. Now if the deepest level L is
chosen to balance the numerical bias with the standard deviation (like
in the Monte Carlo case), we obtain that the expected cost to realize the
estimator is O(TOL−1−q). This rate holds for approximations Q` whose
cost increases fast enough with ` (more precisely, q > 1). Comparing
with the standard Monte Carlo method, this is an improvement of a
factor TOL−1.

In Paper II, we again use the idea of selective refinement but in the
context of MLMC. Random samples of sizes N` are drawn for the MC
estimators for all levels 0 ≤ ` ≤ L. Starting with all realizations on
level 0 (i.e. by computing X0), the realizations that could potentially
switch from success to failure after refinement are solved on a deeper
level, to at most level `. The computable error bounds are used to de-
termine which realizations have this potential. For Lipschitz continuous
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F , the expected cost to realize the MLMC estimator with selective re-
finement is O(TOL−q). A factor TOL−1 is gained by this compared to
MLMC without selective refinement. In fact, the cost is asymptotically
proportional to that of solving a single realization at level L.

In Paper III, we quantify the performance gains possible by using se-
lective refinement in combination with both the standard and multilevel
Monte Carlo method for computing failure probabilities. The methods
are applied to a two-phase flow scenario with sweep efficiency (2.3) as
quantity of interest. In particular, we construct a probabilistic bound
(that holds to a certain probability) rather than using the guaranteed
error bound in (2.5), which can be difficult to prove in general. This pa-
per shows that savings of one order of magnitude are possible by using
selective refinement in practical applications.



Chapter 3

The multiscale problem

We now consider the single-phase flow pressure equation (1.3) on mixed
form, i.e. we seek flux u and pressure p, such that in Ω,

A−1u +∇p = 0,

∇ · u = f.
(3.1)

These equations can also be written on standard form −∇ ·A∇p = f ,
however, the mixed formulation is very common in applications to flows
in porous media, since the flux solution u is of particular interest. Also,
mass conservative flux follows directly from the second equation if the
discrete function spaces are chosen properly.

In many porous media flow applications the coefficient A varies
rapidly on a fine scale compared to the scale of the domain. For gen-
eral boundary conditions and source functions, such coefficients render
variations in the flux solution u at the fine scale. This is illustrated in
Figure 3.1 where a rapidly varying permeability field (85th permeability
layer of model 2 in the SPE 10 benchmark [13], piecewise constant on a
220× 60 grid) and the corresponding flux solution are plotted. One can
see that the fine scale variations from the permeability data are present
in the solution. Even if we only seek a solution on the coarse scale, it is
well-known that fine scale variations in the data need to be resolved by
the mesh in standard methods for the coarse features of the solution to be
accurate [6]. Another problem is that the computational requirements
(memory and time) for a full-scale simulation on the fine scale can exceed
the available resources. During the last few decades multiscale methods
for elliptic equations have been developed as a remedy for these prob-
lems, for example, the variational multiscale method (VMM) [10, 23, 24],

13



14 Chapter 3. The multiscale problem

(a) log ‖A‖2 (b) log ‖u‖

Figure 3.1: (a) Permeability field and (b) flux solution, with source in
upper left and sink in lower right corner. The color scales range around
six orders of magnitude from white (low) to black (high).

the multiscale finite element method (MsFEM) [14, 21] and subgrid up-
scaling [4]. These multiscale methods have been further developed to
include the mixed formulation and mass conservation [1, 2, 3, 11, 25].
They all have in common that a low-dimensional discretization with high
approximation properties is constructed, based on a coarse mesh on a
suitable scale. Local problems are solved on the fine scale to incorporate
the fine scale features into the low-dimensional representation. In Paper
IV we study a multiscale method for the Raviart–Thomas finite element
based on VMM and the work [25]. This method is mass conservative
on the fine scale up to coarse elements containing non-zero source. Full
mass conversation on the fine scale is possible by source correction in
those coarse elements.

In the VMM framework (see e.g. [22] for a description of the abstract
VMM framework), a fine scale Green’s operator is defined by a set of
fine scale equations. It is used to incorporate fine scale effects in a set
of coarse scale equations. The procedure in Paper IV follows the works
[23, 24, 25], where instead of a fine scale Green’s operator, we define
a corrector operator, which solves a fine scale problem without source
function. Here follows an abstract description of the method. We let Y
be the function space in which the equation can be solved accurately.
Further, let Yc and Y f be the coarse and fine spaces, respectively, so that
Y = Yc ⊕ Y f . (To fix ideas, Yc is typically the range of a projection to
a low-dimensional function space defined on coarse mesh, e.g. piecewise
linears, and Y f is the kernel of this projection). The equation is defined
by a symmetric bilinear form B and a linear functional F : find x ∈ Y
such that for all y ∈ Y , B(x, y) = F (y). The VMM idea starts by
splitting this equation in two, testing with coarse and fine functions



15

separately,
B(x, yc) = F (yc) for all yc ∈ Yc,

B(x, yf) = F (yf) for all yf ∈ Y f .
(3.2)

We split the solution in the fine scale equation, i.e. B(xc+xf , yf) = F (yf).
If this equation is well-posed, the fine scale component xf is a function
of xc (and F ). In the VMM framework, this fine scale component is
called the fine scale Green’s operator and depends on the coarse scale
residual, i.e. including F . Here, we depart from VMM and omit F to
define the fine scale corrector Gxc ∈ Y f by

B(Gxc, y
f) = B(xc, y

f). (3.3)

This establishes an orthogonality with respect to B (in a generalized
sense) between Y f and Y ms = (1 − G)Yc, the multiscale space. Now,
splitting x into components of Y ms and Y f in the original equation, and
testing in the multiscale space only, gives

B((1−G)xc, (1−G)yc) = F ((1−G)yc) for all yc ∈ Yc, (3.4)

which is to solve the equation in the multiscale space. When expanding
xc and yc into linear combinations of coarse base functions φ, we note
that we need to solve the global fine scale corrector problems (3.3) to
obtain Gφ for every φ. However, for many B and choices of space splits,
Gφ decays exponentially with the distance to the support of φ. Thus,
localization to subdomains around the support of the basis functions
(vertex patches) allows for efficient solution of (3.3) with little loss of
accuracy.

In the setting of the mixed formulation of the pressure equation, we
have a fine triangular or tetrahedral mesh with mesh size h, resolving
all the fine scales. We use the lowest order Raviart–Thomas [27] finite
element space Vh and the space Qh of piecewise constants for the flux
and pressure, respectively. They form a stable pair for the (weak) mixed
formulation of (3.1): find uh ∈ Vh and ph ∈ Qh, such that

(A−1uh,vh)− (∇ · vh, ph) + (∇ · uh, qh)︸ ︷︷ ︸
B(x,y)

= (f, qh)︸ ︷︷ ︸
F (y)

, (3.5)

for all vh ∈ Vh and qh ∈ Qh. Here (·, ·) denotes the L2-scalar product.
The equation fits into the framework above with B and F defined in
(3.5), and Y = Vh × Qh. A similar coarse mesh with mesh size H > h
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defines Yc = VH ×QH . The fine space Y f is defined by the kernel of the
interpolation from Y → Yc (Raviart–Thomas interpolator for VH and
L2-projection for QH). For these particular interpolation operators, we
have a commuting property: the divergence of the Raviart–Thomas in-
terpolation is equal to the L2-projection of the divergence. This property
allows for significant simplifications in the corrector equations (3.3). For
example, we only need to compute the flux component Gh of the fine
scale correction. The multiscale problem (3.4) becomes the following
low-dimensional problem: find uH ∈ VH and pH ∈ QH , such that

(A−1(1−Gh)uH , (1−Gh)vH)− (∇ · vH , pH) + (∇ · uH , qH) = (f, qH)
(3.6)

for all vH ∈ VH and qH ∈ QH . Without localization, the following error
estimate in energy norm |||·||| holds

|||uh − (1−Gh)uH ||| . H‖f − PHf‖L2(Ω), (3.7)

where PH is the L2-projection onto QH . (Here a . b means a ≤ Cb for a
positive constant C independent of the fine scale variations and mesh size
parameters). Now, if we localize the corrector problems (3.3) to k-coarse-

(a) One-coarse-layer patch, k = 1. (b) Two-coarse-layer patch, k = 2.

Figure 3.2: Illustration of k-coarse-layer patches around a triangle.

layer patches around the support of the basis functions (see Figure 3.2)
and compute the localized flux correction operator Gkh instead we can
save memory and time. Keeping h fixed, choosing k appropriately, we
obtain the error estimate

∣∣∣
∣∣∣
∣∣∣uh − (1−Gkh)uH

∣∣∣
∣∣∣
∣∣∣ . H‖f‖L2(Ω), (3.8)
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when solving (3.6) with the k-coarse-layer patch correctors Gkh instead
of Gh. This relies on the exponential decay of Gh with the distance
to the support of the basis functions. The method suffers from an in-
stability for small h: the L2 stability constant for the Raviart–Thomas
interpolation operator increases logarithmically (in 2D and 3D) as h
decreases. However, this can be compensated by increasing patch size
k. The instability can be removed completely from the method, if the
Raviart–Thomas interpolation operator is replaced by a stable interpo-
lation operator that satisfies the commuting property. Such operators
have been shown to exist [12], but seem not be easy to compute. In
Paper IV, the exponential decay of the fine scale correctors and the a
priori error estimates are proved. We investigate the instabilities and
convergence numerically.





Chapter 4

Future work

Below is a list of four possible future projects related to the work in this
thesis.

• Develop sensitivity analysis for failure probability with respect to
a set of control parameters for use in for example an optimization
process.

• Investigate alternative approaches to exploit regularity of the cdf
in the estimation of p-quantiles and failure probabilities.

• Develop mixed finite element methods for the nonlinear Richard’s
equation for water movement in unsaturated soils.

• Combine the forward propagation problem with multiscale meth-
ods by letting fine scale features (e.g. cap rock cracks or faults) be
randomly located.
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to compute information about the stochastic properties of the output quantity.
As a concrete example, we consider an elliptic partial differential equation modeling incom-

pressible single-phase Darcy flow in porous media. The problem is posed on a fixed domain
with specified boundary conditions and with a stochastic permeability field. The output func-
tional is an integral of the normal flux of the pressure on one segment of the boundary of the
domain of the problem.

A common numerical problem in this setting is the approximation of the cumulative distri-
bution function for the output functional. But there are other important statistical quantities
that may be targeted. In this paper, we consider the problem of estimating the p-quantile for
the output quantity. Quantiles, such as the median, provide important statistical information
about complex probability distributions. For example, they are used in formulating engineer-
ing problems involving failure probabilities and they are important in a number of hypothesis
tests. Quantiles are also relatively insensitive to the effects arising from a long-tailed distri-
bution (a form of heavy-tailed distribution) and outliers in data, which makes them useful
measures in those situations [11].

There are two primary sources of error affecting a p-quantile estimator in a practical
setting, namely, finite sampling and numerical solution error. In a Monte Carlo approach, we
compute a p-quantile estimate using model solutions for a finite sample of input parameter
values chosen at random. Moreover, the typical physical model must be solved numerically,
which means that the sample model values are only approximations of the true model outputs.
These two sources of error have a complex interdependency, with numerical errors of sample
solutions varying significantly as the input parameters vary in general.

Therefore, uncertainty quantification for the estimation of the p-quantile for a determin-
istic model with stochastic input involves not only computing a p-quantile estimate, but also
estimating the effects of finite sampling and numerical solution on the accuracy of a p-quantile
estimator. That is the subject of this paper. In particular, the main goal of this paper is a pos-
teriori error analysis for a p-quantile estimator that takes into account the effects of both the
stochastic error arising from finite sampling and the deterministic error arising from numerical
solution of the model and yields a computational error bound for the estimator.

In [8, 9], we carry out the analogous a posteriori error analysis for an approximate cumula-
tive distribution function. However, the fact that the p-quantile is determined by an inequality
condition on the cumulative distribution function complicates analysis of the effects of numeri-
cal sample error on the accuracy of an estimator. Our approach involves computing upper and
lower bounding quantities for the p-quantile that individually are estimators. The difference
between the bounds provides an estimate of the accuracy of either estimator.

The model treatment is carried out on an abstract level, requiring only a computational
a posteriori bound on the error of any given numerical solution that can be made arbitrarily
small by suitable adjustment of discretization parameters. Under general assumptions, we
analyze the asymptotic convergence properties of the p-quantile estimator bounds in the limit
of large sample size and decreasing numerical error. We also describe two algorithms for
computing an estimate of the p-quantile with a desired accuracy in a computationally efficient
fashion, i.e., by approximately minimizing the number of samples and maximizing the sample
error while still achieving the desired accuracy. One algorithm exploits the fact that the
accuracy of only a subset of sample values significantly affects the accuracy of a p-quantile
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estimator. Under the assumption of a model for computational “work,” we show that this
algorithm leads to a significant gain in computational efficiency. Finally, we investigate the
performance of the p-quantile bounding estimators as well as various issues affecting the
accuracy of the bounds in a set of numerical examples.

The paper is organized as follows. In section 2 we set up the problem, and in section 3
we derive error bounds for the approximate cumulative distribution function useful for our
purposes. Section 4 presents the main theoretical results, giving the bounding estimators of
the p-quantile and the error analysis for the estimators. Section 5 is devoted to presenting and
analyzing algorithms for computing p-quantile estimates of a desired accuracy in an efficient
way. We present some observations about p-quantile estimates in section 6. We present
numerical examples in section 7. Finally, we present proofs of several results in section 8.

2. Problem formulation. The deterministic model is expressed as

M(u;ω) = 0,

where ω ∈ Ω is a vector of parameters and/or data valued in domain Ω, and u = u(ω)
denotes the solution of the model. We assume the model has a unique solution for a given
parameter value and also assume continuous dependence on the parameter values in Ω. Note
that the model solution may also depend on other data or parameters that are held fixed.
We let V denote the solution space of the model. In a common situation, M is an integral
or differential equation and V is an appropriate Sobolev space. We assume that the object
of solving the model is to compute a specified Quantity of Interest (QoI) expressed as a
continuous (non)linear functional Q : V → R. We set x(ω) = Q(u(ω)), which is a continuous
function of ω. We note that in the case of a differential equation in space and/or time, the
application of the functional removes all explicit dependence on the independent variables
other than the parameters.

We assume that Ω is the sample space for a probability space (Ω,Σ, P ). This implies that
the output X(ω) = Q(u(ω)) is a real-valued random variable with the induced measure on
the Borel σ-algebra of R. We let F (x) denote the cumulative distribution function associated
with X, and the p-quantile y is defined as

y = F−1(p) = inf{x ∈ R : F (x) ≥ p}.

We seek an estimator of y, along with a computable bound on the accuracy of the estimator.
As an example, we consider a model for incompressible single-phase Darcy flow for the

pressure field u,

(2.1) −∇ · A(ω)∇u = 0, x ∈ D ,

posed on the unit square D = [−1, 1] × [−1, 1] with specified boundary conditions. The QoI
is the normal flux through the left-hand boundary Γ1,

Q(u(ω)) =

∫

Γ1

n ·A(ω)∇uds.

We assume a stochastic permeability field k : D → R constructed using Layer 30 of the
Society of Petroleum Engineering comparative permeability data (which are available online
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from http://www.spe.org/web/csp). We introduce a conforming triangulation T h0 of D , with
elements having diameter h0 = 0.2 and vertices pj ∈ N0. We let ω = (ω1, . . . , ωN0) be a vector
of independent random variables of standard normal distribution (N (0, 1)), where N0 is the
number of points in N0. For j = 1, . . . , N0, we let λj denote the linear Lagrange basis function
for which λj(p�) = δj�, � = 1, . . . , N0. We define

A(ω,N0) = A0 +

N0∑

j=1

eωjk(pj)λj ,

where 0 < A0 is chosen to guarantee coercivity. Thus, A is a continuous, piecewise linear
polynomial on D that is affine on each T ∈ T h0 .

To estimate the p-quantile, we employ a finite number of random approximate sample
values. Thus, the accuracy of the p-quantile estimate is affected both by stochastic sampling
error and deterministic numerical error. We let {ωi}ni=1 be an independent and identically
distributed (i.i.d.) sample of size n from Ω, for which the true QoIs are xi = Q(u(ωi)) for
i = 1, . . . , n. We assume that numerical approximations xεi = Q(uε(ωi)) are computed by
solving an approximate model,

MΔ(uε(ωi), ωi) = 0,

for an approximate solution uε(ωi) ≈ u(ωi), where Δ denotes some discretization parameter.
We assume that the error of the approximate value xεi can be made as small as desired by
adjusting Δ.

The computational problem we address is as follows: Given p and 0 < β < 1, find
computable bounds y−n,ε and y

+
n,ε for y such that

Pr
(
y ∈ [y−n,ε, y

+
n,ε]
)
> 1− β,

for all n sufficiently large and ε sufficiently small, and

y−n,ε → y, y+n,ε → y as n→∞, ε→ 0.

We note that the error of any estimator ŷn,ε satisfying y
−
n,ε ≤ ŷn,ε ≤ y+n,ε of y is bounded,

Pr(|y − ŷn,ε| ≤ |y+n,ε − y−n,ε|) > 1− β,

which provides the desired estimate on the accuracy of any such estimator.

3. Error analysis of the approximate cumulative distribution function. Computing the
p-quantiles estimates involves computing approximate cumulative distribution functions (cdfs)
using a finite number of samples of approximate model solutions. The error in the approximate
cdf in turn affects the accuracy of the p-quantile estimates.

We begin by decomposing the error of a computed cdf into statistical and numerical
contributions by introducing the empirical distribution function,

Fn(x) =
#{i = 1, . . . , n : xi ≤ x}

n
, x ∈ R,



830 D. ELFVERSON, D. J. ESTEP, F. HELLMAN, AND A. MÅLQVIST

and its numerical approximation,

Fn,ε(x) =
#{i = 1, . . . , n : xεi ≤ x}

n
, x ∈ R,

where # denotes cardinality. The error decomposition is then

F (x)− Fn,ε(x) = F (x)− Fn(x)︸ ︷︷ ︸
statistical error

+Fn(x)− Fn,ε(x)︸ ︷︷ ︸
numerical error

.

We note that Fn cannot be computed.

3.1. Bounds on the statistical error contribution. The nature of the error introduced by
stochastic sampling means that we employ an asymptotic bound rather than an a posteriori
estimate in the sense used for differential equations. There are a number of ways to derive
such bounds [8, 9]. The statistical bounds needed in this paper are formulated in the following
assumption.

Assumption 3.1 (computable bound on statistical error). There exist a positive continuous
function G : [0, 1]→ R and constant C̃1 > 0, independent of x and n, such that for any given
0 < β < 1,

(3.1) Pr

(
|F (x) − Fn(x)| ≤ G(Fn(x))n

−1/2 + C̃1n
−1

)
> 1− β/2

for x ∈ R for all n sufficiently large.
The C̃1n

−1 is generally required in order to derive a bound independent of the unknown
cdf. We note that (3.1) implies that there is a constant C1 such that

(3.2) G(Fn(x))n
−1/2 + C̃1n

−1 ≤ C1n
−1/2.

We actually need the following assumption.
Lemma 3.2. Under Assumption 3.1, (3.1) holds for any two points x1, x2 ∈ R simulta-

neously with probability 1− β.
Proof. This is a consequence of Bonferroni’s inequality Pr(E1∩E2) ≥ Pr(E1)+Pr(E2)−1

for two events E1 and E2. Let E1 and E2 be the events that (3.1) is satisfied pointwise at
two points x1 and x2 with confidence level for (3.1) such that Pr(E1) = Pr(E2) = 1 − β/2.
Bonferroni’s inequality implies (3.1) holds with simultaneous probability at least 1− β.

A standard way to derive (3.1) uses the fact that the distribution of nFn(x) is binomial.
Consequently, Chebyshev’s inequality implies

Pr
(
|Fn(x)− F (x)| ≥ kn−1/2F (x)1/2(1− F (x))1/2

)
≤ 1/k2.

We use the expansion F (x)(1 − F (x)) = Fn(x)(1 − Fn(x)) + (F (x) − Fn(x)); then we set
G(q) = (2/β)1/2q1/2(1− q)1/2 and C̃1 = 2β−1.

Alternatively, we can use the DKW inequality [4], which states that for all K > 0,

(3.3) Pr

(
sup
x∈R
|Fn(x)− F (x)| > Kn−1/2

)
≤ 2e−2K2

.
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This is a uniform confidence bound, and we let G(q) =
√

2−1 ln(2/β) and C̃1 = 0.
Assumption 3.1 defines an interval for F that is symmetric around Fn. We can also handle

an “asymmetric” interval. We now assume there is an affine transformation T : R→ R such
that

(3.4) |F (x) − T (Fn(x))| ≤ G(T (Fn(x)))n
−1/2 + C̃1n

−1.

Any subsequent results for Fn or any numerical approximation that depend on Assumption 3.1
hold for T applied to Fn or any approximation.

For example, the Agresti–Coull interval [1, 3] is an asymmetric approximate confidence
interval for binomial parameter F (x) that is recommended over other common bounds. It
reads as

(3.5) Pr
(
|F (x)− p̃| ≤ κp̃1/2(1− p̃)1/2ñ−1/2

)
> 1− β/2,

with κ = Φ−1 (1− β/4), Φ(z) ∼ N(0, 1), ñ = n + κ2, and p̃ = (nFn(x) +
1
2κ

2)/ñ. We let

T (Fn(x)) = p̃ and define G(q) = κq1/2(1− q)1/2 and C̃1 = 0 to satisfy (3.4).

3.2. Bounds on the numerical error contribution. Depending on how approximate solu-
tions of the physical model are computed, there are generally several approaches for computing
estimates and bounds on the error of computed information obtained from a numerical solu-
tion. We assume the following.

Assumption 3.3 (computable bound on QoI). There is a computational procedure for com-
puting a numerical bound εi for each sample numerical solution xi, i = 1, . . . , n, such that

(3.6) |xi − xεi | ≤ εi,

where εi can be made as small as desired by adjusting Δ.
We discuss a particular approach for computing numerical error estimates and bounds in

section 6.

3.3. Error bounds for the approximate cdf. We now derive error estimates for various
approximate numerical cdfs. The central issue is that error in the sample values leads to
miscounts in the computation of the cdf. The following two approximate cdfs can be considered
“worst case” approximations:

F−
n,ε(x) =

#{i = 1, . . . , n : xεi + εi ≤ x}
n

, F+
n,ε(x) =

#{i = 1, . . . , n : xεi − εi ≤ x}
n

.

These definitions assume that the errors always have the disadvantageous sign and are the
size of the bounding quantities. However, we note that only the values of the samples in a
relatively small region affect the computation of p-quantile estimates.

We define the computable bound on the statistical error contribution,

(3.7) Estatn,ε (x) = max
F−
n,ε(x)≤q≤F+

n,ε(x)
G(q)n−1/2 + C̃1n

−1,

and the computable bound on the numerical error contribution,

(3.8) Enumn,ε (x) = max
(
F+
n,ε(x)− Fn,ε(x), Fn,ε(x)− F−

n,ε(x)
)
.
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These definitions yield the following theorem.
Theorem 3.4 (bound on the error in the cdf). Under Assumptions 3.1 and 3.3, given 0 <

β < 1, for any two xj ∈ R, j = 1, 2,

(3.9) Pr

(
|F (x)− Fn,ε(xj)| ≤ Estatn,ε (xj) + Enumn,ε (xj)

)
> 1− β

for all sufficiently large n.
Proof. Since for every x ∈ R the number of elements in {xεi + εi}ni=1 less than x is smaller

than or equal to the number of elements in {xi}ni=1 less than x, Fn(x) ≥ F−
n,ε(x). Using a

similar argument, we conclude that Fn(x) ≤ F+
n,ε(x). Therefore, |Fn(x)− Fn,ε(x)| ≤ Enumn,ε (x).

Next, we combine Lemma 3.2, (3.8), and these inequalities to reach (3.9).

4. p-quantile bounding estimators and convergence rates. In this section, we derive
computable bounds for the p-quantile which are used as estimators. We use the notation
ε = (εi)

n
i=1, εmax = maxi=1,...,n εi, εmin = mini=1,...,n εi. We analyze the convergence properties

of the bounds in the limits εmax → 0 and n→∞.

4.1. Computable error bounds for the p-quantile. The two bounding estimators handle
the “worst case” scenario,

(4.1) y+n,ε = inf{x ∈ R : F−
n,ε(x)− Estatn,ε (x) ≥ p}, y−n,ε = inf{x ∈ R : F+

n,ε(x) + Estatn,ε (x) ≥ p}.

With these definitions, we have the following theorem.
Theorem 4.1 (existence of the p-quantile bounding estimators). The computable quantities

y+n,ε, y
−
n,ε exist, and given 0 < β < 1,

Pr

(
y ∈ [y−n,ε, y

+
n,ε]

)
> 1− β

for all sufficiently large n.
Proof. We define Y = {x ∈ R : F−

n,ε(x) − Estatn,ε (x) ≥ p}. We start by showing that Y is

nonempty and inf Y exists. The assumption on n implies Estatn,ε (x) ≤ C1n
−1/2 < 1−p for all x.

For a fix n, and for all x > maxi=1,...,n(x
ε
i + εi), we have F−

n,ε(x) = 1 and F−
n,ε(x)− Estatn,ε (x) >

1− 1+ p = p, rendering Y nonempty. Since p > 0, Estatn,ε is nonnegative, F−
n,ε is nondecreasing,

and F−
n,ε(x) = 0 for some finite x, we can conclude that Y is bounded from below, implying

y+n,ε = inf Y exists. Further, Theorem 3.4 and the inequalities used in its proof apply to y+n,ε,
and we conclude that y ≤ y+n,ε from

y = inf{x ∈ R : F (x) ≥ p} ≤ inf{x ∈ R : F−
n,ε(x)− Estatn,ε (x) ≥ p} = y+n,ε.

Similarly, y ≥ y−n,ε. The results hold with probability greater than 1 − β for both bounds
simultaneously from Theorem 3.4.

The minimization problems (4.1) in Theorem 4.1 form the basis for a practically feasible
procedure to compute the bounding p-quantile estimators y−n,ε and y

+
n,ε; see section 4.3.
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4.2. Convergence of the bounding p-quantile estimators. We next analyze the conver-
gence properties of y+n,ε, y

−
n,ε. We define

y− = lim
η→0+

inf{x ∈ R : F (x) + η ≥ p} and y+ = lim
η→0−

inf{x ∈ R : F (x) + η ≥ p},

which bound the quantile, y− ≤ y ≤ y+, by definition. The lower bound y− is actually equal
to y. However, y+ is not necessarily equal to y in the case when F is “flat.” When y− �= y+,
the problem of finding y is ill-conditioned, since small perturbations in the data p or F cause
large variations in the solution y and the quantile bounds converge to either y− or y+, or
cycles between them, as n approaches infinity and numerical error approaches zero (see [10]).

On the other hand, when the p-quantile is unique (i.e., y− = y = y+) and F is continuous,
then we have the following theorem.

Theorem 4.2 (convergence of the bounding p-quantile estimators). If F is continuous, then
with probability 1,

min(|y+n,ε − y+|, |y+n,ε − y−|)→ 0 and min(|y−n,ε − y+|, |y−n,ε − y−|)→ 0

as n→∞ and ε→ 0.
The proof is given in section 8.
Furthermore, for unique p-quantiles, we have the following asymptotic convergence rate

result, proved in section 8.
Theorem 4.3 (convergence rate of the bounding p-quantile estimators). For a fixed n > 0

and 0 < p < 1, choose K > 0 such that (K + C1)n
−1/2 < p < 1 − (K + C1)n

−1/2; then
if F is absolutely continuous and � = inf{x∈R:|F (x)−p|≤(K+C1)n−1/2} F

′(x) > 0, we have

|y+n,ε − y−n,ε| ≤ 2�−1(K + C1)n
−1/2 + 4εmax

with probability at least 1− 2e−2K2
.

4.3. An algorithm for computing the bounding p-quantile estimates. We describe how
y−n,ε and y+n,ε can be computed in practice. We first note that the functions F−

n,ε, F
+
n,ε are

piecewise constant on n + 1 intervals. From (3.7), we observe that Estatn,ε has discontinuities
only at the points of discontinuity of F−

n,ε and F
+
n,ε and hence is piecewise constant on at most

2n+1 intervals. The sums F+
n,ε+ Estatn,ε and F−

n,ε−Estatn,ε have 2n+1 intervals of constant value
to be searched when solving (4.1). The procedure is described in Algorithm 1. Note that the
conditions in Theorem 4.1 need to hold for the obtained values in Algorithm 1 to make sense
(or even exist). The computational time complexity is dominated by sorting and is O(n log n).

Algorithm 1. Algorithm for computing the bounding p-quantile estimates.

1: Let z = (zi)
2n
i=1 ← sort (xε1 + ε1, x

ε
1 − ε1, . . . , xεn + εn, x

ε
n − εn) (requires sorting 2n values)

2: Compute F+
n,ε and F

−
n,ε at all points in z (requires sorting n values twice)

3: Compute Estatn,ε at all points in z (using F+
n,ε and F

−
n,ε at z)

4: Let y−n,ε ← smallest zi for which F
+
n,ε(zi) + Estatn,ε (zi) ≥ p

5: Let y+n,ε ← smallest zi for which F
−
n,ε(zi)− Estatn,ε (zi) ≥ p
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5. Algorithms for control of the error of the bounding p-quantile estimators. In a
practical situation, an important goal is to determine the number of samples and the accuracy
of the samples required to guarantee a given level of accuracy, i.e., |y+n,ε − y−n,ε| ≤ TOL, in
a computationally efficient way. By computational efficiency, we mean that the numerical
samples should not be overly accurate and the number of numerical samples should not be
overly large.

Equation (3.9) shows that the bound on the error in the cdf is decomposed in terms of Estatn,ε

and Enumn,ε . However, such a decomposition cannot be perfect. This complicates the selection
of the number of samples and the accuracy of each sample. Since a priori selection is difficult,
an a posteriori approach is employed. Such an approach is based on the following cycle: the
computation of an estimate, the estimation of the accuracy of the computed estimate, and
adjustment of computational parameters for the next cycle. There are a number of ways to
organize an algorithm for controlling the error following this basic idea.

From the definitions in (3.8) it is apparent that the statistical error bound Estatn,ε can be
bounded independently of ε, so a value of n can be determined a priori. With this choice, we
can use a computational error estimate on the error of the approximate samples to achieve a
“balance” in the stochastic and deterministic contributions to the error. The following theorem
shows that balancing the error indicators lead to a p-quantile interval length dependent only
on n.

Theorem 5.1. Given ε such that Enumn,ε (x) − Estatn,ε (x) ≤ 0 for all y−n,ε ≤ x ≤ y+n,ε and n >
9C2

1 max
(
(1− p)−2, p−2

)
, it holds that

y+n,ε − y−n,ε ≤ F−1
n (p+ 3C1n

−1/2)− F−1
n (p− 3C1n

−1/2).

The proof is given in section 8.
In a practical procedure to reach a specified error tolerance TOL, an initial n is chosen and

the numerical error tolerance parameters ε are reduced until the balance condition (Enumn,ε (x)−
Estatn,ε (x) ≤ 0) in Theorem 5.1 is satisfied. The p-quantile interval length is then checked against
the tolerance, and possibly a larger n is chosen. We now focus only on the problem of finding
ε for balancing the two error indicators at minimal computational cost, given a fixed n.

5.1. A full refinement algorithm for control of sample accuracy. We first present a
straightforward algorithm for computing approximate p-quantile bounding estimates to within
a prescribed accuracy. The algorithm employs a sequence of refinements, by which we mean
the discretization actions required to decrease the numerical error estimate or bound. For
example, refinement of a realization might be mesh refinement of the discretization for that
realization.

The convergence rate result in Theorem 4.3 is based on uniform refinement for all realiza-
tions so that εmax → 0. Using the balance criterion in Theorem 5.1 as a termination criterion,
we construct an algorithm which refines all realizations to the same numerical error tolerance
in each iteration. This full refinement algorithm is given in Algorithm 2. To state the algo-
rithm, we use δ to denote another vector of numerical error tolerance parameters when two
different vectors are needed simultaneously. Approximate quantities based on δ instead of ε
are indicated with a superscript δ.

The full refinement algorithm refines all realizations to the same numerical error tolerance
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Algorithm 2. Algorithm for full refinement.

1: Pick p, β, n, and δinit
2: Set δ = (δinit, . . . , δinit)
3: Compute xδi satisfying Assumption 3.3 for all i = 1, . . . , n
4: Let j = 0 be an iteration counter

5: while supx∈[y−n,δ,y
+
n,δ]

(
Enumn,δ (x)− Estatn,δ (x)

)
> 0 do

6: Set j ← j + 1
7: Set δi ← δinit2

−j for all i = 1, . . . , n
8: Recompute xδi (satisfying Assumption 3.3) for all i = 1, . . . , n
9: Save δ(j) ← δ

10: end while

δinit2
−j in each iteration j until the errors are balanced. Here δinit is the initial numerical error

tolerance. Following the algorithm listing, initially all n numerical error tolerance parameters
δ are set to δinit. Before entering the main loop, n realizations are generated satisfying
Assumption 3.3 with the initial numerical error tolerance. The balance criterion Enumn,δ (x) −
Estatn,δ (x) ≤ 0 is checked and the main loop is entered if it is not satisfied. In each iteration, all

realizations are refined to the same numerical error tolerance δinit2
−j , where j is the iteration

number. Then xδi are recomputed before checking the termination criterion again.

5.2. A selective refinement algorithm for control of sample accuracy. The second algo-
rithm is based on the observation that it is not necessary to refine all realizations as called for
in the full refinement algorithm. The bound |y+n,ε− y−n,ε| can be made as small as desired even
when there is a significant number of realizations that have a large numerical error bound εi.
In each iteration in the full refinement algorithm, it is possible to identify the set of realizations
whose accuracy may affect the interval [y−n,ε, y

+
n,ε], while the complement of this set consists

of realizations with no potential to affect the interval. Hence, only a subset of the realiza-
tions needs to be considered for further refinement in each iteration. We propose a selective
refinement algorithm, Algorithm 3, that exploits this fact. The criterion for a realization to
be refined is that any further refinement of the realization might affect the interval [y−n,ε, y

+
n,ε],

which can be determined computationally.
The following theorem shows that the result of selective refinement is at least as accurate as

the result of full refinement at the same iteration count. We assume without loss of generality
that the QoI values and numerical error tolerances are scaled so that δinit = εinit = 1.

Theorem 5.2. For any 0 < p < 1 and j ∈ N, if we let δ = δ(j) = (2−j , . . . , 2−j) from
Algorithm 2 and ε = ε(j) from Algorithm 3 (with εmin = 2−j), then

y−n,δ ≤ y−n,ε and y+n,ε ≤ y+n,δ.

As a direct consequence, Theorem 4.3 holds with εmax replaced by εmin for ε chosen according
to Algorithm 3.

The proof is presented in section 8.
It is easy to see that selective refinement always performs fewer refinements than full

refinement. In the cases where the computations due to refinements are the dominant part



836 D. ELFVERSON, D. J. ESTEP, F. HELLMAN, AND A. MÅLQVIST

Algorithm 3. Algorithm for selective refinement.

1: Pick p, β, n, and εinit
2: Set ε = (εinit, . . . , εinit) and I = {1, . . . , n}
3: Compute xεi for all i ∈ I
4: Let j = 0 be an iteration counter
5: while supx∈[y−n,ε,y

+
n,ε]

(
Enumn,ε (x)− Estatn,ε (x)

)
> 0 do

6: Set j ← j + 1
7: Compute I ← {i = 1, . . . , n : y−n,ε − εi < xεi ≤ y+n,ε + εi} ∩ I
8: Set εi ← εinit2

−j for all i ∈ I
9: Recompute xεi (satisfying Assumption 3.3) for all i ∈ I

10: Save ε(j) ← ε, and I(j) = {i = 1, . . . , n : ε
(j)
i = 2−j}

11: end while

of the computational work, there is always a gain from using selective refinement. The next
section is devoted to quantifying this gain.

5.3. Quantification of the gain in computational complexity by selective refinement.
In order to quantify the gain in computational complexity in terms of n obtained by selective
refinement in comparison to full refinement, we need an estimate of the work required by the
two algorithms.

For this, we make an additional assumption,
Assumption 5.3 (model of work). The work W for computing xεi satisfying (3.6) depends

on the numerical error tolerance and satisfies

(5.1) C2ε
−q
i ≤W (εi) ≤ ε−q

i ,

where C2 ≤ 1 and q > 0 are independent of i.
As motivation, consider the situation in which the QoI is a functional of a finite element

solution to a d-dimensional elliptic partial differential equation. On a uniform mesh of maxi-
mum element size h, the accuracy of the solution is proportional to hλ for some λ > 0. The
linear system to produce the approximate solution is solved in linear time in the number of
degrees of freedom N . The numerical error bound εi is determined by an a posteriori error
bound for the functional value. Neglecting constants, we have W ≈ N , N ≈ h−d, and εi ≈ hλ,
i.e., the work to compute a solution with accuracy εi is W ≈ ε

−d/λ
i , that is, with q = d/λ in

Assumption 5.3.
Inequality (5.1) implies there is a minimum amount of work C2ε

−q
i required to achieve

a tolerance εi. It is possible to construct cases when there is no minimum work for specific
realizations or a class of realizations. For example, for a differential equation with a piecewise
linear finite element discretization, all realizations rendering solutions to the model that can
be exactly represented in the discretization give no discretization error and hence require no
additional work to achieve any lower numerical error tolerance. We assume that the class of
such realizations occurs with probability 0.

In this analysis, the computations used for the refinement algorithm itself are not con-
sidered in the work estimate. This is motivated by the fact that the most computationally
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demanding work (complexitywise) associated with the selective algorithm itself is computing
y−n,ε and y

+
n,ε (see Algorithm 1). This amounts to sorting O(n1/2) number of elements (see The-

orem 5.1) in each iteration, with a complexity of O(n1/2 log(n)). In each iteration, at least
O(n1/2) realizations need to be refined and the amount of required work is O(n1/2W (εi)).
When the errors are balanced, O(εi) = O(n−1/2), the work for refining is O(n(1+q)/2). This
means the work for the selective algorithm itself can be neglected for large n.

In Algorithm 3, the numerical error tolerance is reduced by a factor of two in each iteration,
so that ε(j) = 2−j for iteration j. The amount of work W (j) performed in iteration j =
0, 1, 2, . . . in the algorithm is then (see Assumption 5.3)

W (j) =W (2−j)#I(j), j = 0, 1, 2, . . . .

Note that #I(0) = n. The work for an iteration in the full refinement algorithm is

Ŵ (j) =W (2−j)n, j = 0, 1, 2, . . . .

The computational complexity for selective refinement compared to full refinement is given
in Theorem 5.4.

Theorem 5.4. For a fixed n ≥ 1, if the cdf F associated to the QoI is Lipschitz contin-
uous, and assuming that J = 12 log2 n − log2 C3� iterations are required for Algorithm 3 to

terminate (see Remark 5.5), the ratio between the required work,
∑J

j=0W
(j), using selective

selective refinement (Algorithm 3) and the required work,
∑J

j=0 Ŵ
(j), using full refinement

(Algorithm 2), is bounded above by

(5.2)

∑J
j=0W

(j)

∑J
j=0 Ŵ

(j)
≤ min

⎛
⎜⎝1,KC4

⎧
⎪⎨
⎪⎩

n−q/2 if q < 1

n−1/2 log2 n if q = 1

n−1/2 if q > 1

⎞
⎟⎠

with probability at least 1−2e−2K2
, where C4 depends on the cdf F , the statistical error constant

C1 (3.2), the model of work constants C2 and q (5.1), and the error balance constant C3.
Proof. See section 8.
Remark 5.5. The termination criterion is satisfied when εmin = C3n

−1/2 (Theorem 4.3) for
some constant C3, depending on the specific sample, but not asymptotically on n. Then the
number of iterations required to balance the error is J = 12 log2 n− log2C3�, since εmin = 2−J .
If more iterations are required, selective refinement provides greater gain in the comparison
to full refinement.

Remark 5.6. The rates in (5.2) are limited by the rate of convergence of Estatn,ε in terms
of n. If Estatn,ε ≤ C1n

−1 through a different sampling technique, e.g., quasi Monte Carlo, then
the rates can be replaced by n−q, n−1 log2 n, and n

−1 for the three cases, respectively. In the
last case, this means the cost for Algorithm 3 is asymptotically independent of the number of
realizations. The probability for the result to hold is also affected, since the DKW inequality
has to be replaced by the improved confidence interval.

6. Some additional observations. In this section, we comment briefly on the use of a
posteriori error estimates instead of bounds and the potential cancellation of errors in the cdf
due to miscounts. In this section, we simplify notation by setting εi = ε. We denote the true
(signed) error in the quantity of interest by ei, i.e., ei = xi − xεi .
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6.1. Using accurate error estimates instead of bounds for numerical sample error.
There are approaches to error estimation that yield accurate error estimates ēi rather than
bounds; i.e., for each sample numerical solution, i = 1, . . . , n,

(6.1) xi − xεi ≈ ēi.

It is natural to consider the use of such estimates (6.1) in the estimation of the p-quantile.
We discuss this briefly.

An important issue is that in practice, accurate error estimates are only approximations to
the true error. Issues affecting accuracy of an error estimate include the fact that the derivation
often involves neglecting terms that cannot be estimated (though may be provably smaller
than the error) and because of various numerical approximations used in the computation of
an estimate. Consequently, an estimate may be smaller or larger than the error. One difficulty
in estimating the effects of sample errors on the computation of a p-quantile is the fact that
small errors in sample values can lead to an O(1) miscount in the computation of the cdf,
which in turn affects the evaluation of the inequality defining the p-quantile. This is a main
motivation for using an error bound on the error of each sample value in Assumption 3.3.

In many situations, it is possible to derive a bound on the accuracy of the error estimate
of the form

|xi − xεi − ēi| ≤ C(ēi)
λ

for some constant C and λ depending on the accuracy of the error estimate. In this case, we
can use the accurate error estimate to “correct” the approximate sample values, and exploit
all of the previous analysis to define p-quantile bounds using {xεi + ēi} in place of {xεi} and by
setting ε = C(ēi)

λ. This results in a gain in computational efficiency, since we can expect to
use a coarser discretization parameter Δ in the numerical approximation while still achieving
the specified numerical error tolerance.

Accurate a posteriori error estimates can be used to define another p-quantile estimator.
Specifically, the numerical error |Fn(x)− Fn,ε(x)| can be estimated by defining a “corrected”
cdf, based on accurate a posteriori error estimates ēi, such that |ei− ēi| ≤ ελ, for some λ > 1,

F̄n,ε(x) =
#{i = 1, . . . , n : xεi + ēi ≤ x}

n
, x ∈ R,

which generates a presumably more accurate numerical cdf. If the a posteriori error estimates
are accurate and reliable, we can approximate

|Fn − Fn,ε| ≈ |F̄n,ε − Fn,ε|

and use the alternative definitions,

F+
n,ε(x) = max(Fn,ε(x), F̄n,ε(x)), F−

n,ε(x) = min(Fn,ε(x), F̄n,ε(x)).

This gives
|Fn,ε − F̄n,ε| = |F+

n,ε − F−
n,ε|.

Now we could use all of the results in the paper starting with these definitions.
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6.2. The effect of miscount cancellation on the numerical error in the cdf. Up to
this point, the only assumption used on the numerical error in the QoI is ei ≤ ε. The
following discussion shows there can be a miscount cancellation effect in the numerical error
|Fn(x)− Fn,ε(x)| in the cdf.

We consider ei = ei(ωi) to be a random variable and define Y ε
i (x) = �(x−xi)−�(x−xεi),

where �(x) is zero for x < 0 and one for x ≥ 0, and we note that

Fn(y)− Fn,ε(y) =
1

n

n∑

i=1

Y ε
i (y).

The random variable Y ε
i (y) takes the values {−1, 0, 1} with probabilities {p−1, p0, and p1},

respectively. The case −1 corresponds to xi − ei ≤ y < xi; the case 1 to xi ≤ y < xi − ei; and
the case 0 otherwise. It is apparent that the probabilities pi depend on both the distributions
of xi and ei. The expected value and variance of Y ε

i (y) obey

E[Y ε
i (y)] = −1p−1 + 1p1 and V [Y ε

i (y)] ≤ E[(Y ε
i (y))

2] = (−1)2p−1 + 12p1.

Since
|p1 − p−1| ≤ p1 + p−1 ≤ Pr(|y − xi| ≤ ε) ≤ CLε,

where CL depends on the Lipschitz constant of F , we obtain

(6.2) E[Fn(y)−Fn,ε(y)] = p1−p−1 ≤ CLε, V ar[Fn(y)−Fn,ε(y)] = n−1(p1+p−1) ≤ CLn
−1ε.

Thus, in the case p−1 = p1, the numerical error in the cdf is in the order of n−1/2ε1/2, since
the expected value is zero. Thus, no refinements are necessary, i.e., we can let ε ≈ 1 and still
balance the statistical and numerical errors in the cdf, thanks to cancellations in the miscounts.
However, the case p−1 = p1 is rather unrealistic. Assuming F (y) is differentiable, we still
need ei to be median-unbiased given xi, which cannot be expected from errors in numerical
simulations in general. The effect of miscounts is investigated numerically in section 7.4.

7. Numerical experiments. This section presents a few numerical experiments demon-
strating the selective refinement algorithm and its gain in computational complexity compared
to full refinement. The last numerical example illustrates the discussion in section 6 on how
miscounts affect the convergence with respect to the numerical error.

7.1. Demonstration in principle. In this experiment, we let the QoI be sampled directly
from a χ2-distribution with three degrees of freedom, i.e., X ∼ χ2(3). For a sample {xi}ni=1

from χ2(3), the approximate sample {xεi}ni=1 is computed as follows. For a given εi, x
ε
i is

computed as xεi = xi + 2/3(sin(100 × εi × i) + 1/2) × εi, to simulate some solution procedure
generating approximate values with a systematic error within the error bound. We use the
Agresti–Coull interval. With this setup, both Assumptions 3.1 and 3.3 are satisfied. We pick
n = 10000, p = 0.95, β = 0.99, and εinit = 1. These values are chosen to illustrate the
performance of the selective refinement algorithm.

Algorithms 2 and 3 are executed with the described setup. The resulting functions Fn,ε;
F+
n,ε; F

−
n,ε; lower and upper bounds of F ; and lower and upper bounds, y−n,ε and y

+
n,ε, respec-

tively, of y are plotted after termination of the two algorithms in Figures 1a and 1b, respec-
tively. (Note that all functions F ·

·,· are transformed via the affine transformation T (Fn(x)) = p̃
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defined by the Agresti–Coull confidence interval in (3.5), i.e., the figure actually shows T (F+
n,ε),

and so on.) The figures illustrate how the numerical error in samples away from the 95%-
quantile is larger after selective refinement than after full refinement. Both algorithms exe-
cuted two iterations before the error balance was achieved. The p-quantile bounding estimates
are identical for both algorithms, with y−n,ε = 7.1055 and y+n,ε = 8.5244. This is in accordance
with Theorem 5.2. The true 95%-quantile is y = 7.8147.
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(a) Full refinement.
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(b) Selective refinement.

Figure 1. 99% confidence band of F with 95%-quantile bounds after (a) full refinement and (b) selective
refinement. Note how the numerical error (distance between dash-dotted, magenta lines) is larger for samples
away from the p-quantile with selective refinement.

7.2. Computational complexity experiment. Theorem 5.4 predicts the following compu-
tational complexity reduction for selective refinement versus full refinement:

∑J
j=0W

(j)

∑J
j=0 Ŵ

(j)
≤ min

⎛
⎜⎝1,KC4

⎧
⎪⎨
⎪⎩

n−q/2 if q < 1

n−1/2 log2 n if q = 1

n−1/2 if q > 1

⎞
⎟⎠ ,

with different values of C4 for the three different cases. In this experiment, we use exactly the
same setup as in the previous experiment. This means X and xεi are defined as in section 7.1.
Additionally, for the model of work, we assume C2 = 1, i.e., W (εi) = ε−q

i , and we consider
three different values of q: q = 3, 1, and 1/3 in order to try the three cases above. We pick
p = 0.95, β = 0.99, εinit = 1 and execute Algorithms 2 and 3. The resulting work ratio is

presented in Figure 2. The solid lines show the value of the work ratio, i.e.,
∑N

j=0 W
(j)

∑N
j=0 Ŵ

(j)
, for the

three different values of q. The constants 6, 2, and 3 in the definition of the dashed lines are
selected manually to make the slope comparison easy. The slopes of the experimental data
verify Theorem 5.4.

7.3. An engineering application. We return to the model for Darcy flow (2.1). We
complete the problem formulation by applying the boundary conditions

u = 0 on Γ1,

u = 1 on Γ2,

n ·A(ω)∇u = 0 on Γ3 ∪ Γ4,
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Figure 2. Work reduction; full vs. selective refinement as a function of sample size.

where n denotes the outward normal on the boundary of D and Γ1, Γ2, Γ3, Γ4 are the left,
right, upper, and lower boundaries, respectively. We define ΓD = Γ1 ∪ Γ2 and ΓN = Γ3 ∪ Γ4

to denote the Dirichlet and Neumann boundaries, respectively.
We define H1

D(D) = {v ∈ H1(D) : v|Γ1 = 0 and v|Γ2 = 1} and H1
0 (D) = {v ∈ H1(D) :

v|ΓD
= 0} to be function spaces that satisfy the boundary condition and vanishing on the

Dirichlet boundary, respectively. Let V h ⊂ H1(D) be the space of continuous functions on D
that are also affine on all triangles T ∈ T h, T h being a conforming triangulation of D , where
h = maxT∈T h diam(T ). We assume that the finite element triangulation is a refinement of
T h0 used in the definition of the diffusion coefficient. The finite element discretization is then
as follows: Find uh ∈ V h ∩H1

D(D) such that

a(ω;uh, v) =

∫

D
A(ω)∇u · ∇v dx = 0 for all v ∈ V h ∩H1

0 (D).

We use an adjoint-based approach to error estimation [6, 5, 7, 2]. The QoI (normal flux
through Γ1) is approximated by the linear functional

(7.1) Q(uh(ω)) = a(ω;uh, v) for all v ∈ V h ∩H1
D(D).

We solve for a corresponding numerical adjoint solution: Find φk ∈ V k ∩H1
D(D) such that

(7.2) a(ω; v, φk) = 0 for all v ∈ V k ∩H1
0 (D),

where k < h. We use k = h/2 to approximate the adjoint solution. We define πh : H1
D(D)→

V h ∩H1
D(D) to be a (quasi-)interpolation operator.

With this framework, we can produce both accurate a posteriori error estimates and a
posteriori error bounds.

1. For an accurate estimate, we use [6, 5, 7, 2]

Q(u)−Qh(uh) ≈ a(ω;uh, φk − πhφk) = eEST(uh).
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This estimate is exact if φ = φk. We approximate the QoI as xεi = Q(uh(ωi)) +
eEST(uh(ωi)) (note the correction) for an hi satisfying |eEST(uh(ωi))| < εi in order to
reach a numerical error tolerance of εi. The procedure to reach the tolerance is to
halve hi until the error estimate is less than numerical error tolerance.

2. We derive an (dual or adjoint weighted) a posteriori error bound from the a posteriori
error estimate by integration by parts over each element in the mesh and accumulating
quantity values on common element boundaries to obtain

(7.3) |Q(u) −Qh(uh)| ≤
∑

T∈T k

RT (u
h) · wT + rT (u

h) · w∂T = eDWR(uh),

where the residuals RT and rT are defined by

RT (u
h) = ‖∇ · A(ω)∇uh‖L2(T ),

r2T (u
h) =

1

2
‖h1/2[A(ω)∇uh]‖2L2(∂T\(ΓD∪ΓN )) + ‖h1/2A(ω)∇uh‖2L2(∂T∩ΓN ),

respectively, where [·] denotes the jump in normal direction, and h is a piecewise
constant function h|T = diam(T ). The adjoint weights (wT and w∂T ) are defined by

wT = ‖φk − πhφk‖L2(T ), w∂T = ‖h−1/2(φk − πhφk)‖L2(∂T ),

respectively. For a given realization ωi, we approximate the QoI as xεi = Q(uh(ωi))
for an hi satisfying e

DWR(uh(ωi)) < εi. In order to find such an hi, we start with an
initial hi and halve it until the bound is less than the numerical error tolerance.

The statistical error, Estatn,ε , is approximated using the Agresti–Coull confidence interval
(see (3.4), (3.5), and (3.7)). We pick n = 2000, p = 0.99, β = 0.99, εinit = 3, A0 = 1
and execute Algorithm 3 (selective refinement) using the two error bounding and estimation
methods introduced above.

For both error bounding and estimation methods, four iterations were performed until the
errors were balanced and the algorithm terminated. Figures 3a and 3b illustrate the initial and
final p-quantile bounding estimates, respectively, for the adjoint-based error bounds (method
2 above). It is evident that realizations close to the p-quantile have been refined to a larger
extent than those far from the p-quantile. Figure 3c shows a zoomed-in version of Figure 3b,
where the balance of numerical and statistical error can be observed. Also, the interval defined
by the final p-quantile bounding estimates can be read from Figure 3c and is approximately
[16.8, 18.1].

As in the previous section, we compare the ratio of required work between selective and
full refinement. In this example, we use the following model of work, W (hi) = h−2

i , where
the exponent is −2, since we have a uniform triangulation of a two-dimensional domain and
solve the linear equation systems in linear time complexity. However, in this example it is too
expensive to perform the full algorithm to yield values of hi. Instead, hi for the full algorithm
is estimated from the error estimates in the resulting selective algorithm solution using the
numerically verified rate of convergence 1. That is, for each realization, the number of times
the numerical error has to be halved to reach the numerical error tolerance is computed, and
the corresponding hi is halved accordingly. This leaves a set of hi values that is used to
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(d) Work reduction; full vs. selective refine-
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Figure 3. Plots illustrating performance of the selective algorithm for the boundary flux problem.

estimate the work for the full algorithm. The ratio between the required work for the two
algorithms, for n = 1000, 2000, 4000, 8000, and 16000, is shown in Figure 3d. The figure
shows work savings in the order of 10 for this span of n, and the work reduction rate in
Theorem 5.4 is observed in practice. The jump between n = 4000 and n = 8000 is explained
by the fact that an additional iteration was required to balance the errors for the latter case.
This causes a substantial increase of work for the full algorithm. These jumps are present also
in Figure 2. For illustration purposes, Figure 4a contains a solution plot for a single realization
on the coarsest mesh and Figure 4b shows an estimated probability density function for Q
based on 4000 realizations with error tolerance 0.1 using the adjoint-based error estimate
(method 2 above).

7.4. Effect of miscounts on numerical error. Following the discussion in section 6, we
illustrate how miscounts in the computation of the cdf affect the “exact” numerical error |Fn−
Fn,ε|. We let X ∼ N (0, 1) and {ψi}ni=1 be an i.i.d. sample of the uniform distribution U(0, 1).
We consider two cases for the numerical error: (a) no systematic error, xεi = xi + ε(2ψi − 1);
(b) systematic error, xεi = xi+ε(2(ψi)

2−1). Given a value of n, we pick ε = n−1/2 (simulating
balance between numerical and statistical error), generate a random sample of size n from
X and U to compute xi, ψi, and xεi , and compute the numerical error |Fn(y) − Fn,ε(y)| for



844 D. ELFVERSON, D. J. ESTEP, F. HELLMAN, AND A. MÅLQVIST
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Figure 4.

y = 1 for the two cases. This is done for a range of values of n. A simple moving average
with respect to n is used in order to increase the readability of the resulting graphs, which
can be found in Figure 5. From the figure, we can see that there is a cancellation effect of
miscounts in the numerical error in case (a), where we gain a factor n−1/4 in the numerical
error. However, from case (b) we see that when systematic errors are present, the miscounts
do not affect the order of convergence of the numerical error. This means the “worst case”
bounds give an overly pessimistic bound of the numerical error when no systematic error in
the numerical approximations is present.
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Figure 5. Convergence of numerical error for (a) no systematic error and (b) systematic error in numerical
approximation.

8. Technical results and proofs. In this section, we collect technical results and proofs.
Lemma 8.1. If F is continuous, then with probability 1,

(8.1) sup
x∈R
Estatn,ε (x) + Enumn,ε (x)→ 0 and sup

x∈R
|Fn,ε(x)− F (x)| → 0
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as n→∞ and ε→ 0.
Proof of Lemma 8.1. First, Assumption 3.3 implies

(8.2) F+
n,ε(x)− F−

n,ε(x) ≤
#{i = 1, . . . , n : xi − 2εi ≤ x < xi + 2εi}

n
.

By the continuity of F , xi − xj �= 0 almost surely for all i �= j. Let ε̃ = mini 
=j |xi − xj| > 0.
For all i, choose εi = ε̃/4. Continuing from (8.2),

F+
n,ε(x)− F−

n,ε(x) ≤
#{i = 1, . . . , n : xi − ε̃/2 ≤ x < xi + ε̃/2}

n
≤ 1/n.

This implies supx∈R(F
+
n,ε(x)− F−

n,ε(x))→ 0 as n→∞ and ε→ 0.
From Lemma 8.1, we have

sup
x

(
Enumn,ε (x) + Estatn,ε (x)

)
≤ sup

x
(F+

n,ε − F−
n,ε(x)) + C1n

−1/2 → 0

as n → ∞ and ε → 0. The Glivenko–Cantelli theorem implies (see, for example, page 61 of
[11] and the references therein)

sup
x
|Fn,ε(x)− F (x)| ≤ sup

x
(F+

n,ε(x)− F−
n,ε(x)) + sup

x
|Fn(x)− F (x)| → 0

as n→∞ and ε→ 0.
Proof of Theorem 4.2. We set η(x) = −Estatn,ε (x)−Enumn,ε (x)+Fn,ε(x)−F (x). By Lemma 8.1,

sup
x
|η(x)| ≤ sup

x
Estatn,ε (x) + Enumn,ε (x) + sup

x
|Fn,ε(x)− F (x)| → 0

as n → ∞ and ε → 0. Now, from the definition of y+n,ε, y
−, and y+, |η(x)| → 0 implies the

result. If we let η(x) = Estatn,ε (x) + Enumn,ε (x) + Fn,ε(x) − F (x) instead, we can show the same
result for y−n,ε.

Proof of Theorem 4.3. Using the definition of y−n,ε and y
+
n,ε, and (3.3), we obtain

y+n,ε − y−n,ε ≤ inf{x ∈ R : F (x− 2εmax)− (K +C1)n
−1/2 ≥ p}

− inf{x ∈ R : F (x+ 2εmax) + (K + C1)n
−1/2 ≥ p}

≤ F−1(p + (K + C1)n
−1/2)− F−1(p− (K + C1)n

−1/2) + 4εmax

≤ 2�−1(K + C1)n
−1/2 + 4εmax,

with probability at least 1− 2e−2K2
.
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Proof of Theorem 5.2. First we show that, for y−n,ε ≤ x ≤ y+n,ε,

(8.3) F−
n,ε(x) ≥ F−

n,δ(x), F+
n,ε(x) ≤ F+

n,δ(x).

We let I−, I, and I+ be the following partition of {1, . . . , n}:

I− = {i = 1, . . . , n : xεi ≤ y−n,ε − εi},
I = {i = 1, . . . , n : y−n,ε − εi < xεi ≤ y+n,ε + εi},
I+ = {i = 1, . . . , n : y+n,ε + εi < xεi}.

Defining the predicate Pε,i(x) = [xεi + ε ≤ x], we have

(8.4) nF−
n,ε(x) = #{i = 1, . . . , n : Pε,i(x)} = #I− +#{i ∈ I : Pε,i(x)};

i.e., all elements in I−, some from I, and none from I+ satisfy the predicate and contribute
to the value of F−

n,ε(x). From (3.6) we have

(8.5) xζi − ζi ≤ xi ≤ x
η
i + ηi for any 0 ≤ ζi, ηi ≤ 1.

We investigate how Pδ,·(x) (i.e., the predicate with numerical error tolerance parameter δ)
acts on elements in I+:

(8.6) #{i ∈ I+ : Pδ,i(x)} ≤ #{i ∈ I+ : xεi − εi ≤ x} ≤ #{i ∈ I+ : y+n,ε < x} = 0,

where (8.5) and the definition of I+ were used in the inequalities. Now consider Pδ,·(x) on
elements in I:

(8.7) #{i ∈ I : Pδ,i(x)} = #{i ∈ I : xεi + ε ≤ x} = #{i ∈ I : Pε,i(x)},

since εi = δi for i ∈ I. Finally, for Pδ,·(x) on elements in I−, we obviously have

(8.8) #{i ∈ I− : Pδ,i(x)} ≤ #I− = #{i ∈ I− : Pε,i(x)}.

Combining (8.4), (8.6), (8.7), and (8.8) we get that

nF−
n,ε(x) ≥ #{i = I− ∪ I ∪ I+ : Pδ,i(x)} = nF−

n,δ(x),

which proves the first inequality in (8.3). A similar argument can be used for the second one.
Now we can continue with the main result. The following argument shows y+n,δ ≥ y+n,ε. An

analogous argument is used to show y−n,δ ≤ y−n,ε. First, note that

(8.9) Estatn,ε (x) ≤ Estatn,δ (x)

for all y−n,ε ≤ x ≤ y+n,ε satisfying (8.3) by the definition of Estatn,ε in (3.8), since the maximum
over a subset is not greater than the maximum over its superset. From the definition of y+n,ε
and inequalities (8.3) and (8.9) we have that for y−n,ε ≤ x < y+n,ε,

(8.10) p > F−
n,ε(x)− Estatn,ε (x) ≥ F−

n,δ(x)− Estatn,δ (x).
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Further, we obviously have y−n,ε ≤ yn ≤ y+n,δ. Now, if y−n,ε ≤ y+n,δ < y+n,ε, then considering

(8.10), there must exist an 0 ≤ η < y+n,ε − y+n,δ such that

F−
n,δ(y

+
n,δ + η)− Estatn,δ (y+n,δ + η) ≥ p > F−

n,δ(y
+
n,δ + η)− Estatn,δ (y+n,δ + η),

which is a contradiction. Hence, y+n,δ ≥ y+n,ε.
Proof of Theorem 5.4. The work using selective refinement is always less than or equal to

the work using full refinement. This is obvious, since the full refinement is equivalent to using
{i = 1, . . . , n : xi} as the set of realizations to refine in each iteration, i.e., realizations that
do not affect the values are refined, whereas the selective algorithm refines the realizations in
I(j), whose cardinality is at most n.

Next, we find a set Î(j) defined by a priori information only, with the property I(j) ⊆ Î(j);
i.e., Î(j) is a superset of the realizations refined in each iteration. We make use of the following
bounds:

(8.11)
y−n,ε ≥ inf{x ∈ R : #{i : xi − 2εmax ≤ x}/n + C1n

−1/2 ≥ p}
= F−1

n (p − C1n
−1/2)− 2εmax = y−−

n,ε

and

(8.12)

y+n,ε ≤ inf{x ∈ R : #{i : xi ≤ x− 2εmax}/n − C1n
−1/2 ≥ p}

= inf{x ∈ R : Fn(x− 2εmax)− C1n
−1/2 ≥ p}

= F−1
n (p + C1n

−1/2) + 2εmax = y++
n,ε .

Further, let δ = (2−j , . . . , 2−j) and ε = ε(j), i.e., the numerical error tolerance parameters for
full and selective refinement, respectively, after j iterations. For i ∈ I(j), we have εi = δi = 2−j

and the set I(j) cannot be made smaller (but possibly larger) by replacing ε with δ, which
implies the first set relation in (8.13). For the second set relation in (8.13), we have used (3.6)
together with inequality (8.11) and (8.12). We define Î(j) as

(8.13)

I(j) = {i = 1, . . . , n : y−n,ε − εi < xεi ≤ y+n,ε + εi}
⊆ {i = 1, . . . , n : y−n,ε − δi < xδi ≤ y+n,ε + δi}
⊆ {i = 1, . . . , n : y−−

n,ε − 2−j+1 < xi ≤ y++
n,ε + 2−j+1} = Î(j).

The cardinality of this set can be expressed as

#Î(j) = n(Fn(y
++
n,ε + 2−j+1)− Fn(y

−−
n,ε − 2−j+1))

= n(Fn(F
−1
n (p + C1n

−1/2) + 2−j+2)− Fn(F
−1
n (p− C1n

−1/2)− 2−j+2)).

Using the DKW inequality (see (3.3)), we obtain for a Lipschitz continuous F with Lip-
schitz constant L that the following holds with probability at least 1− 2e−2K2

: if x ≥ 0,

(8.14a)

Fn(F
−1
n (p) + x) ≤ F (F−1

n (p) + x) +Kn−1/2

≤ Fn(F
−1
n (p)) +

∫ F−1
n (p)+x

F−1
n (p)

F ′(y) dy + 2Kn−1/2

≤ p+ n−1 + Lx+ 2Kn−1/2,
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and similarly, if x ≤ 0,

(8.14b) Fn(F
−1
n (p) + x) ≥ p+ Lx− 2Kn−1/2.

Using (8.14), the total work for j iterations can be bounded from above by

J∑

j=0

W (j) ≤ n+ 2q
J−1∑

j=0

2qj#Î(j)

= n

(
1 + 2q

J−1∑

j=0

2qj
(
Fn

(
F−1
n

(
p+ C1n

−1/2
)
+ 4× 2−j

)

− Fn

(
F−1
n

(
p− C1n

−1/2
)
− 4× 2−j

)))

≤ n

⎛
⎝1 + 2q

J−1∑

j=0

2qj
(
(2C1 + 4K)n−1/2 + 8L2−j + n−1

)
⎞
⎠ = T.

We use the assumption that J < 1
2 log2 n− log2 C3 + 1 and observe that we need to consider

three different cases for the geometric sums: case (1) for q < 1,

T = n

(
1 + 2q

(
((2C1 + 4K)n−1/2 + n−1)

2qJ − 1

2q − 1
+ 8L

2(q−1)J − 1

2(q−1) − 1

))

≤ n
(
1 + 2q

(
((2C1 + 4K)n−1/2 + n−1)

2q(1−log2 C3)nq/2 − 1

2q − 1
+ 8L

1

1− 2(q−1)

))

≤
(
(D1 +KD2)C

−q
3 + LD3

)
n−q/2n1+q/2;

case (2) for q = 1,

T = n

(
1 + 2q

(
((2C1 + 4K)n−1/2 + n−1)

2qJ − 1

2q − 1
+ 8LJ

))

≤ n
(
1 + 2q

(
((2C1 + 4K)n−1/2 + n−1)

2q(1−log2 C3)nq/2 − 1

2q − 1

+ 8L

(
(1/2) log2 n− log2C3 + 1

)))

≤
(
(D1 +KD2)C

−q
3 + LD3

)
n−1/2(log2 n)n

1+q/2;
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and case (3) for q > 1,

T = n

(
1 + 2q

(
((2C1 + 4K)n−1/2 + n−1)

2qJ − 1

2q − 1
+ 8L

2(q−1)J − 1

2(q−1) − 1

))

≤ n
(
1 + 2q

(
((2C1 + 4K)n−1/2 + n−1)

2q(1−log2 C3)nq/2 − 1

2q − 1

+ 8L
2(q−1)(1+log2 C3)n−1/2nq/2 − 1

2(q−1) − 1

))

≤
(
(D1 +KD2)C

−q
3 + LD3C

1−q
3

)
n−1/2n1+q/(2λ),

with probability at least 1 − 2e−2K2
, where D1, D2, and D3 depend on C1 and q. The total

work
∑J

j=0 Ŵ
(j) (using that 1/2 log2 n− log2C3 − 1 ≤ J) for full refinement can be bounded

below by

C−1
2

J∑

j=0

Ŵ (j) ≥ n+ 2q
J−1∑

j=0

2qjn = n

(
1 + 2q

2qJ − 1

2q − 1

)
≥ D4C

−q
3 n1+q/2,

where D4 depends on q. The ratio between the required work for the selective refinement and
the full refinement can be bounded above by

∑J
j=0W

(j)

∑J
j=0 Ŵ

(j)
≤ min

⎛
⎜⎝1,KC4(F,C1, C2, C3, q)

⎧
⎪⎨
⎪⎩

n−q/2 if q < 1

n−1/2 log2 n if q = 1

n−1/2 if q > 1

⎞
⎟⎠

with probability at least 1− 2e−2K2
and with different constant KC4(F,C1, C2, C3, q) in the

three different cases.

9. Conclusion. In this paper, we consider the problem of estimating the p-quantile for a
given functional evaluated on numerical solutions of a deterministic model in which the model
input is subject to stochastic variation. Assuming a computational a posteriori error bound
for the functional computed from a specific numerical solution, we derive a computational a
posteriori error bound for the p-quantile estimators that takes into account the effects of both
the stochastic sampling error and the deterministic numerical solution error. Under general
assumptions, we prove asymptotic convergence of the p-quantile estimator bounds in the limit
of large sample size and decreasing numerical error.

The a posteriori error bound provides the capability of quantifying the effect of the numer-
ical accuracy of each sample on the computed p-quantile. We propose a selective refinement
algorithm for computing an estimate of the p-quantile with a desired accuracy in a compu-
tationally efficient fashion. The algorithm exploits the fact that the accuracy of a relatively
small subset of sample values significantly affects the accuracy of a p-quantile estimator. The
algorithm calls for refinement of the discretization in order to achieve the necessary accuracy
for only those solutions in the subset. The algorithm can lead to significant computational
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gain. For instance, if the numerical model is a first order discretization of a partial differen-
tial equation with spatial dimension greater than one, the reduction in computational work
(compared to standard Monte Carlo using n samples) is asymptotically proportional to n1/2.
The numerical experiments presented in the paper support this conclusion.
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Abstract

We propose and analyze a method for computing failure probabilities of systems
modeled as numerical deterministic models (e.g., PDEs) with uncertain input data.
A failure occurs when a functional of the solution to the model is below (or above)
some critical value. By combining recent results on quantile estimation and the
multilevel Monte Carlo method we develop a method which reduces computational
cost without loss of accuracy. We show how the computational cost of the method
relates to error tolerance of the failure probability. For a wide and common class of
problems, the computational cost is asymptotically proportional to solving a single
accurate realization of the numerical model, i.e., independent of the number of
samples. Significant reductions in computational cost are also observed in numerical
experiments.

1 Introduction

This paper is concerned with the computational problem of finding the probability for
failures of a modeled system. The model input is subject to uncertainty with known
distribution and a failure is the event that a functional (quantity of interest, QoI) of
the model output is below (or above) some critical value. The goal of this paper is to
develop an efficient and accurate multilevel Monte Carlo (MLMC) method to find the
failure probability. We focus mainly on the case when the model is a partial differential
equation (PDE) and we use terminology from the discipline of numerical methods for
PDEs. However, the methodology presented here is also applicable in a more general
setting.

A multilevel Monte Carlo method inherits the non-intrusive and non-parametric char-
acteristics from the standard Monte Carlo (MC) method. This allows the method to be
used for complex black-box problems for which intrusive analysis is difficult or impossible.
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burg, SE-412 96 Göteborg, Sweden (axel@chalmers.se). Supported by the Swedish Research Council.

1



The MLMC method uses a hierarchy of numerical approximations on different accuracy
levels. The levels in the hierarchy are typically directly related to a grid size or timestep
length. The key idea behind the MLMC method is to use low accuracy solutions as con-
trol variates for high accuracy solutions in order to construct an estimator with lower
variance. Savings in computational cost are achieved when the low accuracy solutions are
cheap and are sufficiently correlated with the high accuracy solutions. MLMC was first
introduced in [10] for stochastic differential equations as a generalization of a two-level
variance reduction technique introduced in [17]. The method has been applied to and an-
alyzed for elliptic PDEs in [3, 5, 4, 19]. Further improvements of the MLMC method, such
as work on optimal hierarchies, non-uniform meshes and more accurate error estimates
can be found in [15, 6]. In the present paper, we are not interested in the expected value
of the QoI, but instead a failure probability, which is essentially a single point evaluation
of the cumulative distribution function (cdf). For extreme failure probabilities, related
methods include importance sampling [14], importance splitting [13], and subset simula-
tions [1]. Works more related to the present paper include the results on MLMC methods
for computing payoffs of binary options [2] and non-parameteric density estimation for
PDE models in [9], and in particular [8]. In the latter, the selective refinement method
for quantiles was formulated and analyzed.

In this paper, we seek to compute the cdf at a given critical value. The cdf at the
critical value can be expressed as the expectation value of a binomially distributed random
variable Q that is equal to 1 if the QoI is smaller than the critical value, and 0 otherwise.
The key idea behind selective refinement is that realizations with QoI far from the critical
value can be solved to a lower accuracy than those close to the critical value, and still
yield the same value of Q. The random variable Q lacks regularity with respect to the
uncertain input data, and hence we are in an unfavorable situation for application of the
MLMC method. However, with the computational savings from the selective refinement
it is still possible to obtain an asymptotic result for the computational cost where the
cost for the full estimator is proportional to the cost for a single realization to the highest
accuracy.

The paper is structured as follows. Section 2 presents the necessary assumptions and
the precise problem description. It is followed by Section 3 where our particular failure
probability functional is defined and analyzed for the MLMC method. In Section 4 and
Section 5 we revisit the multilevel Monte Carlo and selective refinement method adapted
to this problem and in Section 6 we show how to combine multilevel Monte Carlo with the
selective refinement to obtain optimal computational cost. In Section 7 we give details
on how to implement the method in practice. The paper is concluded with two numerical
experiments in Section 8.

2 Problem formulation

We consider a model problemM, e.g., a (non-)linear differential operator with uncertain
data. We let u denote the solution to the model

M(ω, u) = 0,

where the data ω is sampled from a space Ω. In what follows we assume that there exists a
unique solution u given any ω ∈ Ω almost surely. It follows that the solution u to a given
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model problem M is a random variable which can be parameterized in ω, i.e., u = u(ω).
The focus of this work is to compute failure probabilities, i.e., we are not interested

in some pointwise estimate of the expected value of the solution, E[u], but rather the
probability that a given QoI expressed as a functional, X(u) of the solution u, is less (or
greater) than some given critical value y. We let F denote the cdf of the random variable
X = X(ω). The failure probability is then given by

p = F (y) = Pr(X ≤ y). (1)

The following example illustrates how the problem description relates to real world prob-
lems.

Example 1. As an example, geological sequestration of carbon dioxide (CO2) is performed
by injection of CO2 in an underground reservoir. The fate of the CO2 determines the
success or failure of the storage system. The CO2 propagation is often modeled as a
PDE with random input data, such as a random permeability field. Typical QoIs include
reservoir breakthrough time or pressure at a fault. The value y corresponds to a critical
value which the QoI may not exceed or go below. In the breakthrough time case, low values
are considered failure. In the pressure case, high values are considered failure. In that
case one should negate the QoI to transform the problem to the form of equation (1).

The only regularity assumption on the model is the following Lipschitz continuity
assumption of the cdf, which is assumed to hold throughout the paper.

Assumption 2. For any x, y ∈ R,

|F (x)− F (y)| ≤ CL|x− y|. (2)

To compute the failure probability we consider the binomially distributed variable
Q = 1(X ≤ y) which takes the value 1 if X ≤ y and 0 otherwise. The cdf can be
expressed as the expected value of Q, i.e., p = F (y) = E[Q]. In practice we construct

an estimator Q̂ for E[Q], based on approximate sample values from X. As such, Q̂ often
suffers from numerical bias from the approximation in the underlying sample. Our goal is
to compute the estimator Q̂ to a given root mean square error (RMSE) tolerance ε, i.e.,
to compute

e
[
Q̂
]

=

(
E
[(
Q̂− E[Q]

)2
])1/2

=

(
V
[
Q̂
]

+
(
E
[
Q̂−Q

])2
)1/2

≤ ε

to a minimal computational cost. The equality above shows a standard way of splitting
the RMSE into a stochastic error and numerical bias contribution.

The next section presents assumptions and results regarding the numerical discretiza-
tion of the particular failure probability functional Q.

3 Approximate failure probability functional

We will not consider a particular approximation technique for computing Q̂, but instead
make some abstract assumptions on the underlying discretization. We introduce a hierar-
chy of refinement levels ` = 0, 1, . . . and let X ′` and Q′` = 1(X ′` ≤ y) be an approximate QoI
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of the model, and approximate failure probability, respectively, on level `. One possible
and natural way to define the accuracy on level ` is by assuming

|X −X ′`| ≤ γ`, (3)

for some 0 < γ < 1. This means the error of all realizations on level ` are uniformly
bounded by γ`. In a PDE setting, typically an a priori error bound or a posteriori error
estimate,

|X(ω)−Xh(ω)| ≤ C(ω)hs,

can be derived for some constants C(ω), s, and a discretization parameter h. Then we

can choose X ′` = Xh with h =
(
C(ω)−1γ`

)1/s
to fulfill (3).

For an accurate value of the failure probability functional the condition in (3) is
unnecessarily strong. This functional is very sensitive to perturbations of values close
to y, but insensitive to perturbations for values far from y. This insensitivity can be
exploited. We introduce a different approximation X`, and impose the following, relaxed,
assumption on this approximation of X, which allows for larger errors far from the critical
value y. This assumption is illustrated in Figure 1.

Assumption 3. The numerical approximation X` of X satisfies

|X −X`| ≤ γ` or |X −X`| < |X` − y| (4)

for a fix 0 < γ < 1.

y

γ`

X`

|X −X`|

|X −X`| ≤ γ`

|X −X`| < |X` − y|

Figure 1: Illustration of condition (4). The numerical error is allowed to be larger than
γ` far away from y.

We define Q` = 1(X` ≤ y) analogously to Q′`. Let us compare the implications of the
two conditions (3) and (4) on the quality of the two respective approximations. Denote
by X ′` and Q′` stochastic variables obeying the error bound (3) and its corresponding
approximate failure functional, respectively, and let X` obey (4). In a practical situation,
Assumption 3 is fulfilled by iterative refinements of X` until condition (4) is satisfied. It is
natural to use a similar procedure to achieve the stricter condition (3) for X ′`. We express
this latter assumption of using similar procedures for computing X` and X ′` as

|X −X`| ≤ γ` implies X ′` = X`, (5)
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i.e., for outcomes where X` is solved to accuracy γ`, X ′` is equal to X`. Under that
assumption, the following lemma shows that it is not less probable that Q` is correct than
that Q′` is.

Lemma 4. Let X ′` and X` fulfill (3) and (4), respectively, and assume (5) holds. Then
Pr(Q` = Q) ≥ Pr(Q′` = Q).

Proof. We split Ω into the events A = {ω ∈ Ω : |X−X`| ≤ γ`} and its complement Ω\A.
For ω ∈ A, using (5), we conclude that Q′` = Q`, hence

Pr(Q` = Q | A) = Pr(Q′` = Q | A).

For ω /∈ A, we have |X −X`| > γ`, and from (4) that |X −X`| < |X` − y|, i.e., Q` = Q
and hence

Pr(Q` = Q | Ω \ A) = 1.

Since Pr(Q′` = Q | Ω \ A) ≤ 1, we get Pr(Q` = Q) ≥ Pr(Q′` = Q).

Under Assumption 3 we can prove the following lemma on the accuracy of the failure
probability function Q`.

Lemma 5. Under Assumption 2 and 3, the statements

M1 |E[Q` −Q]| ≤ C1γ
`,

M2 V[Q` −Q`−1] ≤ C2γ
` for ` ≥ 1,

are satisfied where C1 and C2 do not depend on `.

Proof. We split Ω into the events B = {ω ∈ Ω : γ` ≥ |X`− y|} and its complement Ω \B.
In Ω \ B, we have Q` = Q, since |X − X`| < |X` − y| from (4). Also, we note that the
event B implies |X −X`| ≤ γ`, hence |X − y| ≤ 2γ`. Then,

|E[Q` −Q]| =
∣∣∣∣
∫

B

Q`(ω)−Q(ω) dP (ω)

∣∣∣∣ ≤
∫

B

1 dP (ω)

≤ Pr(|X − y| ≤ 2γ`) = F (y − 2γ`)− F (y + 2γ`)

≤ 4CLγ
`,

which proves M1. M2 follows directly from M1, since

V[Q` −Q`−1] = E
[
(Q` −Q`−1)2

]
− E[Q` −Q`−1]2

≤ E[Q` − 2Q`Q`−1 +Q`−1]

≤ |E[Q` −Q]|+ |2E[Q`Q`−1 −Q]|+ |E[Q`−1 −Q]|
≤ 2|E[Q` −Q]|+ 2|E[Q`−1 −Q]|
≤ C2γ

`,

where (Q`)
2 = Q` was used.

Interesting to note with this particular failure probability functional is that the conver-
gence rate in M2 cannot be improved if the rate in M1 is already sharp, as the following
lemma shows.
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Lemma 6. Let 0 < γ < 1 be fixed. If there is a 0 < c ≤ C1 such that the failure probability
functional satisfies

cγ` ≤ |E[Q` −Q]| ≤ C1γ
`

for all ` = 0, 1, . . ., then
V[Q` −Q`−1] ≤ C2γ

β`,

where β = 1 is sharp in the sense that the relation will be violated for sufficiently large `,
if β > 1.

Proof. Assume that V[Q` −Q`−1] ≤ Cγβ` for some constant C and β > 1. For two levels
k < `, such that cγk > C1γ

` we have that

|E[Q` −Qk]| ≥ ||E[Q` −Q]| − |E[Qk −Q]|| ≥
(
c− C1γ

`−k)γk = c̃γk,

with c̃ = c− C1γ
`−k > 0. For such ` and k, we have

c̃γk ≤ |E[Q` −Qk]| ≤
`−1∑

j=k

|E[Qj+1 −Qj]| ≤
`−1∑

j=k

E
[
(Qj+1 −Qj)

2
]

=
`−1∑

j=k

(
V[Qj+1 −Qj] + (E[Qj+1 −Qj])

2)

≤
`−1∑

j=k

(
Cγβj +O(γ2j)

)
≤ C̃γβk +O(γ2k).

For `, k → ∞ (keeping ` − k constant) we have a contradiction due to the mismatching
rates and hence β ≤ 1, which proves that the bound can not be improved.

4 Multilevel Monte Carlo method

In this section, we present the multilevel Monte Carlo method in a general context. Be-
cause of the low convergence rate of the variance in M2, the MLMC method does not
perform optimally for the failure probability functional. The results presented here will
be combined with the results from Section 5 to derive a new method to compute failure
probabilities efficiently in Section 6.

The (standard) MC estimator at refinement level ` of E[Q] using a sample {ωi`}N`
i=1,

reads

Q̂MC
N`,`

=
1

N`

N∑̀

i=1

Q`(ω
i
`).

Note that the subscripts N` and ` control the statistical error and numerical bias, respec-

tively. The expected value and variance of the estimator Q̂MC
N`,`

are E
[
Q̂MC
N`,`

]
= E[Q`] and

V
[
Q̂MC
N`,`

]
= N−1

` V[Q`], respectively. Referring to the goal of the paper, we want the MSE

(square of the RMSE) to satisfy

e
[
Q̂MC
N`,`

]2

= N−1
` V[Q`] + (E[Q` −Q])2 ≤ ε2/2 + ε2/2 = ε2,
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i.e., both the statistical error and the numerical error should be less than ε2/2. The
MLMC method is a variance reduction technique for the MC method. The MLMC esti-
mator Q̂ML

{N`},L at refinement level L is expressed as a telescoping sum of L MC estimator
correctors:

Q̂ML
{N`},L =

L∑

`=0

1

N`

N∑̀

i=1

(
Q`(ω

i
`)−Q`−1(ωi`)

)
,

where Q−1 = 0. There is one corrector for every refinement level ` = 0, . . . , L, each with
a specific MC estimator sample size N`. The expected value and variance of the MLMC
estimator are

E
[
Q̂ML
{N`},L

]
=

L∑

`=0

E[Q` −Q`−1] = E[QL] and

V
[
Q̂ML
{N`},L

]
=

L∑

`=0

N−1
` V[Q` −Q`−1],

(6)

respectively. Using (6) the MSE for the MLMC estimator can be expressed as

e
[
Q̂ML
{N`},L

]2

=
L∑

`=0

N−1
` V[Q` −Q`−1] + (E[QL −Q])2,

and can be computed at expected cost

C
[
Q̂ML
{N`},L

]
=

L∑

`=0

N`c`,

where c` = C[Q`] + C[Q`−1]. Here, by C[·] we denote the expected computational cost to
compute a certain quantity. Given that the variance of the MLMC estimator is ε2/2 the
expected cost is minimized by choosing

N` = 2ε−2
√

V[Q` −Q`−1]/c`

L∑

k=0

√
V[Qk −Qk−1]ck (7)

(see Appendix A), and hence the total expected cost is

C
[
Q̂ML
{N`},L

]
= 2ε−2

(
L∑

`=0

√
V[Q` −Q`−1]c`

)2

. (8)

If the product V[Q` −Q`−1]c` increases (or decreases) with ` then dominating term in
(8) will be ` = L (or ` = 0). The values N` can be estimated on the fly in the MLMC
algorithm using (7) while the cost c` can be estimated using an a priori model. The
computational complexity to obtain a RMSE less than ε of the MLMC estimator for the
failure probability functional is given by the theorem below. In the following, the notation
a . b stands for a ≤ Cb with some constant C independent of ε and `.
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Theorem 7. Let Assumption 2 and 3 hold (so that Lemma 5 holds) and C[Q`] . γ−r`.
Then there exists a constant L and a sequence {N`} such that the RMSE is less than ε,
and the expected cost of the MLMC estimator is

C
[
Q̂ML
{N`},L

]
.





ε−2 r < 1

ε−2(log ε−1)2 r = 1

ε−1−r r > 1.

(9)

Proof. For a proof see, e.g., [5, 10].

The most straight-forward procedure to fulfill Assumption 3 in practice is to refine all
samples on level ` uniformly to an error tolerance γ`, i.e., to compute X ′` introduced in
Section 3, for which |X −X ′`| ≤ γ`. Typical numerical schemes for computing X ′` include
finite element, finite volume, or finite difference schemes. Then the expected cost C[Q′`]
typically fulfill

C[Q′`] = γ−q`, (10)

where q depends on the physical dimension of the computational domain, the convergence
rate of the solution method, and computational complexity for assembling and solving
the linear system. Note that one unit of work is normalized according to equation (10).
Using Theorem 7, with Q′` instead of Q` (which is possible, since Q′` trivially fulfills
Assumption 3) we obtain a RMSE of the expected cost less than ε−1−q = ε−1C[Q′`] for the
case q > 1.

In the next section we describe how the selective refinement algorithm computes X`

(hence Q`) that fulfills Assumption 3 to a lower cost than its fully refined equivalent X ′`.
The theorem above can then be applied with r = q − 1 instead of r = q.

5 Selective refinement algorithm

In this section we modify the selective refinement algorithm proposed in [8] for computing
failure probabilities (instead of quantiles) and for quantifying the error using the RMSE.
The selective refinement algorithm computes X` so that

|X −X`| ≤ γ` or |X −X`| < |X` − y|

in Assumption 3 is fulfilled without requiring the stronger (full refinement) condition

|X −X`| ≤ γ`.

In contrast to the selective refinement algorithm in [8], Assumption 3 can be fulfilled by
iterative refinement of realizations over all realizations independently. This allows for an
efficient totally parallell implementation. We are particularly interested in quantifying
the expected cost required by the selective refinement algorithm, and showing that the
X` resulting from the algorithm fulfills Assumption 3.

Algorithm 1 exploits the fact thatQ` = Q for realizations satisfying |X−X`| < |X`−y|.
That is, even if the error of X` is greater than γ`, it might be sufficiently accurate to yield
the correct value of Q`. The algorithm works on a per-realization basis, starting with
an error tolerance 1. The realization is refined iteratively until Assumption 3 is fulfilled.
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The advantage is that many samples can be solved only with low accuracy and hence the
average cost per Q` is reduced. Lemma 8 shows that X` computed using Algorithm 1
satisfies Assumption 3.

Algorithm 1 Selective refinement algorithm

1: Input arguments: level `, realization i, critical value y, and tolerance factor γ
2: Compute X ′0(ωi`)
3: Let j = 0
4: while j < ` and γj ≥ |X ′j(ωi`)− y| do
5: Let j = j + 1
6: Compute X ′j(ω

i
`)

7: end while
8: Let X`(ω

i
`) = X ′j(ω

i
`)

Lemma 8. Approximations X` computed using Algorithm 1 satisfy Assumption 3.

Proof. At each iteration in the while-loop of Algorithm 1, γj is the error tolerance of
X`(ω

i
`), i.e., |X(ωi`) − X`(ω

i
`)| ≤ γj. The stopping criterion hence implies Assumption 3

for X`(ω
i
`).

The expected cost for computing Q` using Algorithm 1 is given by the following lemma.

Lemma 9. The expected cost to compute the failure probability functional using Algo-
rithm 1 can be bounded as

C[Q`] .
∑̀

j=0

γ(1−q)j.

Proof. Consider iteration j, i.e., when X`(ω
i
`) has been computed to tolerance γj−1. We

denote by Ej the probability that a realization enters iteration j. For j ≤ `,

Pr(Ej) = Pr(y − γj−1 ≤ X` ≤ y + γj−1)

≤ Pr(y − 2γj−1 ≤ X ≤ y + 2γj−1)

= F (y + 2γj−1)− F (y − 2γj−1)

≤ 4CLγ
j−1.

Every realization is initially solved to tolerance 1. Using that the cost for solving a
realization to tolerance γj is γ−qj, we get that the expected cost is

C[Q`] = 1 +
∑̀

j=1

Pr(Ej)γ
−qj ≤ 1 +

∑̀

j=1

4CLγ
j−1γ−qj .

∑̀

j=0

γ(1−q)j

which concludes the proof.
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6 Multilevel Monte Carlo using the selective refine-

ment strategy

Combining the MLMC method with the algorithm for selective refinement there can be
further savings in computational cost. We call this method multilevel Monte Carlo with
selective refinement (MLMC-SR). In particular, for q > 1 we obtain from Lemma 9 that
the expected cost for one sample can be bounded as

C[Q`] .
∑̀

j=0

γ(1−q)j . γ(1−q)`. (11)

Applying Theorem 7 with r = q − 1 yields the following result.

Theorem 10. Let Assumption 2 and Assumption 3 hold (so that Lemma 5 holds) and
suppose that Algorithm 1 is executed to compute Q`. Then there exists a constant L and
a sequence {N`} such that the RMSE is less than ε, and the expected cost for the MLMC
estimator with selective refinement is

C
[
Q̂ML
{N`},L

]
.





ε−2 q < 2

ε−2(log ε−1)2 q = 2

ε−q q > 2.

(12)

Proof. For q > 1, follows directly from Theorem 7 since Lemma 5 holds with r = q − 1.
For q ≤ 1, we use the rate ε−2 from the case 1 < q < 2, since the cost cannot be worsened
by making each sample cheaper to compute.

In a standard MC method we have ε−2 ∼ N where N is the number of samples and
ε−q ∼ C[Q′L] where C[Q′L] is the expected computational cost for solving one realization
on the finest level without selective refinement. The MLMC-SR method then has the
following cost,

C
[
Q̂ML
{N`},L

]
.
{
N q < 2

C[Q′L] q > 2.
(13)

A comparison of MC, MLMC with full refinement (MLMC), and MLMC with selective
refinement (MLMC-SR), is given in Table 1. To summarize, the best possible scenario is
when the cost is ε−2, which is equivalent with a standard MC method where all samples
can be obtained with cost 1. This complexity is obtained for the MLMC method when
q < 1 and for the MLMC-SR method when q < 2. For q > 2 the MC method has the
same complexity as solving N problem on the finest level NC[Q′L], MLMC has the same
cost as N1/2 problem on the finest level N1/2C[Q′L], and MLMC-SR method as solving
one problem on the finest level C[Q′L].

7 Heuristic algorithm

In this section, we present a heuristic algorithm for the MLMC method with selective
refinement. Contrary to Theorem 10, this algorithm does not guarantee that the RMSE
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Method 0 ≤ q < 1 1 < q < 2 q > 2

MC ε−2−q ε−2−q ε−2−q

MLMC ε−2 ε−1−q ε−1−q

MLMC-SR ε−2 ε−2 ε−q

Table 1: Comparison of work between MC, MLMC with full refinement (MLMC), and
MLMC with selective refinement (MLMC-SR) for different q.

isO(ε), since we in practice lack a priori knowledge of the constants C1 and C2 in Lemma 5.
Instead, the RMSE needs to be estimated. Recall the split of the MSE into a numerical
and statistical contribution:

(
E
[
Q− Q̂

])2

≤ 1

2
ε2 and V

[
Q̂
]
≤ 1

2
ε2. (14)

With Q̂ being the multilevel Monte Carlo estimator Q̂ML
{N`},L, we here present heuristics

for estimating the numerical and statistical error of the estimator.
For both estimates and ` ≥ 1, we make use of the trinomially distributed variable

Y`(ω) = Q`(ω) − Q`−1(ω). We denote the probabilities for Y` to be −1, 0 and 1 by
p−1, p0 and p1, respectively. For convenience, we drop the index ` for the probabilities,

however, they do depend on `. In order to estimate the numerical bias E
[
Q− Q̂ML

{N`},L

]
=

E[Q−QL], we assume that M1 holds approximately with equality, i.e., |E[Q−Q`]| ≈
C1γ

`. Then the numerical bias can be overestimated, |E[Q−Q`]| ≤ |E[Y`]|(γ−1 − 1)−1,
since

|E[Y`]| = |E[Q` −Q]− E[Q`−1 −Q]|
≥ ||E[Q` −Q]| − |E[Q`−1 −Q]||
≈
∣∣C1γ

` − C1γ
`−1
∣∣

= C1γ
`(γ−1 − 1).

Hence, we concentrate our effort on estimating |E[Y`]|.
It has been observed that the accuracy of sample estimates of mean and variance of Y`

might deteriorate for deep levels `� 1, and a continuation multilevel Monte Carlo method
was proposed in [6] as a remedy for this. That idea could be applied and specialized for this
functional to obtain more accurate estimates. However, in this work we use the properties
of the trinomially distributed Y` to construct a method with optimal asymptotic behavior,
possibly with increase of computational cost by a constant.

We consider the three binomial distributions [Y` = 1], [Y` = −1] and [Y` 6= 0] which
have parameters p1, p−1 and p1 + p−1, respectively ([·] is the Iverson bracket notation).
These parameters can be used in estimates for both the expectation value and variance
of the trinomially distributed Y`. Considering a general binomial distribution B(n, p),
we want to estimate p. For our distributions, as the level ` increases, p approaches zero,
why we are concerned with finding stable estimates for small p. It is important that
the parameter is not underestimated, since it is used to control the numerical bias and
statistical error and could then cause premature termination. We propose an estimation
method that is easy to implement, and that will overestimate the parameter in case of
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accuracy problems, rather than underestimate it, while keeping the asymptotic rates given
in Lemma 5 for the estimators.

The standard unbiased estimator of p is p̂ = xn−1, where x is the number of observed
successes. The proposed alternative (and biased) estimator is p̃ = (x + k)(n + k)−1 for
a k > 0. This corresponds to a Bayesian estimate with prior beta distribution with
parameters (k + 1, 1). Observing that

|E[Y`]| = |p1 − p−1|,
V[Y`] = p1 + p−1 − (p1 − p−1)2 (15)

and considering Lemma 5 (assuming equality with the rates), we conclude that all three
parameters p ∝ γ` (where ∝ means asymptotically proportional to, for ` � 1). With
the standard estimator p̂, the relative variance can be expressed as V[p̂](E[p̂])−2. This
quantity should be less than one for an accurate estimate. We now examine its asymptotic
behavior. The parameter n is the optimal number of samples at level ` (equation (7))
and can be expressed as

n ∝ γ
1
2
`q− 1

2
L(2+q), (16)

where we used that ε ∝ γL, C[Y`] ∝ γ(1−q)` and V[Y`] ∝ γ`. Then we have

V[p̂]

E[p̂]2
=
n−1p(1− p)

p2
=

1− p
np

∝ γ
2+q
2

(L−`).

In particular, for ` = L, the relative variance is asymptotically constant, but we don’t
know a priori how big this constant is. When it is large (greater than 1), the relative
variance of p̂ might be very large. An analogous analysis on p̃ yields

V[p̃]

E[p̃]2
=

(n+ k)−2np(1− p)
(n+ k)−2(np+ k)2

=
np(1− p)
(np+ k)2

≤ np

(np+ k)2
. (17)

Maximizing the bound in (17) with respect to np, gives

V[p̃]

E[p̃]2
≤ 1

4k
.

Choosing for instance k = 1 gives a maximum relative variance of 1/4. Choosing a larger
k gives larger bias, but smaller relative variance. The bias of this estimator is significant
if np � k, however, that is the case when we have too few samples to estimate the
parameter accurately, and then p̃ instead acts as a bound. The estimate p̃ keeps the
asymptotic behavior E[p̃] ∝ γ`, since

E[p̃] =
np+ k

n+ k
∝ np+ k

n
= p+

k

n

∝ γ` + γ−
1
2
`q+ 1

2
L(2+q) = γ`(1 + γ

1
2

(L−`)(2+q)) ≤ 2γ` ∝ p

where we used that ` < L and k is constant.
Now, estimating the parameters p1, p−1 and p1 + p−1 as p̃1, p̃−1 and p̃±1, respectively,

using the estimator p̃ above (note that the sum p1 + p−1 is estimated separately from p1

and p−1) we can bound (approximately) the expected value and variance of Y` in (15):

|E[Y`]| ≤ max(p1, p−1) ≈ max(p̃1, p̃−1) (18)
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and
V[Y`] ≤ p1 + p−1 ≈ p̃±1 (19)

for ` ≥ 1. For ` = 0, the sample size is usually large enough to use the sample mean
and variance as accurate estimates. Since the asymptotic behavior of p̃ is γ`, the rates in
Lemma 5 still holds and Theorem 10 applies (however, with approximate quantities).

The algorithm for the MLMC method using selective refinement is presented in Al-
gorithm 2. The termination criterion is the same as was used in the standard MLMC
algorithm [10], i.e.,

max(γ|E[YL−1]|, |E[YL]|) < 1√
2

(γ−1 − 1)ε, (20)

where |E[YL−1]| and |E[YL]| are estimated using the methods presented above. A difference
from the standard MLMC algorithm is that the initial sample size for level L is NL =
Nγ−L instead of NL = N , for some N . This is what is predicted by equation (16) and
is necessary to provide accurate estimates of the expectation value and variance of Y` for
deep levels. Other differences from the standard MLMC algorithm is that the selective
refinement algorithm (Algorithm 1) is used to compute Q̂MC

N`,L
, and that the estimates of

expectation value and variance of Y` are computed according to the discussion above.

Algorithm 2 MLMC method using selective refinement

1: Pick critical value y, cost model parameter q, tolerance factor γ, initial number of
samples N , parameter k, and final tolerance ε

2: Set L = 0
3: loop
4: Let NL = Nγ−L and compute Q̂MC

N`,L
using selective refinement (Algorithm 1)

5: Estimate V[Q` −Q`−1] using (18)
6: Compute the optimal {N`}L`=0 using (7) and cost model (11)

7: Compute Q̂MC
N`,`

for all levels ` = 0, . . . , L using selective refinement (Algorithm 1)
8: Estimate E[Q` −Q`−1] using (19)
9: Terminate if converged by checking inequality (20)

10: Set L = L + 1
11: end loop
12: The MLMC-SR estimator is Q̂ML

{N`},L =
∑L

`=0 Q̂
MC
N`,`

8 Numerical experiments

Two types of numerical experiments are presented in this section. The first experiment (in
Section 8.1) is performed on a simple and cheap modelM so that the asymptotic results
of the computational cost, derived in Theorem 10, can be verified. The second experiment
(in Section 8.2) is performed on a PDE model M to show the method’s applicability to
realistic problems. In our experiments we made use of the software FEniCS [18] and SciPy
[16].
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8.1 Failure probability of a normal distribution

In this first demonstrational experiment, we let the quantity of interest X belong to the
standard normal distribution and we seek to find the probability of X ≤ y = 0.8. The
true value of this probability is Pr(X ≤ 0.8) = Φ(0.8) ≈ 0.78814 and we hence have a
reliable reference solution. We define approximations Xh of X as follows. First, we let
our input data ω belong to the standard normal distribution, and let X(ω) = ω. Then,
we let Xh(ω) = ω+ h(2U(ω, h)− 1 + b)/(1 + b), where b = 0.1 and U(ω, h) is a uniformly
distributed random number between 0 and 1. Since we have an error bound |Xh−X| ≤ h,
the selective refinement algorithm (Algorithm 1) can be used to construct a function X`

satisfying Assumption 3. With this setup it is very cheap to compute Xh to any accuracy
h, however, for illustrational purposes we assume a cost model C[Xh] = h−q with q = 1,
2, and 3 to cover the three cases in Theorem 10.

For the three values of q, and eight logarithmically distributed values of ε between 10−3

and 10−1, we performed 100 runs of Algorithm 2. All parameters used in the simulations
are presented in Table 2.

Parameter Value

y 0.8
q 1, 2, 3
γ 0.5
N 10
k 1
ε (10−3, 10−1)

Table 2: Parameters used for the demonstrational experiment.

For convenience, we denote by Q̂i the MLMC-SR estimator Q̂ML
{N`},L of the failure

probability from run i = 1, . . . ,M with M = 100. For each tolerance ε and cost parameter
q, we estimated the RMSE of the MLMC-SR estimator by

e
[
Q̂ML
{N`},L

]
=

(
E
[(
Q̂ML
{N`},L − E[Q]

)2
])1/2

≈
(

1

M

M∑

i=1

(
Q̂i − E[Q]

)2
)1/2

.

Also, for each of the eight tolerances ε, we computed the run-specific estimation errors
|Q̂i − E[Q]|, i = 1, . . . ,M . In Figure 2 we present three plots of the RMSE vs. ε, one for
each value of q. We can see that the method yields solutions with the correct accuracy.

In order to verify Theorem 10, we estimated the expected cost for each tolerance ε and
value of q by computing the mean of the total cost over the 100 runs. The cost for each
realization was computed using the cost model in equation (10). The cost for realizations
differs not only between levels `, but also within a level ` owing to the selective refinement
algorithm. For each run i, the costs of all realizations were summed to obtain the total
cost for that run. We computed a mean of the total costs for the 100 runs. A plot of the
result can be found in Figure 3. As the tolerance ε decreases the expected cost approaches
the rates given in Theorem 10. The reference costs are multiplied by constants to align
well with the estimated expected costs.
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Figure 2: RMSE (square markers and line) plotted vs. tolerance for the experiment de-
scribed in Section 8.1. The dashed line is the tolerance ε and the dots are the individual
errors for the 100 runs at each tolerance.

8.2 Single-phase flow in media with lognormal permeability

We consider Darcy’s law on a unit square [0, 1]2 on which we have impearmeable upper and
lower boundaries, high pressure on the left boundary (Γ1) and low pressure on the right
boundary (Γ2). We define the spaces H1

f (D) = {v ∈ H1(D) : v|Γ1 = f and v|Γ2 = 0}, and
let n denote the unit normal of D .

The weak form of the partial differential equation reads: find u ∈ H1
1 (D) such that

(a(ω, ·)∇u,∇v) = 0 in D , (21)

for all v ∈ H1
0 (D), and a is a stationary log-normal distributed random field

a(ω, ·) = exp(κ(ω, ·)), (22)

over D , where κ(·, x) has zero mean and is normal distributed with exponential covariance,
i.e., for all x1, x2 ∈ D we have that

V[κ(·, x1)κ(·, x2)] = σ2 exp

(−‖x1 − x2‖2

ρ

)
. (23)

We choose σ = 1 and ρ = 0.1 in the numerical experiment.
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Figure 3: Computed mean total cost (diamond, triangle, square markers and lines) plotted
with theoretical reference cost (dashed lines) for the experiment described in Section 8.1.
The reference costs for the three values of q are: 20ε−2 for q = 1; 2 log(ε−1)2ε−2 for q = 2;
and 6ε−3 for q = 3.

We are interested in the boundary flux on the right boundary, i.e., the functional
X(ω) =

∫
Γ2
n · a(ω)∇u dx = (a(ω, ·)∇u,∇g), for any g ∈ H1(D), g|Γ1 = 0 and g|Γ2 = 1.

The last equality comes by a generalized Green’s identity, see [12, Chp. 1, Corollary 2.1].
To generate realizations of a(ω, ·), the circulant embedding method introduced in [7]

is employed. The mesh resolution for the input data of the realizations generated on level
` in the MLMC-SR algorithm is chosen such that the finest mesh needed on level ` is
not finer than the chosen mesh. For a fixed realization on level ` we don’t know how
fine data we need, because of the selective refinement procedure. This means that the
complexity obtained for the MLMC-SR algorithm do not apply for the generation of data.
The circulant embedding method has log-linear complexity. A remedy for the complexity
of generating realizations is to use a truncated Karhunen-Loève expansion that can easily
be refined. However, numerical experiments show that we are in a regime where the time
spent on generating realizations using circulant embedding is negligible compared to the
time spent in the linear solvers.

The PDE is discretized using a FEM-discretization with linear Lagrange elements. We
have a family of structured nested meshes Thm , where a mesh hm is the maximum element
diameter of the given mesh. The data a(ω, ·) is defined in the grid points of the meshes.
Using the circulant embedding we get an exact representation of the stochastic field in the
grid points of the given mesh. This can be interpreted as not making any approximation
of the stochastic field but instead making a quadrature error when computing the bilinear
form.

The functional for a discretization on meshm is defined asXhm(ω) = (a(ω, ·)∇uhm ,∇g).
The convergence rates in energy norm for log-normal data is h1/2−δ for any δ > 0 [4]. Us-
ing postprocessing, it can be shown that the error in the functional converges twice as fast
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Parameter Value

y 1.5
q 2
γ 0.5
N 10
k 1
ε 10−1, 10−1.5, 10−2

ρ 0.1
σ 1

Table 3: Parameters used for the single-phase flow experiment. The parameters
y, q, γ,N, k, ε are used in the MLMC-SR algorithm and ρ, σ to define the log-normal
field.

ε Mean p Sample std Target std (ε/
√

2)

10−1 0.8834 6.472 · 10−2 7.071 · 10−2

10−1.5 0.8890 1.873 · 10−2 2.236 · 10−2

10−2 0.8933 5.557 · 10−3 7.071 · 10−3

Table 4: The mean failure probability p and sample standard deviation (std) is computed
using 100 MLMC-SR estimators and compared to the target std which is the statistical
part of the RMSE error ε.

[11], i.e, |Xhm − Xhm(ω)| ≤ Chs−2δ for s = 1. We use a multigrid solver that has linear
α = 1 (up to log-factors) complexity. The work for one sample can then be computed as
γ−q` where γ` is the numerical bias tolerance for the sample and q ≈ 2α/s = 2, which was
also verified numerically. The error is estimated using the dual solution computed on a
finer mesh. Since it can be quite expensive to solve a dual problem for each realization of
the data, the error in the functional can also be computed by estimating the constant C
and s either numerically or theoretically.

We choose γ = 0.5, N = 10, and k = 1 in the MLMC-SR algorithm, see Section 7 for
more information on the choices of parameters. The problem reads: find the probability
p for X ≤ y = 1.5 to the given RMSE ε. We compute p for ε = 10−1, 10−1.5, and 10−2.
All parameters used in the simulation are presented in Table 3. To verify the accuracy
of the estimator we compute 100 simulations of the MLMC-SR estimator for each RMSE
ε and present the sample standard deviation (square root of the sample variance) of the
MLMC-SR estimators in Table 4. We see that in all the three cases the sample standard
deviation is smaller than the statistical contribution ε/

√
2 of the RMSE ε. Since the exact

flux is unknown, the numerical contribution in the estimator has to be approximated to
be less than ε/

√
2 as well, which is done in the termination criterion of the MLMC-

SR algorithm so it is not presented here. The mean number of samples computed to
the different tolerances on each level of the MLMC-SR algorithm is computed from 100
simulations of the MLMC-SR estimator for ε = 10−2 and are shown in Table 5. The table
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` 0 1 2 3 4

Mean N` 16526.81 9045.41 4524.83 1471.63 738.63

j = 0 16526.81 4520.99 2265.23 734.21 366.90
j = 1 4524.42 1486.62 484.11 244.69
j = 2 772.98 232.33 116.77
j = 3 20.98 9.76
j = 4 0.51

Table 5: The distribution of realizations solved to different tolerance levels j for the case
ε = 10−2. The table is based on the mean of 100 runs.

shows that the selective refinement algorithm only refines a fraction of all problems to
the highest accuracy level j = `. Using a MLMC method (without selective refinement)
N` problem would be solved to the highest accuracy level. Using the cost model γ−q` for
ε = 10−2 we gain a factor ∼ 6 in computational cost for this particular problem using
MLMC-SR compared to MLMC. From Theorem 10 the computational cost for MLMC-SR
and MLMC increase as ε−2 log(ε−1)2 and ε−3, respectively.

A Derivation of optimal level sample size

To determine the optimal sample level size N` in equation (7), we minimize the total cost
keeping the variance of the MLMC estimator equal to ε2/2, i.e.,

min
L∑

`=0

N`c`

subject to
L∑

`=0

N−1
` V[Y`] = ε2/2,

(24)

where Y` = Q` − Q`−1. We reformulate the problem using a Lagrangian multiplier µ for
the constraint. Define the objective function

g(N`, µ) =
L∑

`=0

N`c` + µ

(
L∑

`=0

N−1
` V[Y`]− ε2/2

)
. (25)

The solution is a stationary point (N`, µ) such that ∇N`,µg(N`, µ) = 0. Denoting by N̂`

and µ̂ the components of the gradient, we obtain

∇N`,µg(N`, µ) =
(
c` − µN−2

` V[Y`]
)
N̂` +

(
L∑

`=0

N−1
` V[Y`]− ε2/2

)
µ̂. (26)

Choosing N` =
√
µV[Y`]/c` makes the N̂` components zero. The µ̂ component is zero

when
∑L

`=0N
−1
` V[Y`] = ε2/2. Plugging in N` yields 2ε−2

∑L
`=0

√
V[Y`]c` =

√
µ and hence
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the optimal sample size is

N` = 2ε−2
√

V[Y`]/c`

L∑

k=0

√
V[Yk]ck. (27)
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Abstract

We study improvements of standard and multilevel Monte Carlo methods for
point evaluation of the cumulative distribution function (failure probability) ap-
plied to porous media two-phase flow simulations with uncertain permeability. In
an injection scenario with sweep efficiency of the injected phase as quantity of inter-
est, we seek the probability that this quantity of interest is smaller than a critical
value. In the sampling procedure, we use computable error bounds on the sweep
efficiency functional to solve only a subset of all realizations to highest accuracy
by means of what we call selective refinement. We quantify the performance gains
possible by using selective refinement in combination with both the standard and
multilevel Monte Carlo method. We also identify issues in the process of practical
implementation of the methods. We conclude that significant savings (one order
of magnitude) in computational cost are possible for failure probability estimation
in a realistic setting using the selective refinement technique, both in combination
with standard and multilevel Monte Carlo.

1 Introduction

Engineering systems are often subject to uncertain conditions that might reduce the
performance or function of the system. Monte Carlo methods for quantification of the
failure probability of porous media flow systems by numerical simulation is the topic of this
report. We focus entirely on an application to two-phase flow where the permeability field
is uncertain and modeled as a random field. Given the uncertainty in the permeability, we
seek the probability that sweep efficiency is less than a given critical value. In other words,
the failure probability is the value of the cumulative distribution function (cdf) for the
sweep efficiency functional at the critical value. In this work, we quantify how error bounds
on this functional can be used to improve the performance of standard and multilevel
Monte Carlo methods. This is a continuation of the works [11, 12] where the selective
refinement technique was introduced and asymptotic cost rate results for (multilevel)
Monte Carlo methods using error bounds were derived for the point evaluation of a cdf.
Other approaches for point evaluation of the cdf in a multilevel Monte Carlo context can

1Department of Earth Sciences, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden. Supported
by EU FP7 project TRUST.

2Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden.
Supported by the Centre for Interdisciplinary Mathematics, Uppsala University.

3Department of Mathematical Sciences, Chalmers University of Technology and University of Gothen-
burg, SE-412 96 Göteborg, Sweden. Supported by the Swedish Research Council.
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be found in [1, 16]. The considered methods (in total four different Monte Carlo methods)
are non-intrusive, i.e. we pick realizations from a distribution of input data for which a
partial differential equation (PDE) is solved by numerical simulation and the value of
the quantity of interest is computed. Each realization is considered either a success or a
failure based on the value of this functional in the numerical solution. It can be solved
on meshes of varying resolution depending on desired accuracy. The four Monte Carlo
setups are briefly discussed below.

For a sample of independent realizations, the sequence of failures and successes can be
used to compute an estimate of the failure probability in a Monte Carlo (MC) estimator
by computing the mean of the sequence where failure is counted as 1 and success as
0. An improvement of the MC estimator for application on numerical simulations of
controllable numerical accuracy is the multilevel Monte Carlo (MLMC) estimator [19]
first introduced in the context of differential equations in [15]. It has since then been
applied to elliptic PDEs in [2, 6, 21, 23], to density estimation in [1, 16] and has been
further analyzed and extended in [7, 17, 18]. It exploits the convergence of numerical
solutions with respect to some discretization parameter h (typically mesh size) and uses
a series of corrector estimators of increasing cost but decreasing variance to allow for
redistribution of the variance reduction effort to cheap low-accuracy problems. Another
(independent) improvement is Monte Carlo with selective refinement (MC-SR, [11]) for
estimation of p-quantiles or point evaluation of a cdf. Selective refinement uses error
bounds of the quantity of interest to determine which realizations need to be solved
on a fine mesh, and which realizations can be solved on a coarser mesh to a smaller
cost. Selective refinement can be combined with multilevel Monte Carlo (MLMC-SR,
[12]). The computational cost of the four setups (MC, MC-SR, MLMC and MLMC-
SR) are estimated for the sweep efficiency in a two-phase flow scenario where the failure
probability is of magnitude 5–10% and an absolute accuracy of this probability in the order
of a few percent is required. This work is to a large extent experimental and also aims
at identifying problems and difficulties in the practical implementation of the mentioned
improved Monte Carlo techniques. In particular, the two issues of estimating the variance
of the correctors for the multilevel Monte Carlo method, and the establishment of an error
bound required for selective refinement are addressed in this work.

The report is structured as follows. The problem setting and the continuous two-phase
flow model is described in Section 2. In Section 3 we introduce a mesh hierarchy, the space
and time discretization used, and the procedure for generating random permeability fields.
Section 4 gives an overview of the four Monte Carlo setups and presents the numerical
experiments, their results and a discussion. The conclusion is found in Section 5.

2 Continuous model

The problem is to estimate the failure probability p = F (y) = Pr(X ≤ y), where y is a
given value, called critical value, and F is the cdf of the sweep efficiency X. The random
sweep efficiency is modeled as a functional of the solution to a nonlinear PDE with random
inputs modeling two-phase flow. This section describes the continuous model for the two-
phase flow system, introducing the PDE in Section 2.1, random input in Section 2.2 and
sweep efficiency in Section 2.3.
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2.1 Fractional-flow formulation for two-phase flow

We use the fractional flow equations as model for the two-phase flow in porous media and
assume isotropic permeability, immiscibility, incompressibility, no capillary forces and that
the flow is perpendicular to the gravitaional field. Let the domain be the two-dimensional
unit square and denoted by D = [0, 1]2 and its boundary by Γ. We denote an arbitrary
phase by α and the two particular phases by α = w and α = n for the wetting and
non-wetting phase, respectively. For each phase, we have a mass conservation equation

ραφ
∂sα
∂t

+ ρα∇ · uα = να, α = w, n, (1)

in D, where ρα is density, φ is porosity, sα is saturation, uα is volumetric flux and να is
a source term. The pore space is occupied only by the two fluids, i.e. sw + sn = 1. For
convenience, we denote the wetting phase saturation by s = sw = 1 − sn and refer to it
simply by saturation. The flux is coupled with pressure and saturation via the relative
permeabilities in Darcy’s law,

uα = −kr,α(s)K

µα
∇p, α = w, n. (2)

Here, K is the isotropic permeability field, kr,α is the relative permeability, p is pres-
sure (assumed equal for both phases), and µα is the dynamic viscosity. For the relative
permeability, we use

kr,w = (se)
3 and kr,n = ζ(1− se)3 (3)

for the wetting and non-wetting phase, respectively, where se is the effective wetting fluid
saturation se = (sw − sr,w)(1− sr,w − sr,n)−1. Here, sr,α is the residual saturation for the
two phases and ζ is a parameter, which we set to 1.

We now present the fractional flow formulation. We denote the total fluid flux by
u = uw + un and the phase mobilities for the two phases by

λα(s) =
kr,α(s)

µα
, α = w, n. (4)

The total mobility is defined as λ(s) = λw(s) + λn(s) and the fractional flow function
as f(s) = λ(s)−1λw(s). The wetting phase fluxes can be expressed in terms of total flux
using the fractional flow function uw = f(s)u. Summing the Darcy equations (2) and
mass conservation equations (1) (using that ∂

∂t
(sw +sn) = 0) yields the pressure equation:

u + λ(s)K∇p = 0,

∇ · u = ρ−1
w νw + ρ−1

n νn.
(5)

Finally, we use (1) for α = w, and obtain the saturation equation:

φ
∂s

∂t
+∇ · (f(s)u) = ρ−1

w νw. (6)

The pressure and saturation equations form a non-linear system of equations in the un-
knowns u, p and s.
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The pore space is initiallly filled with the wetting phase, i.e. we have at t = 0,

s = 1 in D.
The pressure and flux depend only on s and need not be assigned initial values. Regarding
boundary conditions, we let the upper and lower boundary segments ΓN ⊂ Γ of the square
be impermeable; the left boundary ΓL ⊂ Γ be assigned high pressure and zero saturation;
and the right boundary ΓR ⊂ Γ be assigned low pressure. The pressure gradient makes
it necessary only to pose boundary conditions for the saturation on the left boundary,
since inward flux will be present only along the left boundary. More precisely, we have
for t ≥ 0,

u = 0 on ΓN ,

p = 1, s = 0 on ΓL,

p = 0 on ΓR.

(7)

The flow is driven by the boundary conditions exclusively, and we let the source functions
be zero, να = 0.

2.2 Lognormal permeability field with exponential covariance

The permeability field K is considered random input data. It is common in the subsurface
hydrology literature to model the random permeability fields as lognormal with exponen-
tial covariance, possibly at multiple correlation scales (see e.g. [13]). We use this model,
but with a single correlation scale of a tenth of the size of the computational domain.
More precisely, we let

K(x) = exp(κ(x)),

over D, where κ(x) has zero mean and is normal distributed with exponential covariance,
i.e. for all x1, x2 ∈ D we have that

Var [κ(x1)κ(x2)] = σ2 exp

(−‖x1 − x2‖2

ρ

)
=: C(‖x1 − x2‖2). (8)

For this stationary field, the covariance function C(r) in (8) depends only on the distance
r between two points. Two realizations of this field are shown in Figure 1.

2.3 Sweep efficiency

Our quantity of interest is sweep efficiency. Sweep efficiency is the proportion of the
domain covered by the non-wetting fluid at some time after injection, or the proportion
of the domain covered at steady-state. Here, since we neglect capillary forces and steady-
state is full coverage of the non-wetting fluid, we consider the swept proportion after a
fixed time T . The functional is expressed as

X = X(s) =

∫

D
χ(0,1](1− s(T )) dx,

where χA is the indicator function

χA(x) =

{
1 if x ∈ A,
0 otherwise.
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(a) Realization 1. (b) Realization 2.

Figure 1: The 10-logarithm of two realizations of a lognormally distributed random field
with exponential covariance. The colormap spans from black to white the range [−4, 4].
The parameter values are ρ = 0.1 and σ = 3.

Table 1: Parameter values for the continuous model.

Parameter name (and symbol) Value

Porosity (φ) 1
Relative permeability function parameter (ζ) 1
Residual saturations (sr,w and sr,n) 0
Dynamic viscosity (µw and µn) 1
Source terms (νw and νn) 0
Standard deviation (σ) 3
Correlation length (ρ) 0.1
Stop time (T ) 0.2

We conclude this section with a table (Table 1) of all parameter values used in this
work for the continuous model. Note that the two phases have identical properties.

3 Discretization

This section is a description of the discretizations used to solve the continuous model
numerically. A hierarchy of meshes is introduced in Section 3.1. This is necessary for
the multilevel Monte Carlo method and selective refinement, which both require a hier-
archy of solutions in a convergent regime to be efficient. A sequential splitting scheme
is presented in Section 3.2 describing the simulation procedure, once grid and data are
given. Section 3.3 describes how the circulant embedding technique is used to generate
permeability data, and how such a field is truncated to the meshes on the lower levels in
the mesh hierarchy. An approximation of the sweep efficiency functional is presented in
Section 3.4.
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3.1 Mesh hierarchy

The domain D is meshed with a family of uniform and conforming triangulations Th
depicted in Figure 2. Here h is the vertical and horizontal vertex spacing. The coordinates
of the vertices are (ih, jh) for i, j = 0, . . . , h−1 and every square in the grid is split into
two triangles by connecting the upper-left and lower-right corners. We introduce a mesh
hierarchy consisting of all meshes Th with h = 2−(L0+`) for hierarchy levels ` = 0, 1, . . . , L.
Note that from one level ` to the next `+ 1, new vertices are added to the grid, but none
are removed. The values of L0 (coarsest mesh size) and L (the number of levels) are to
be determined below. In general, the lower bound L0 is determined by the coarsest mesh
that is part of a convergent regime for the quanity of interest, while the number of levels
L depends on the limitations of computational resources and desired accuracy.

(a) The mesh with h = 1. (b) The mesh with h = 1/2.

Figure 2: Two members of Th.

We choose L0 = 4, which means the coarsest mesh has a mesh size of h = 1/16. This is
slightly smaller than the correlation length σ = 0.1 of K. In, for example [4], it has been
indicated that a finite element discretization of the pressure equation does not converge
in regimes where the correlation length is not resolved by the mesh for a standard finite
element method, why we require h < σ. The number of levels L is chosen to 4, which
means the finest mesh size is h = 1/256. This was determined based on our available
computational resources.

3.2 Sequential splitting

We use a sequential splitting scheme to split the pressure and saturation equation sim-
ilarly to the improved Implicit Pressure Explicit Saturation (improved IMPES) scheme
presented in [5]. This split renders the pressure equation a linear elliptic equation, and the
saturation equation a nonlinear hyperbolic transport equation with fixed total flux field.
The pressure equation (5) is solved implicitly for a given time step, keeping saturation
fixed from the previous time step. The flux solution from the pressure equation is used in
the saturation equation (6), from which the saturation for the next time step is computed
using an explicit method.

Let 0 = t0 < t1 < · · · < tM = T be the M outer time steps for which a pressure
iteration is performed (additional inner time steps will be needed for solving the saturation
equation). We use a constant outer time step length τ = tm+1− tm. We denote by um, pm

and sm the solutions at outer time step tm, and state the semi-discrete and mixed form
of the pressure equation:

(λ(sm)K)−1um+1 +∇pm+1 = 0,

∇ · um+1 = 0,
(9)
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with the boundary conditions given in (7).
The saturation equation is discretized using the explicit forward Euler method on a

finer grid in time to ensure stability. We subdivide each interval [tm, tm+1] into Km inner
time steps tm = tm,0 < tm,1 < · · · < tm,Km = tm+1, with an inner time step length
τm = tm,k+1− tm,k. Note that Km = τ/τm. The saturation equation is then discretized in
time using forward Euler:

φsm,k+1 = φsm,k − τm∇ · um,kw , k = 0, . . . , Km − 1. (10)

where
um,kw = f(sm,k)um+1. (11)

Equations (9) and (10) are solved in sequence, so that um+1 is available as data for the
saturation equation, and sm,Km = sm+1 is available for the pressure equation. The number
of inner time steps Km is chosen adaptively for each outer time step to match the CFL
condition for the full discretization (more details can be found below in this section).

For the spatial discretization of the pressure equation, we use the zeroth order Raviart–
Thomas finite elements that yield a conservative flux field um+1

h . For the saturation
equation, we use a donor cell upwind finite volume scheme (see e.g. [20]) on a triangular
mesh and the saturation is approximated by piecewse constants sm,kh .

1 2 3 4 5 6 7 8
log2 M

2

3

4

5

6

7

8

lo
g
2
h
−
1

Mh = 1
2
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−1.2

−0.9
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Figure 3: The filled (gray) contour plot shows the 10-logarithm of the estimated relative
error. The dashed (red) contour plot shows computational cost iso-lines. The cost in-
creases as h−1 and M increases, while the error decreases. The solid (blue) line is selected
by hand and is one possible and efficient relation between M and h.

While the description of the discretization above is done for meshes of any size h
and any number of time steps M , we use special notation for solutions obtained using
the hierarchical meshes introduced in Section 3.1 obeying the relation Mh = 0.5. (This
relation was determined in an experiment where errors from the spatial and temporal
discretizations were balanced to minimize the computational cost, see Figure 3). We
define the approximate saturation solution at time T at level ` as

s` = sMh ,
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where h = 2−(L0+`) and Mh = 0.5. The remainder of this section is a detailed description
of the discretization schemes used.

The set of interior edges in the mesh Th are denoted by F ih, i.e. F ∈ F ih is an edge in
the triangulation, but F ∩ ∂D = ∅. The edge normals are denoted by n. The edges on
the domain boundaries have outgoing normals. The L2-scalar product on D is defined by
(u, v) =

∫
D uv dx for scalar-valued functions u and v, and (u,v) =

∫
D u · v dx for vector-

valued functions u and v. Let RT 0(Th) denote the zeroth order vector-valued Raviart–
Thomas finite element space [22] on Th and let P0(Th) denote the space of piecewise
constants on Th. We then look for a flux solution in RT 0(Th) and for a pressure solution
in P0(Th) (see e.g. [3]). Multiplying (9) with test functions vh and qh from these spaces
and integrating over the domain yields the following fully discrete mixed system in um+1

h

and pm+1
h ,

((λ(sm)K)−1um+1
h ,vh)− (pm+1

h ,∇ · vh) = 0 for all vh ∈ RT 0(Th),
(∇ · um+1

h , qh) = 0 for all qh ∈ P0(Th).
(12)

The saturation equation (10) is discretized using a donor cell upwind finite volume
method or lowest order discontinuous Galerkin method (see e.g. [9]). We seek a saturation
solution sm,k+1

h ∈ P0(Th). We multiply (10) by a test function rh and integrate, and do
integration by parts for every triangle on the rightmost term to get the following equation
in sm,k+1

h , for all k = 0, . . . , Km − 1,

(φsm,k+1
h , rh) = (φsm,kh , rh)− τ

∑

U∈Th
(um,kh,w · n, rh)∂U for all rh ∈ P0(Th). (13)

Since sm,kh is only piecewise constant, um,kh,w (sm,kh ) = f(sm,kh )um+1
h is undefined on the tri-

angle edges. We define the following upwind numerical flux operator Aupw
h :

(Aupw
h s, r) =

∫

∂Ω

(um+1 · n)	sr dγ −
∑

F∈Fi
h

∫

F

(um+1 · n)[[s]]〈r〉 dγ

+
∑

F∈Fi
h

∫

F

1

2
|um+1 · n|[[s]][[r]] dγ.

The symbol (·)	 indicates the negative part, i.e. (a)	 = 1
2
(|a| − a). Further, the symbols

[[·]] and 〈·〉 are defined on interior edges and denote the jump and average operators
respectively. For every edge F , let the normal n be directed towards triangle U2 from
triangle U1. Then we define, for any r ∈ P0(Th),

[[r]] = r|U1 − r|U2 and 〈r〉 =
r|U1 + r|U2

2
.

The final form of the discrete saturation equation is

(φsm,k+1
h , rh) = (φsm,kh , rh)− τ(Aupw

h f(sm,kh ), rh)

for all rh ∈ P0(Th) and k = 0, . . . , Km − 1.
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The number of inner time steps Km is determined by ensuring that the following CFL
condition holds, for all U ∈ Th,

τm
|U |

∫

∂U

(um+1 · nU)	Lf dγ ≤ 1. (14)

Here |U | is the area of triangle U , nU is the outgoing edge normal of ∂U , and Lf = 3
is the Lipschitz constant for f(s) for 0 ≤ s ≤ 1. Since Km = τ/τm, a minimum value
of Km can be determined from equation (14). The value of Km is determined after the
pressure equation has been solved. This ensures that the value of sm,k+1

h in triangle U

is a convex combination of the values of sm,kh in the adjacent triangles, U itself and the
boundary conditions. A maximum principle and hence stability immediately follows.

3.3 Circulant embedding and spectral truncation

The multilevel Monte Carlo method requires gradual refinement of the permeability field
based on the gradual refinement of the mesh in the mesh hierarchy. In this section,
we briefly describe how the permeability data is generated and how it is truncated for
different levels ` in the mesh hierarchy to avoid aliasing effects.

The random field K is realized using the circulant embedding technique [10]. This is
an efficient way to realize a stationary random field on a cartesian grid with equispaced
points. The computational complexity is O(n2 log n) if n2 is the number of vertices in the
grid. A detailed description of circulant embedding can be found in Appendix A. Here
we proceed with a brief description of the truncation of the fields to coarser meshes.

One way to do the truncation is to realize the field on the finest mesh (level L) and
then do linear pointwise interpolation for all coarser meshes (levels ` < L). This approach
has the disadvantage that aliasing effects become apparent for the coarsest meshes (see
e.g. [14]), i.e. non-negligible variance of the omitted high frequencies are folded onto the
low frequencies and the low frequency modes get too large variance.

Instead, we perform the truncation in the spectral domain. We use that the circulant
embedding permits a Fourier diagonalization of an extended covariance matrix. The field
is realized by generating a random eigenvalue-weighted linear combination of the Fourier
modes. If to generate a realization on a mesh with n2 grid points, we include only the n2

lowest (`∞ mixed) Fourier modes in the linear combination. This way, the aliasing effect
is avoided. Also, this allows for gradual refinement of a mesh by gradually increasing the
number of included Fourier modes. We refer to Appendix A and [10] for details.

3.4 Approximate sweep efficiency

The functional X is not suitable for direct application to the discrete approximation sMh of
s(T ) for two reasons: First, s(T ) is equal to 1 in large parts of the domain, and so should
a good approximation sMh . However, the functional is very sensitive for perturbations
of saturation values close to 1 due to the step at that point. The approximation sMh
might deviate from 1 due to rounding or discretization errors and cause large errors in
the functional value. Secondly, even if the plume front is sharp in the continuous solution
s(T ), it is smoothed out in sMh . A smoothed out front can cause the sweep efficiency to be
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Table 2: Parameter values for the discretization.

Parameter name (and symbol) Value

Coarsest mesh (L0) 4
Deepest level (L) 4
Lipschitz constant for f (Lf ) 3
Sweep efficiency threshold (c) 0.5

overestimated. Instead, motivated by the appearance of a Buckley–Leverett plume front
(see Figure 4), we define the following functional with a threshold 0 < c ≤ 1,

XM
h =

∫

D
χ(c,1](1− sMh ) dx.

Further, we define
X` = XM

h ,

when h = 2−(L0+`) and Mh = 0.5. Figure 4 shows the wetting saturation in a continuous
solution and an upwind discretized solution to the one dimensional Buckley–Leverett
equation in a drainage scenario with relative permeability functions given in (3). The
figure suggests that a value of c = 1 would overestimate the sweep efficiency. Guided by
the figure, we choose c = 0.5.
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Figure 4: Wetting saturation in continuous and discrete (upwind) solution to Buckley–
Leverett solution under drainage.

We conclude this section with a table (Table 2) of all parameter values used for the
discretization.

4 Monte Carlo methods for estimating failure prob-

ability

We are interested in computing the probability p for the sweep efficiency X to be less
than a critical value y, i.e. p = Pr(X ≤ y). We define the failure probability functional

Q = χ(−∞,y](X)
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which is equal to 1 if X ≤ y, and equal to 0 otherwise. The basis for the Monte Carlo
methods in this work is that the failure probability p can be written p = E [Q], where
E [·] denotes expected value. Similarly to the numerical approximations X` at level ` of
X using the numerical scheme presented in Section 3 we define Q` = χ(−∞,y](X`) as the

approximate failure probability functional at level `. All estimators Q̂ will be based on
discretizations on levels no deeper than L. We use the mean squared error (MSE) (and
root mean squared error, RMSE) as a measure of error:

e
[
Q̂
]2

= E
[(
Q̂− E [Q]

)2
]

= Var
[
Q̂
]

+
(
E
[
Q̂−Q

])2

.

The variance Var
[
Q̂
]

of the estimator will be referred to as statistical error and the bias

E
[
Q̂−Q

]
as numerical bias. Note that this latter bias includes error from truncation of

the permeability field as well as discretization of space and time.
We review four different Monte Carlo simulation setups. We use either standard

Monte Carlo or multilevel Monte Carlo. For each of them, we either use or do not use
selective refinement, rendering four possibilites. The asymptotic computational cost rates

for (multilevel) Monte Carlo methods in terms of total RMSE tolerance e
[
Q̂
]
≤ TOL for

the failure probability functional with and without selective refinement have been studied
in [11, 12], based on the analysis in [15]. Convergence rates for the strong error and
expected cost to compute a realization are assumed to satisfy the following assumption.

Assumption 1. Assume that for some 0 < γ < 1 and C > 0 independent of `, it holds

A1 E [|Q` −Q|] ≤ Cγ`,

A2 C [Q`] = γ−q`,

where C [Q`] denotes the expected cost to compute a realization of Q`. Assume additionally
that the cdf F is Lipschitz continuous.

A summary of the asymptotic computational cost rates as TOL → 0 for each setup
is given in Table 3, in a scenario where the two sources of error (statistical error and

numerical bias) are balanced, i.e. Var
[
Q̂
]

=
(
E
[
Q̂−Q

])2

= 1
2
TOL2 (so that e

[
Q̂
]

=

TOL), and the cost for computing a better approximation Q` increases more than twice
as fast as the strong error E [|Q` −Q|] decreases, i.e. q > 2. (It is shown below that this
is indeed the case for our application). It is clear from the table that the combination of
multilevel Monte Carlo and selective refinement has the lowest asymptotic cost. In fact,
the asymptotic cost in this case is proportional to the cost for a single simulation at the
deepest level.

In this section, we quantify the time savings possible in a regime where TOL ≈ 0.01
and p ≈ 0.07 for the four setups. The critical value is chosen as y = 0.08, i.e. the failure
event reads: “the sweep efficiency is less than 8%”.
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Table 3: Asymptotic cost rates for the failure probability estimators as TOL → 0 for
different Monte Carlo method setups when q > 2.

No selective refinement Selective refinement

Monte Carlo TOL−2−q TOL−1−q

Multilevel Monte Carlo TOL−1−q TOL−q

4.1 Standard Monte Carlo method

The standard Monte Carlo (MC) estimator Q̂MC
N,L estimates E [QL] by computing the mean

of an i.i.d. N -sample of QL,

Q̂MC
N,L =

1

N

N∑

i=0

Qi
L. (15)

Each Qi
L is computed using the procedure described in Section 3. An MC estimator is

unbiased E
[
Q̂MC
N,L

]
= E [QL], so the statistical error and numerical bias are

Var
[
Q̂MC
N,L

]
=

Var [QL]

N
and E

[
Q̂MC
N,L −Q

]
= E [QL −Q],

respectively. Note that we already fixed the level L, while N is to be chosen. The
asymptotic cost rate in terms of TOL for balanced statistical and numerical error is
TOL−2−q for the MC method.

4.2 Multilevel Monte Carlo method

The multilevel Monte Carlo [15] estimator Q̂ML
{N`},L estimates E [QL] by expanding it in a

telescoping sum,

E [QL] = E [Q0] +
L∑

`=1

E [Q` −Q`−1],

and using standard Monte Carlo estimators for the expected values. We introduce cor-
rectors Y` = Q` −Q`−1, and the MLMC estimator reads

Q̂ML
{N`},L =

1

N0

N0∑

i=1

Qi
0 +

L∑

`=1

1

N`

N∑̀

i=1

Y i
` , (16)

where N` are the sample sizes for the MC estimators and Qi
0 and Y i

` are realizations of
the lowest level and correctors, respectively. A corrector realization Y i

` is computed by
generating one realization i of the random input data and compute both Qi

` and Qi
`−1

using that one realization. Due to the telescoping sum, the MLMC estimator is again
an unbiased estimator of QL. The variance, however, depends on all N`. The statistical
error and numerical bias are,

Var
[
Q̂ML
{N`},L

]
=

Var [Q0]

N0

+
L∑

`=1

Var [Y`]

N`

and E
[
Q̂ML
{N`},L −Q

]
= E [QL −Q],
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respectively. The number of samples N` on each level is determined by minimizing the

expected cost C
[
Q̂ML
{N`},L

]
for the estimator constraining the variance, Var

[
Q̂ML
{N`},L

]
=

1
2
TOL2, yielding

N0 = 2CLTOL−2
√

Var [Q0]/C [Q0] and N` = 2CLTOL−2
√

Var [Y`]/C [Y`], (17)

where CL =
√

Var [Q0]C [Q0]+
∑L

`=1

√
Var [Y`]C [Y`]. See [15] for details. The variances of

Q0 and Y` and the expected cost need to be estimated to determine N`. The asymptotic
cost rate in terms of TOL for balanced statistical and numerical error is TOL−1−q (if
q > 1) for the MC method for the failure probability functional [12].

An additional comment on MLMC for failure probability is that there are difficulties
estimating the variance Var [Y`] for deep levels `, due to the discrete distribution of Y`.
The sample size NL for the deepest level L in the MLMC estimator is typically too small
for estimating Var [YL] reliably using sample variance. (See [7, 12] for elaborate discussions
about this). The approach used here is to estimate the variance for the lower levels and
extrapolate it to the deeper levels.

4.3 Selective refinement

Selective refinement uses a posteriori error bounds to reduce the expected cost to compute
a realization of Q`. Suppose we are provided with a level j-specific error bound Ej such
that

|X` −Xj| ≤ Ej, (18)

for all ` > j. Then if |y − Xj| > Ej, the approximate failure probability Qj is equal to
Q`,

Qj = χ(−∞,y](Xj) = χ(−∞,y](X`) = Q`,

since |y−Xj| > |X`−Xj|. The selective refinement idea is to approximate Q` by QS
` := Qj

for the smallest j ≥ 0 such that |y − Xj| > Ej or j = `. An algorithm for computing
QS
` is presented in Algorithm 1. Using this algorithm (under Assumption 1) makes the

Algorithm 1 Selective refinement algorithm

1: Input arguments: level `, realization i, critical value y
2: Compute X i

0 and Ei
0

3: Let j = 0
4: while j < ` and |y −X i

j| ≤ Ei
j do

5: Let j = j + 1
6: Compute X i

j and Ei
j

7: end while
8: Let QS,i

` = χ(−∞,y](X
i
j).

asymptotic cost rate C
[
QS
`

]
≤ C̃γ−(q−1)` for some constant C̃ independent of ` (depending

however, on the distribution F ). Compared with the rate for C [Q`] in Assumption 1, the
cost rate is decreased by 1 (see [12]). Thus, using selective refinement in combination
with MC and MLMC, yields the rates TOL−1−q and TOL−q, respectively. See Table 3 for
a summary of the asymptotic cost rates.
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It is often difficult to provide a guaranteed error bound Ej. However, as will be seen
Section 4.3.1, in our case it is possible to give a probabilistic bound that holds with
probability at least 1− α, i.e. for any ` > j

Pr(|X` −Xj| ≤ Ej) ≥ 1− α. (19)

Denote the event that the bound is broken for some j < ` by A` =
⋃

0≤j<`{|X`−Xj| > Ej},
so that Pr(A`) ≤

∑`−1
j=0 Pr(|X` − Xj| > Ej) ≤ `α. Using a probabilistic bound (19) in

place of (18) to compute QS
` introduces a bias,

E
[
|QS

` −Q`|
]

= E
[
|QS

` −Q`| | A`
]

Pr(A`) + E
[
|QS

` −Q`| | A`
]

Pr(A`) ≤ `α,

where we denote the complement of A` by A`. This bias on the last level L should be of
comparable size to the numerical bias and stochastic error, i.e. Lα ≤ TOL.

The Monte Carlo and multilevel Monte Carlo estimator using selective refinement are
denoted by

Q̂MC,S
N,L =

1

N0

N∑

i=0

QS,i
L and Q̂ML,S

{N`},L =
1

N0

N0∑

i=1

QS,i
0 +

L∑

`=1

1

N`

N∑̀

i=1

Y S,i
` ,

respectively, where Y S
` = QS

` −QS
`−1.

4.3.1 Error bound for sweep efficiency

This section motivates a choice of Ej that satisfies the bound in (19) with probability
1 − α. Starting with the absolute difference in sweep efficiency between two consecutive
levels, we define Ēj and its upper bound Ẽj:

|Xj −Xj−1| =
∣∣∣∣
∫

D
χ(c,1](sj)− χ(c,1](sj−1) dx

∣∣∣∣ =: Ēj

≤
∫

D

∣∣χ(c,1](sj)− χ(c,1](sj−1)
∣∣ dx =: Ẽj.

We now consider ηĒj and ηẼj as two candidates for a probabilistic bound Ej, where η is
a parameter to be determined.

For a sample of size 1000, we computed X1, . . . , X4, Ẽ1, and Ē1. The ratio between the
approximate error and the error bounds |X4 −X1|/Ẽ1 and |X4 −X1|/Ē1 were computed
and plotted in Figure 5a as functions of X4. We also counted number of samples for which
the bounds |X4−X1| ≤ ηẼ1 and |X4−X1| ≤ ηĒ1 are broken for values of η in the range
0.5 ≤ η ≤ 4. The frequency as function of η is shown in Figure 5b. (The corresponding
experiments for |X2 − X1| ≤ ηẼ1 and |X3 − X1| ≤ ηẼ1 were performed. The figures
only present the results for ` = L = 4, which was the least optimistic case). The means
of Ē1 and Ẽ1 were estimated to 0.028 and 0.056, respectively. It is thus clear from the
figures and those mean values that Ẽ1 is more suitable as an error bound, since a much
larger constant η must be used to get the same error frequency with Ē1 than with Ẽ1.
This would be worthwhile if Ē1 was in average much smaller than Ẽ1, however, the ratio
between the mean estimates determines this is not the case.
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Figure 5: Results from experiment to determine error bound and η.

Guided by Figure 5b, we see that for η = 2 the error bound was not broken for a
single realization. The behaviour of the tail of the distribution of |X4 −X1|/Ẽ1 indicates
that the probability for breaking the error bound 2Ẽ1 is less than 10−3. Based on this
experiment, we choose

Ej = ηẼj

with η = 2 as our error bound with the estimate α ≈ 10−3. Note that the computational
cost for the error bound is proportional to that of the quantity of interest itself. We
extrapolate the results to hold for all j = 1, 2 and 3.

4.4 Evaluation

We are now ready to evaluate the four combinations Monte Carlo (MC), Monte Carlo with
selective refinement (MC-SR), multilevel Monte Carlo (MLMC) and multilevel Monte
Carlo with selective refinement (MLMC-SR) with respect to computational cost with the
aim to obtain estimators of E [QL] with variance ≈ 0.5 · 10−4.

We summarize the two-phase flow setting. QL is the failure probability functional of
XL, the sweep efficiency functional on discretization level L, i.e. E [QL] = Pr(XL ≤ y)
with y = 0.08 in our case. All four setups rely on generating realizations of sweep efficiency
X` for different levels `. This procedure starts by generating the lognormal permeability
field on a mesh `, where we use the procedure described in Section 3.3, then solving the
PDE numerically using the scheme in Section 3.2. The approximation X` of the sweep
efficiency is computed as described in Section 3.4. For the selective refinement procedure,
an error bound for X` is computed using ηẼ` in Section 4.3.1.

The easiest method to apply is the MC method, which requires knowledge only of
Var [QL] (which still is unknown) to determine N . Selective refinement requires an error
bound, where we use the error bound developed in Section 4.3.1. MLMC requires a
cost model and variance estimates of the correctors Var [Y`] to determine N` in (17). As
mentioned previously, the variance become increasingly costly to estimate as ` increases.
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Before evaluating the four setups, we present experiments performed to estimate variances
and cost models.

Variance estimates were computed based on a sample of size 4 · 104 for ` = 0, 1, 2 and
based on a sample of size 4 · 103 for ` = 3. 95% confidence intervals for the variance were
computed for ` ≥ 1. The results are presented in Figure 6a. The dotted line is the graph
of ` 7→ Cγ` with C = 0.025 and γ = 0.65 and is a convergence rate estimate based on this
figure. While the last level (` = 3) does not verify the rate due to the large confidence
interval, it still does not contradict it. Based on this experiment, we extrapolate the rate
to hold for all ` and base our variance estimate for ` ≥ 1 on the function graphed by the
dotted line.

As a basis for the cost model we use that the expected computational cost C [Q`] for a
realization follows very closely the relation C [Q`] = 23` since the mesh size parameter and
time step are halved for every level. For the range of meshes used, the computational cost
scales linearly with the number of degrees of freedom in the discretization. As is mentioned
in Appendix A, the cost to generate random permeability is negligible compared to the
cost to do the two-phase flow simulation. The cost for an MLMC-corrector is C [Y`] =
C [Q`] + C [Q`−1]. The costs for a selectively refined realization of QS

` and corrector Y S
`

are equal (since QS
`−1 comes for free when computing QS

` ) and are C
[
Y S
`

]
= C

[
QS
`

]
=

C [Q0] + C [Q1] + . . .+ C [QJ ] for some J ≤ ` where J is random.
The mean computational cost C

[
QS

0

]
and C

[
Y S
`

]
at each level ` = 1, 2 and 3 were

computed. The results are shown in Figure 6b. Based on this experiment, the cost model
for the correctors was chosen as C

[
Y S
`

]
= Cγ−q` with C = 2.4 and q = 3.1 (where γ = 0.65

from the variance experiment).
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Figure 6: Results from experiment in Section 4.4.

In summary, we use the following models for variance and expected cost, with γ = 0.65
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and ` ≥ 1:
Var [Q0] = Var

[
QS

0

]
≈ 0.0401,

Var [Y`] = Var
[
Y S
`

]
≈ 0.025 · γ`,

C [Q0] = C
[
QS

0

]
= 1 (this defines unit time),

C [Q`] ≈ 23`,

C [Y`] ≈ (23 + 1) · 23(`−1) ≈ 1.125 · γ−4.8`,

C
[
QS
`

]
= C

[
Y S
`

]
≈ 2.4 · γ−3.1`.

(20)

To save computational resources, selective refinement was used to do this experiment,
whose total cost was 2.32 · 106.

4.4.1 Monte Carlo

We picked a sample of size N = 2000 and computed two estimates of Q̂MC
N,L. The sample

mean was 0.0755 and sample variance 3.49 ·10−5 working as estimate for Var
[
Q̂MC
N,L

]
. The

expected computational cost for this estimator is C
[
Q̂MC
N,L

]
= 2000 · 23·4 = 8.19 · 106.

4.4.2 Monte Carlo with selective refinement

Based on the same sample as for the MC method, we computed Q̂MC,S
N,L using the error

bound ηẼk presented in Section 4.3.1. Note that Ẽ0 is not available, since the error bound
relies on a simulation on a coarser mesh. Starting with j = 1 in Algorithm 1, the MC-SR
estimator still uses realizations on level 0 in order to compute Ẽ1.

The estimate results (number of failures) were identical to those of MC. The computa-
tional cost (including the cost to compute error bounds) for this estimator was estimated

using the cost model in (20) to C
[
Q̂MC
N,L

]
= 2000 · 2.4 · γ−3.1·4 = 1.00 · 106.

4.4.3 Multilevel Monte Carlo

Using the equations for N` in (17), we choose TOL = 10−2 and compute the sample sizes
(rounded up) for each level. The total cost for this estimator was estimated using the

cost model in (20) to C
[
Q̂ML
{N`},L

]
= 1.28 · 106.

4.4.4 Multilevel Monte Carlo with selective refinement

Using (17) with TOL = 10−2 the sample sizes (rounded up) were computed for each
level. The total cost (including the cost to compute error bounds) for this estimator was

estimated using the cost model in (20) to C
[
Q̂ML,S
{N`},L

]
= 2.65 · 105.

4.4.5 Variance of MLMC estimators

The performance of the four estimators Q̂ can be compared by examining the product

C
[
Q̂
]
· Var

[
Q̂
]
. Given a deepest level L, this product is constant for all methods under
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Table 4: Expected cost estimates, variance estimates and their product for the four setups.

Estimator (Q̂) C
[
Q̂
]

Var
[
Q̂
]
C
[
Q̂
]
· Var

[
Q̂
]

MC (Q̂MC
N,L) 8.19 · 106 3.49 · 10−5 286

MC-SR (Q̂MC,S
N,L ) 1.00 · 106 3.49 · 10−5 34.9

MLMC (Q̂ML
{N`},L) 1.28 · 106 3.23 · 10−5 41.3

MLMC-SR (Q̂ML,S
{N`},L) 2.65 · 105 3.23 · 10−5 8.56

Table 5: Cost (relative to the cost of MLMC-SR) to realize the four estimators with equal
variance.

No selective refinement Selective refinement

Monte Carlo 33.4 4.08
Multilevel Monte Carlo 4.82 1.00

investigation, since they are all Monte Carlo methods where sample size and variance are
inversely proportional. Based on the expected cost estimates and variance estimates, this
product is presented in Table 4 for each setup. A description of the estimation of the
variance of the MLMC (and MLMC-SR) estimator follows.

To determine the variance of the MLMC estimators, a sample of 50 MLMC-SR esti-

mates was computed and the sample variance of these 50 estimators was Var
[
Q̂ML,S
{N`},L

]
≈

3.23 · 10−5. The variance of the MLMC estimator without selective refinement is assumed
to be similar, based on the argument that the selective refinement procedure introduces
only a bias in the order of 10−3 cannot have a significant impact on this variance estimate.

The values of the 50 estimates are plotted at ` = L = 4 in Figure 7 together with
a 95% confidence interval for the estimator. Additionally, for all ` = 0, . . . , 4, the mean
values of the 50 truncated estimators (i.e. where only the first ` correctors in (16) are
included) are plotted in the figure together with a 95% confidence interval for these mean
values.

In this experiment, we have assumed normality of the MLMC estimator. Normality of
the MLMC estimator does hold asymptotically using a generalized central limit theorem,
under the condition that the numerical bias decreases as TOL1−ε for some 0 < ε < 1
while the statistical error decreases as TOL when TOL → 0 (see Lemma 2). For this
particular experiment, a Q–Q-plot was used to verify that the estimator was close to
normally distributed.

4.4.6 Discussion

The obtained products C
[
Q̂
]
·Var

[
Q̂
]

normalized with respect to the cheapest setup for

all combinations are presented in Table 5. The results show that there are significant gains
in computational cost using multilevel Monte Carlo and selective refinement in addition
to standard Monte Carlo. Also, the combination of multilevel Monte Carlo and selective
refinement gives further gains, in total a factor 33.
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These gains depend on the choice of L and they will increase as L increases. For the
MLMC estimators constructed above, the goal tolerance TOL was chosen as TOL = 10−2

and the number of samples were chosen based on that. It is clear from Figure 7 that there
is a large numerical bias for low values of `. However, the bias improvement obtained
by going from ` = 2 to ` = 3 or 4 is dominated by the statistical error of the estimator,
indicated by the 95% confidence interval for the estimator at ` = 4. A better balance
between the two sources of error at this level L would be attained if TOL was chosen
smaller.

In addition to the cost to realize an estimator, the cost to construct the estimators
differ between the setups. For selective refinement we established the reliability of an error
bound by numerical experiments in Section 4.3.1 (which is not necessary if the error bound
is already trusted). For multilevel Monte Carlo, we performed an additional experiment
to determine the variance of the correctors and to determine the cost model for selective
refinement.

5 Conclusion

It is evident from the experiments on the two-phase flow simulations that if a good error
bound on the quantity of interest (in this case sweep efficiency) is available, computational
savings of one order of magnitude is possible by using selective refinement. Significant
savings in computational cost can most likely be expected from other similar applications
by using selective refinement in combination with standard and multilevel Monte Carlo
estimators.
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A Circulant embedding

The circulant embedding technique [10] is a fast method to generate stationary random
fields on a cartesian grid with equispaced points for a given covariance function C.

Let n be the number of rows and columns in the mesh Th, i.e. n = h−1. The total
number of vertices is n2. Let xk denote the coordinates of vertex k, where the vertices
are ordered lexicographically, for example row-by-row. The covariance matrix C = (cij)ij
for the vertices can be written

cij = C(‖xi − xj‖2),

where C was defined in Section 2.2. The lexicographical ordering of the vertices in the
cartesian grid gives C a symmetric Toeplitz block structure of symmetric Toeplitz blocks
(each block corresponding to a row in the grid, and each column within a block to a
column in the row). We define a (2n−2)×n extension matrix En such that for any y, we
have ỹ = Eny where ỹi = yi for 1 ≤ i ≤ n and ỹn+i = yn−i for 1 ≤ i ≤ n− 2. We further
define E = En ⊗ En. Additionally, we define an n× (2n− 2) restriction matrix Rn such
that for any ỹ, it holds y = Rnỹ where yi = ỹi for 1 ≤ i ≤ n. Also, R = Rn ⊗Rn. Note
that RE = I, the identity matrix. Finally, we define the 2D discrete Fourier transform
matrix F = F2n−2 ⊗ F2n−2, where F2n−2 is the discrete Fourier transform matrix of size
2n− 2.

The covariance matrix C has an extension C̃ = ECET that is a block circulant matrix
with circulant blocks where each block is of size 2n − 2 and there are 2n − 2 blocks per
dimension. (We assume this minimal embedding is nonnegative definite, which it always

is for our choice of correlation lengths and grid sizes). This block structure allows C̃ to
be diagonalized by the 2D discrete Fourier transform (see e.g. [8]),

C̃ = FHΛF,

where ·H denotes conjugate transpose and Λ is a diagonal matrix with the eigenvalues on
its diagonal. The 2D discrete Fourier transform of the first row c̃1 of C̃ determines the
eigenvalues,

Λ = diag((2n− 2)Fc̃1).

Now, let ε = ε1 +iε2, with ε1, ε2 ∈ N (0, I) be a random complex vector of length (2n−2)2

and let ỹ = FHΛ1/2ε. Due to the linear relation with ε, both the real and imaginary part
of ỹ are normally distributed with zero mean with covariance C̃. Let y be the vector of
interest embedded in ỹ, i.e. y = Rỹ. The real part of y can be written <(y) = (y +y)/2,
and the covariance matrix of the real part is E

[
<(y)<(y)T

]
= E

[
yyH + yyT

]
/2. We

have

E
[
yyH

]
= E

[
RỹỹHRT

]
= RFHΛ1/2E

[
εεH
]
Λ1/2FRT = 2RFHΛFRT = 2C,

and E
[
yyT

]
= 0, since E

[
εεH
]

= I and E
[
εεT
]

= 0. That is, the real part of y has
covariance matrix C. This also holds for the imaginary part, and the two parts are
independent. Thus, for each vector y, two fields are generated. However, the additional
data generated (roughly 3/4) due to the extension cannot be used.

In terms of computational cost, computing Λ is an O(h−2 log(h−2)) operation and
generating a realization of y is also an O(h−2 log(h−2)) operation. This is cheaper than
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using e.g. Cholesky factorization of C, which is O(h−4) for factorization and generating
a realization.

The mesh on which the fields are generated need to be chosen fine enough to avoid
aliasing effects (see e.g. [14]). For the lower levels the meshes are coarse enough for the
aliasing effect to be significant for pointwise sampling of the random field. Our approach
is as follows. We compute Λ based on the finest mesh with h = 1/256 (with 65536
vertices) to make the aliasing effect negligible. When a random field is to be computed
for a coarser mesh with ñ2 = h̃−2 vertices (ñ < n), we truncate Λ and keep only the
lowest ñ2 frequencies (the ñ lowest for each dimension and their combinations). Random
numbers are generated only for the kept eigenvalues. Refinement of a field to a finer mesh
is done by keeping the coefficients for the low frequency eigenfunctions and generating
new random numbers for higher frequency eigenfunctions to match the number of used
eigenvalues with the number of vertices. The computational cost to compute Λ is still
O(h−2 log(h−2)), however, this only needs to be done once. The computational cost to
generate a new realization depends only on the coarse mesh for which it is generated
and is O(h̃−2 log(h̃−2)). Thus, the computational cost of generating random data for a
simulation is asymptotically negligible in comparison to performing the simulation itself.
Solving the PDE numerically costs at least O(h̃−3).

B Asymptotic normality of MLMC estimator

The asymptotic normality holds for Q̂MC
N,L by the central limit theorem (CLT) and for

Q̂ML
{N`},L with fixed L as TOL→ 0 by applying CLT to each MC estimator in the MLMC

estimator individually. However, if numerical bias and statistical error are to be reduced
simultaneously, a result from [7] applied to our problem states that asymptotic normality

of Q̂ML
{N`},L as TOL → 0 holds if the convergence rate of the numerical bias is strictly

smaller than the rate of the statistical error, i.e. new levels are added to the estimator
slightly slower than necessary for even balance between the two error sources.

Lemma 2. Assume E [|Y`|] ≥ Cγ` for some C > 0. If letting L = log(TOL1−ε)/ log(γ)

for some 0 < ε < 1 and choosing N` according to (17), then for A = Q̂ML
{N`},L,

lim
TOL→0

Pr

(
A− E [A]√

Var [A]
≤ z

)
= Φ(z),

where Φ is the cdf for the standard normal distribution.

Proof. We apply [7, Lemma 7.1] which is based on the Lindeberg–Feller theorem on
asymptotic normality for sums of independent but not necessarilly identically distributed
random variables.

Considering the assumptions for [7, Lemma 7.1], we first establish C1γ
` ≤ E [(Y` − E [Y`])

2].
Since Y` is discrete with outcomes −1, 0 and 1, we can set E [Y`] = p1 − p−1 for some
p1, p−1 ≥ 0. Then, using p1 + p−1 = E [|Y`|] ≥ Cγ`, we get

E
[
(Y` − E [Y`])

2
]

= p1 + p−1 − (p1 − p−1)2 ≥ p1 + p−1 − (p1 + p−1)2 ≥ C1γ
`
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for some C1 > 0. Next, since |Y` − E [Y`]| is bounded by 2, we can bound

E
[
|Y` − E [Y`]|3

]
= C2E

[
|Y` − E [Y`]|2

]
≤ C3γ

`

for some C2, C3 > 0. Referring to the notation in [7, Lemma 7.1] we let β = γ−1,
δ = q2 = q3 = τ = 1 and apply the lemma to obtain the result.
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Abstract

In this work, we propose a mixed finite element method for solving elliptic mul-
tiscale problems based on a localized orthogonal decomposition (LOD) of Raviart–
Thomas finite element spaces. It requires to solve local problems in small patches
around the elements of a coarse grid. These computations can be perfectly par-
allelized and are cheap to perform. Using the results of these patch problems, we
construct a low dimensional multiscale mixed finite element space with very high ap-
proximation properties. This space can be used for solving the original saddle point
problem in an efficient way. We prove convergence of our approach, independent
of structural assumptions or scale separation. Finally, we demonstrate the applica-
bility of our method by presenting a variety of numerical experiments, including a
comparison with an MsFEM approach.

1 Introduction

In this work we study the mixed formulation of Poisson’s equation with a multiscale
diffusion coefficient, i.e. where the diffusion coefficient is highly varying on a continuum
of different scales. For such coefficients, the solution is typically also highly varying and
standard Galerkin methods fail to converge to the correct solution, unless the features on
the finest scale are resolved by the underlying computational mesh. A classical application
is the flow in a porous medium, modeled by Darcy’s law. In this case, the multiscale
coefficient describes a permeability field, which is heterogeneous, rapidly varying and
has high contrast. Classical discretizations that involve the full fine scale often lead
to a vast number of degrees of freedom, which limits the performance and feasibility
of corresponding computations. In this paper, we address this kind of problems in the
context of mixed finite elements.

We will interpret the mixed formulation of Poisson’s equation in a Darcy flow set-
ting, referring to the vector component as flux, and the scalar component as pressure.
In Darcy flow applications the flux solution is of particular interest since it tells us how
a fluid is transported through the medium. It is desirable and common to use flux con-
servative discretization schemes. The proposed method is based on the Raviart–Thomas
finite element [29] which is locally flux conservative. Concerning the mixed formulation

1Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden.
Supported by Centre for Interdisciplinary Mathematics (CIM), Uppsala University.

2Institute for Computational and Applied Mathematics, University of Münster, Einsteinstrasse 62,
Germany.

3Department of Mathematical Sciences, Chalmers University of Technology and University of Gothen-
burg SE-412 96 Göteborg, Sweden. Supported by the Swedish Research Council.
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of Poisson’s equation, corresponding multiscale methods were for instance proposed in
[1, 3, 4, 7]. These methods are based on the Raviart–Thomas finite element and fit into
the framework of the Multiscale Finite Element Method (MsFEM, cf. [17]). Another
family of multiscale methods is derived from the framework of the Variational Multiscale
Method (VMS) [18, 19, 20, 22, 27]. A multiscale method for mixed finite elements based
on VMS is proposed and studied in [23, 26]. Inspired by the results presented in [26], a
new multiscale framework arose [24]. We refer to this framework as Localized Orthogonal
Decomposition (LOD). It is based on the idea that a finite element space is decomposed
into a low dimensional space that incorporates multiscale features and a high dimensional
remainder space which is given as the kernel of an interpolation or quasi-interpolation
operator. The multiscale space can be used for Galerkin-approximations and allows for
cheap computations. Various realizations have been proposed so far. For corresponding
formulations and rigorous convergence results for elliptic multiscale problems, we refer to
[12, 13, 16, 24] for Galerkin finite element methods, to [11, 12] for discontinuous Galerkin
methods and to [15] for Galerkin Partition of Unity methods. Among the various appli-
cations we refer to the realizations for eigenvalue problems [25], for semilinear equations
[14], for the wave equation [2] and for the Helmholtz equation [28].

In this paper we introduce a two level discretization of the mixed problem, that is we
work with two meshes: A fine mesh (mesh size h) which resolves all the fine scale features
in the solution and a coarse mesh (mesh size H) which is of computationally feasible size.
This gives us a fine and a coarse Raviart–Thomas function space for the flux. We denote
them respectively by Vh (high dimensional) and VH (low dimensional). The kernel of the
(standard) nodal Raviart–Thomas interpolation operator ΠH onto VH is the detail space
V f
h . This space can be interpreted as all fine scale features that can not be captured

in the coarse space VH . A low dimensional ideal multiscale space is constructed as the
orthogonal complement to the divergence free fluxes in V f

h . We prove that this space has
good approximation properties in the sense that the energy norm of the error converges
with H without pre-asymptotic effects due to the multiscale features. However, the basis
functions of the ideal multiscale space have global support and are expensive to compute.
We show exponential decay of these basis functions allowing them to be truncated to
localized patches with a preserved order of accuracy for the convergence. The resulting
space is called the localized multiscale space. The problems that are associated with the
localized basis functions have a small number of degrees of freedom and can be solved in
parallel with reduced computational cost and memory requirement. Once computed, the
low dimensional localized multiscale space can be reused in a nonlinear or time iterative
scheme.

We prove inf-sup stability and a priori error estimates (of linear order in H) for both
the ideal and the localized method. The local L2-instability of the nodal Raviart–Thomas
interpolation operator leads to instabilities as h decreases for the localized method. We
show that these instabilities can be compensated by increasing the patch size or using
Clément-type interpolators instead. In the numerical examples we verify that the local-
ized method has the theoretically derived order of accuracy. We confirm our theoretical
findings by performing experiments on the unit square and an L-shaped domain, as well
as using a diffusion coefficient with high contrast noise and channel structures. The pro-
posed method is also compared numerically with results from an MsFEM-based approach
using a permeability field from the SPE10 benchmark problem.
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2 Preliminaries

We consider a bounded Lipschitz domain Ω ⊂ Rd (dimension d = 2 or 3) with a piecewise
polygonal boundary ∂Ω and let n denote the outgoing normal vector of ∂Ω. For any
subdomain ω ⊆ Ω, we shall use standard notation for Lebesgue and Sobolev spaces,
i.e. for r ∈ [1,∞], Lr(ω) consists of measurable functions with bounded Lr-norm and
the space H1(ω) consists of L2-bounded weakly differentiable functions with L2-bounded
partial derivatives. The full norm on H1(ω) shall be denoted by ‖ · ‖H1(ω), whereas the
semi-norm is denoted by | · |H1(ω) := ‖∇ · ‖L2(ω).

For scalar functions p and q we denote by (p, q)ω :=
∫
ω
p q the L2-scalar product on ω.

When ω = Ω, we omit the subscript, i.e. (p, q) := (p, q)Ω. For d-dimensional vector valued
functions u and v, we define (u,v)ω :=

∫
ω

u ·v with (u,v) = (u,v)Ω. Observe that we use
the same notation for norms and scalar products in L2 without distinguishing between
scalar and vector valued functions. This is purely for simplicity, since the appropriate
definition is always clear from the context. We use, however, bold face letters for vector
valued quantities.

In the following, we define the Sobolev space of functions with L2-bounded weak
divergence by H(div, ω) := {v ∈ [L2(ω)]d : ∇ · v ∈ L2(ω)}. We equip this space with
the usual norm ‖ · ‖H(div,ω), where ‖v‖2

H(div,ω) := ‖∇ · v‖2
L2(ω) + ‖v‖2

L2(ω). Additionally,

for ω = Ω, we introduce the subspace H0(div,Ω) := {v ∈ H(div,Ω) : v · n|∂Ω = 0} of
functions with zero flux on the boundary, where v ·n|∂Ω should be interpreted in the sense
of traces. We denote by L2(Ω)/R := {q ∈ L2(Ω) :

∫
Ω
q = 0} the quotient space of L2(Ω)

by R. The continuous dual space of a Banach space X is denoted by X ′.

2.1 Continuous problem

With these definitions we are ready to state the continuous problem, which is Poisson’s
equation in mixed form with Neumann boundary conditions on the full boundary.

Definition 1 (Continuous problem). Find u ∈ V := H0(div,Ω), p ∈ Q := L2(Ω)/R such
that (

A−1u,v
)

+ (∇ · v, p) = 0,

(∇ · u, q) = −(f, q),
(1)

for all v ∈ V , q ∈ Q.

We pose the following assumptions on the coefficient and data.

Assumption A (Assumptions on coefficients, data and domain).

(A1) A ∈ [L∞(Ω)]d×d is a diffusion coefficient, possibly with rapid fine scale variations.
Its value is an almost everywhere symmetric matrix and bounded in the sense that
there exist real numbers α and β such that for almost every x and any v ∈ Rd/{0}

0 < α ≤ (A(x)−1v) · v
v · v ≤ β <∞.

(A2) f ∈ L2(Ω) is a source function that fulfills the compatibility condition
∫

Ω
f = 0.
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(A3) The domain Ω is a bounded Lipschitz domain with polygonal (or polyhedral) bound-
ary.

We introduce the following bilinear forms and norms. Let

a(u,v) := (A−1u,v) and b(v, q) := (∇ · v, q)

and, further,
‖v‖V := ‖v‖H(div,Ω) and ‖q‖Q := ‖q‖L2(Ω).

The energy norm is defined as the following weighted flux L2-norm,

|||v|||2 := ‖A−1/2v‖2
L2(Ω) = a(v,v)

The energy norm can be subscripted with a subdomain ω ⊆ Ω, for example |||·|||2ω, to
indicate that the integral is taken only over that subdomain.

The following lemma gives the conditions for existence and uniqueness of a solution
to the mixed formulation in (1) for subspaces V ⊆ V and Q ⊆ Q. This lemma is useful
for establishing existence and uniqueness for all discretizations presented in this paper,
since all presented discretizations are conforming.

Lemma 2 (Existence and uniqueness of solution to mixed formulation). Let V ⊆ V and
Q ⊆ Q. Denote by K = {v ∈ V : b(v, q) = 0 ∀q ∈ Q}. If a(·, ·) is coercive on K with
constant α̃ > 0, i.e. a(v,v) ≥ α̃‖v‖2

V for v ∈ K, and bounded with constant β̃ > 0, i.e.
|a(v,w)| ≤ β̃‖v‖V ‖w‖V for all v,w ∈ V, and additionally b(·, ·) is inf-sup stable with
constant γ̃ > 0, i.e.

inf
q∈Q

sup
v∈V

b(v, q)

‖v‖V ‖q‖Q
≥ γ̃,

then the problem a(u,v) + b(v, p) − b(u, q) = (f, q) for all (v, q) ∈ V × Q has a unique
solution (u, p) ∈ V ×Q bounded by

‖u‖V ≤
2β̃1/2

α̃1/2γ̃
‖f‖L2(Ω) and ‖p‖Q ≤

β̃

γ̃2
‖f‖L2(Ω).

Proof. See e.g. [6, Theorem 4.2.3].

Under Assumptions (A1)–(A3), the conditions for Lemma 2 are satisfied for V = V and
Q = Q with α̃ = α, β̃ = β and γ̃ being a constant that depends only on the computation
domain. The lemma then yields a unique solution to the continuous problem (1).

2.2 Discretization with the Raviart–Thomas element

Regarding the discretization, we introduce two conforming families of simplicial (i.e. tri-
angular or tetrahedral) meshes {Th} and {TH} of Ω where h and H are the maximum
element diameters. Throughout the paper we refer to Th as the fine mesh and to TH as
the coarse mesh. Hence, we indirectly assume h < H. We pose the following assumptions
on the meshes.

Assumption B (Assumptions on meshes).
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(B1) The fine mesh Th is the result of one or more conforming (but possibly non-uniform)
refinements of the coarse mesh TH such that Th ∩ TH = ∅.

(B2) Both meshes Th and TH are shape regular. In particular the positive shape regularity
constant ρ for the coarse mesh TH will be referred to below and is defined as ρ =
minT∈TH

diamBT

diamT
where BT is the largest ball contained in the element T ∈ TH .

(B3) The coarse family of meshes {TH} is quasi-uniform, whereas {Th} could be obtained
from an arbitrary adaptive refinement.

Remark 3 (Quadrilateral or hexahedral elements). Affine quadrilateral (or hexahedral)
elements can also be used. However, the definition of the Raviart–Thomas element pre-
sented below in this paper is based on triangular (or tetrahedral) meshes.

We denote by t and T an element of Th or TH , respectively. Similarly e and E denote
an edge (for d = 2) or a face (for d = 3) of the elements of Th and TH . Further, ne
(respectively nE) is the outward normal vector of an edge (or face) e (respectively E).
We continue this section by discussing finite element discretization using the two meshes.

We denote all polynomials of degree ≤ k on a subdomain ω by Pk(ω) and a d-
dimensional vector of such polynomials by [Pk(ω)]d. We introduce the H0(div,Ω)-conform-
ing lowest (zeroth) order Raviart–Thomas finite element. For each fine element t ∈ Th
and coarse element T ∈ TH , the spaces of Raviart–Thomas shape functions are given by

RT h(t) = {v|t = [P0(t)]d + xP0(t)} and

RT H(T ) = {v|T = [P0(T )]d + xP0(T )},
respectively, where x = (x1, . . . , xd) is the space coordinate vector. The Raviart–Thomas
finite element spaces on Th and TH are then defined as

Vh = {v ∈ H0(div,Ω) : v|t ∈ RT h(t) ∀t ∈ Th} and

VH = {v ∈ H0(div,Ω) : v|T ∈ RT H(T ) ∀T ∈ TH}.
The degrees of freedom (in the coarse and fine Raviart–Thomas spaces) are given by the
averages of the normal fluxes over the edges (respectively faces for d = 3). We denote the
degrees of freedom by

Ne(v) :=
1

|e|

∫

e

v · ne and NE(v) :=
1

|E|

∫

E

v · nE

for the fine and coarse discretization, respectively. The direction of the normal ne (respec-
tively nE) can be fixed arbitrarily for each edge (respectively face). Here, Ne and NE are
bounded linear functionals on the space W := H0(div,Ω) ∩ Ls(Ω), for some s > 2. Note,
that the additional regularity (i.e. Ls(Ω) for s > 2) is necessary for the edge integrals to be
well-defined (cf. [6]). We introduce the (standard) nodal Raviart–Thomas interpolation
operators Πh : W → Vh and ΠH : W → VH by fixing the degrees of freedom in the natural
way, i.e. Πh and ΠH are defined such that

Ne(Πhv) = Ne(v) and NE(ΠHv) = NE(v).

Additionally, we let QH ⊂ Qh ⊂ Q be the space of all piecewise constant functions on TH
and Th with zero mean. We denote by Ph and PH the L2-projections onto Qh and QH ,
respectively. Using the fine spaces, we define the fine scale discretization of (1), which
will be referred to as the reference problem.
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Definition 4 (Reference problem). Find uh ∈ Vh and ph ∈ Qh, such that

a(uh,vh) + b(vh, ph) = 0,

b(uh, qh) = −(f, qh),
(2)

for all vh ∈ Vh and qh ∈ Qh.

A similar problem can be stated with the coarse spaces VH and QH with flux solution
uH . The remainder of this section treats only the fine discretization. However, all results
hold also for the coarse discretization.

We denote the space of divergence free functions on the fine grid by

Kh := {v ∈ Vh : ∇ · v = 0}. (3)

Remark 5 (Kernel of divergence operator). A natural definition of Kh for our purposes
is Kh = {v ∈ Vh : (∇ · v, qh) = 0 ∀qh ∈ Qh}. However, since we have ∇ · v ∈ Qh for all
v ∈ Vh (due to the definition of the Raviart–Thomas element), we can characterize Kh

equivalently as done in (3).

To establish existence and uniqueness of a solution to the reference problem, we use
that Πh is divergence compatible, i.e. we have the commuting property ∇·Πhv = Ph∇·v
for v ∈ W , and that Πh is bounded on W (but not on V !), i.e. there exists a generic
h-independent constant CW such that ‖Πhv‖V ≤ CW‖v‖W for v ∈ W . Using this, the
inf-sup stability of b(·, ·) with respect to Vh and Qh follows: For q ∈ Qh,

sup
v∈Vh

b(v, q)

‖v‖V
= sup

v∈W

(∇ · Πhv, q)

‖Πhv‖V
≥ sup

v∈W

(∇ · v, q)
CW‖v‖W

≥ (∇ ·w, q)
CW‖w‖W

≥ (q, q)

CWCΩ‖q‖L2(Ω)

= C−1
W C−1

Ω ‖q‖L2(Ω),

(4)

where w ∈ W is chosen such that ∇·w = q and ‖w‖W ≤ CΩ‖q‖L2(Ω). This is possible by
letting w = ∇φ for a solution φ to ∆φ = q in Ω with homogeneous Neumann boundary
conditions. Now, applying Lemma 2 with V = Vh, Q = Qh, K = Kh, we can derive the
constants α̃ = α, β̃ = β and γ̃ = γ := C−1

W C−1
Ω and establish existence and uniqueness

of a solution to the reference problem (2). Note that the inf-sup stability constant γ is
independent of h and hence also holds for the pair of spaces VH and QH .

In the following, we are mainly interested in approximating the flux component uh
of the solution. We treat uh as a reliable reference to the exact solution. Note that the
L2-norm of the divergence error is controlled by the data

‖∇ · u−∇ · uh‖L2(Ω) ≤ ‖f − Phf‖L2(Ω).

For the energy norm of the flux error, we have the following error estimate in the energy
norm for the lowest order Raviart–Thomas element:

|||u− uh||| ≤ Ch|u|H1(Ω),

where C is independent of h. For a problem with a coefficient A that has fast variations
at a scale of size ε, we have in general that |u|H1(Ω) ≈ ε−1. Hence, we require h� ε before
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we can observe the linear convergence in h numerically. We call the regime with h ≥ ε
a pre-asymptotic regime. The goal of this work is the construction of a discrete space
which does not suffer from such pre-asymptotic effects triggered by A. In the following,
we assume that the fine mesh is fine enough (in the sense that h� ε) so that |||u− uh||| is
sufficiently small and hence uh a sufficiently accurate reference solution. With the same
argument, the accuracy of the coarse solution uH will not be satisfying as long as H > ε.
Note that reference problem (2) never needs to be solved. It just serves as a reference.

In the next section, we will construct the ideal multiscale space of the same (low)
dimension as VH , but which yields approximations that are of similar accuracy as the
reference solution uh (in particular in the regime H � ε). Throughout the paper, we do
not consider errors that arise from numerical quadrature. For simplicity, we assume that
all integrals can be computed exactly.

3 Ideal multiscale problem

In this section, we construct a low dimensional space that can capture the fine scale
features of the true multiscale solution. We focus on constructing a good multiscale
representation of the flux solution u only. We call it ideal since the reference flux solution
is in this space for all f ∈ QH . This should be contrasted to a localized multiscale space
to be introduced in Section 4. In addition to the spaces Vh and VH defined above we
introduce the following detail space as the intersection of the fine space and the kernel of
the coarse Raviart–Thomas interpolation operator,

V f
h = {v ∈ Vh : ΠHv = 0}.

Since V f
h is the kernel of a projection, it induces the splitting Vh = VH ⊕ V f

h , where VH is
low dimensional and V f

h is high dimensional. We refer to V f
h as the detail space. In this

section we aim at constructing a modified splitting, where VH is replaced by a multiscale
space which incorporates fine scale features.

3.1 Ideal multiscale space

We will construct the ideal multiscale space by applying fine scale correctors to all coarse
functions in VH , i.e. so that (Id − Gh)(VH) is the desired multiscale space for a linear
corrector operator Gh. The corrector operator is constructed using information from the
coefficient A, and has divergence free range in order to keep the flux conservation property
of the coarse space.

The definition of the corrector requires us to construct the splitting Kh = KH ⊕K f
h

with
K f
h := {v ∈ Kh : ΠHv = 0}, and KH := Range((ΠH)|Kh

).

Next, we introduce an ideal corrector operator. We distinguish between local (element-
wise) correctors and a global corrector.

Definition 6 (Ideal corrector operators). Let aT (u,v) := (A−1u,v)T for T ∈ TH . For
each such T ∈ TH , we define an ideal element corrector operator GT

h : V → K f
h by the

equation
a(GT

hv,vf) = aT (v,vf) (5)
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for all vf ∈ K f
h. Furthermore, we define the ideal global corrector operator by summing

the local contributions, i.e. Gh :=
∑

T∈TH G
T
h .

The ideal corrector operators are well-defined since equation (5) is guaranteed a unique
solution by the Lax–Milgram theorem due to the coercivity and boundedness of a on K f

h.
Using the ideal global corrector operator, we can define the discrete multiscale function
space by

V ms
H,h := (Id−Gh)(VH),

where Id is the identity operator. This space has the same dimension as VH . Furthermore,
it allows for the splitting Vh = V ms

H,h ⊕ V f
h . Note that the ideal multiscale space is the

orthogonal complement of K f
h with respect to a(·, ·), i.e.

a(vms
H,h,v

f) = 0 (6)

for all vms
H,h ∈ V ms

H,h and vf ∈ K f
h.

3.2 Ideal multiscale problem formulation

In this section, we use the previously defined ideal multiscale space to define a (prelimi-
nary) multiscale approximation. The ideal multiscale problem reads as follows.

Definition 7 (Ideal multiscale problem). Find ums
H,h ∈ V ms

H,h and pH ∈ QH , such that

a(ums
H,h,vh) + b(vh, pH) = 0,

b(ums
H,h, qH) = −(f, qH),

(7)

for all vh ∈ V ms
H,h and qH ∈ QH .

Lemma 8 (Unique solution of the ideal multiscale problem). Under Assumptions (A1)–
(A3) and (B1)–(B3), the ideal multiscale problem (7) has a unique solution. In particular,
we have

γ(1 + α−1β)−1 ≤ inf
q∈QH

sup
v∈V ms

H,h

b(v, q)

‖q‖Q ‖v‖V
,

i.e. inf-sup stability independent of h and H.

Proof. We let Kms
H,h = {v ∈ V ms

H,h : ∇ · v = 0}. The coercivity of a(·, ·) on Kms
H,h follows

immediately from its coercivity on Kh since Kms
H,h ⊂ Kh. The operator Id − Gh is stable

in V with constant 1 + α−1β, since ∇ ·Ghv = 0 and

‖Ghv‖2
L2(Ω) ≤ α−1a(Ghv, Ghv)

= α−1a(v, Ghv)

≤ α−1β ‖v‖L2(Ω) ‖Ghv‖L2(Ω)
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for all v ∈ V . Combining these results with the inf-sup stability of b(·, ·) on VH and QH ,
we get

γ ≤ inf
q∈QH

sup
v∈VH

b(v, q)

‖q‖Q ‖v‖V
≤ (1 + α−1β) inf

q∈QH

sup
v∈VH

(∇ · (Id−Gh)v, q)

‖q‖Q ‖(Id−Gh)v‖V
= (1 + α−1β) inf

q∈QH

sup
v∈V ms

H,h

(∇ · v, q)
‖q‖Q ‖v‖V

,

(8)

i.e. b(·, ·) is inf-sup stable with constant γ(1 +α−1β)−1 independent of H and h. We note
that Kms

H,h = {v ∈ V ms
H,h : b(v, qH) = 0 ∀q ∈ QH}, since ∇ · v ∈ QH (see Remark 5).

Finally, we apply Lemma 2 with V = V ms
H,h, Q = QH , K = Kms

H,h and constants α̃ = α,

β̃ = β and γ̃ = γ(1 + α−1β)−1.

3.3 Error estimate for ideal problem

In this section, we show that the flux solution of the ideal multiscale problem above
converges in the energy norm with linear order in H to the reference solution. This
convergence is independent of the variations of A, i.e. we do not have any pre-asymptotic
effects from the multiscale features.

Lemma 9 (Error estimate for ideal solution). Under Assumptions (A1)–(A3) and (B1)–
(B3), let uh solve (2) and ums

H,h solve (7), then

∣∣∣∣∣∣uh − ums
H,h

∣∣∣∣∣∣ ≤ β1/2CΠ̂Cρ,dH‖f − PHf‖L2(Ω)

where Cρ,d and CΠ̂ are independent of h and H.

Proof. Parametrizing the solutions uh(f) and ums
H,h(f) by the data f , we use the triangle

inequality to obtain

∣∣∣∣∣∣uh(f)− ums
H,h(f)

∣∣∣∣∣∣
≤ |||uh(f)− uh(PHf)|||+

∣∣∣∣∣∣uh(PHf)− ums
H,h(PHf)

∣∣∣∣∣∣+
∣∣∣∣∣∣ums

H,h(PHf)− ums
H,h(f)

∣∣∣∣∣∣.

The two last terms will be shown to equal zero.
For the first term, we proceed in several steps. Let us define ũh := uh(f)−uh(PHf) =

uh(f−PHf), which is the flux solution for the data f−PHf . The corresponding pressure
solution shall be denoted by p̃h. First, we observe

|||ũh|||2 = (f − PHf, p̃h) = (f − PHf, p̃h − PH p̃h) ≤ ‖f − PHf‖L2(Ω)‖p̃h − PH p̃h‖L2(Ω).
(9)

In order to bound the term ‖p̃h − PH p̃h‖L2(Ω), we let φ ∈ H1
0 (Ω) be the weak solution to

∆φ = p̃h − PH p̃h. Then we have

|φ|2H1(Ω) = (p̃h − PH p̃h, φ− PHφ) ≤ Cρ,dH‖p̃h − PH p̃h‖L2(Ω)|φ|H1(Ω).

Defining w := ∇φ we get∇·w = p̃h−PH p̃h and ‖w‖L2(Ω) ≤ Cρ,dH‖p̃h−PH p̃h‖L2(Ω). Next,

we use a pair of projection operators Π̂h : V → Vh and P̂h : Q→ Qh that commute with
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respect to the divergence operator, allows for Th to be non quasi-uniform, and where Π̂h

is L2-stable, i.e. P̂h∇·w = ∇· Π̂hw and ‖Π̂hw‖L2(Ω) ≤ CΠ̂‖w‖L2(Ω), with CΠ̂ independent
of h. The existence of such operators is proved in [9]. Exploiting this stability and the

fact that p̃h − PH p̃h = P̂h(∇ ·w) (since P̂h is a projection on Qh and p̃h − PH p̃h ∈ Qh),
we obtain

‖p̃h − PH p̃h‖2
L2(Ω) = (p̃h − PH p̃h, p̃h) = (P̂h(∇ ·w), p̃h)

= (∇ · Π̂hw, p̃h) = −(A−1ũh, Π̂hw) ≤ |||ũh|||‖A−1/2Π̂hw‖L2(Ω)

≤ β1/2CΠ̂|||ũh|||‖w‖L2(Ω) ≤ β1/2CΠ̂Cρ,dH|||ũh|||‖p̃h − PH p̃h‖L2(Ω).

Combining this estimate with (9) yields

|||ũh|||2 ≤ β1/2CΠ̂Cρ,dH‖f − PHf‖L2(Ω)|||ũh|||.

For the second term, since the correctors are divergence free, we have ∇·ums
H,h(PHf) ∈

QH . This implies ∇ · ums
H,h(PHf) = −PHf , hence

∇ · ums
H,h(PHf)−∇ · uh(PHf) = 0,

i.e. ums
H,h(PHf) − uh(PHf) ∈ Kh. Now, from first the equations in (2) and (7) in combi-

nation with the a(·, ·)-orthogonality between V ms
H,h and K f

h, we get

a(uh(PHf),v) = 0, v ∈ Vh, ∇ · v = 0, and

a(ums
H,h(PHf),v) = 0, v ∈ V ms

H,h, ∇ · v = 0, and

a(ums
H,h(PHf),v) = 0, v ∈ V f

h , ∇ · v = 0.

Since Vh = V ms
H,h ⊕ V f

h , we obtain

a(uh(PHf)− ums
H,h(PHf),v) = 0,

for all v ∈ Kh. Choosing v = uh(PHf)− ums
H,h(PHf), we see that uh(PHf) = ums

H,h(PHf),
thus the second term equals zero.

To show that the third term is zero, it is sufficient to show that ums
H,h(f−PHf) = 0. The

data f−PHf is L2-orthogonal to the test spaceQH and it enters the equation (7) only in an
L2 scalar product with test functions. Hence ums

H,h(f−PHf) = ums
H,h(PH(f−PHf)) = 0.

4 Localized multiscale method

The ideal corrector problems (5) are at least as expensive to solve as the original reference
problem. Hence, we require to localize these problems to very small patches, without sac-
rificing the good approximation properties. If we can achieve this, the corrector problems
can be solved with low computational costs and fully in parallel. In this section, we show
that this is indeed possible. We prove that we can truncate the computational domain Ω
in the local corrector problems (5) to a small environment of a coarse element T . This
is possible, since the solutions of (5) decay with exponential rate outside the coarse ele-
ment T . We obtain a new localized corrector operator which can be used analogously to

10



the ideal corrector operator to construct a localized multiscale space. This localization
reduces the computational effort for assembling the multiscale space significantly.

In addition to the assumptions (A1)–(A3) and (B1)–(B3), we require additional as-
sumptions on the computational domain and the mesh. More precisely we assume the
following.

(A4) The domain Ω is simply-connected.

(B4) The fine grid Th is quasi-uniform, i.e. the ratio between the maximum and the
minimum diameter of a grid element is bounded by a generic constant.

We note that assumption (A4) is crucial for our proof. Assumption (B4) on the other
hand could be dropped with a more careful analysis. In this case the estimates (and in
particular the decay) will depend on the inverse of the minimum mesh size of the fine grid
in a patch U(T ). For simplicity of the presentation, we do not elaborate this case and
restrict ourselves to quasi-uniform meshes, i.e. to (B4).

In order to localize the detail space K f
h, we use admissible patches. We call this

restriction to patches localization. For each T ∈ TH we pick a connected patch U(T )
consisting of coarse grid elements and containing T . More precisely, for positive k ∈ N we
define k-coarse-layer patches iteratively in the following way. For all T ∈ TH (which are
assumed to be closed sets), we define the element patch Uk(T ) in the coarse mesh TH by

U0(T ) := T,

Uk(T ) :=
⋃
{T ′ ∈ TH : T ′ ∩ Uk−1(T ) 6= ∅} k = 1, 2, . . . .

(10)

See Figure 1 for an illustration of patches. For a given patch U(T ), we define the

(a) One-coarse-layer patch, k = 1. (b) Two-coarse-layer patch, k = 2.

Figure 1: Illustration of k-coarse-layer patches. Dark gray subdomain is T . Light gray
subdomain is Uk(T ).

restriction of V f
h to U(T ) by

V f
h (U(T )) := {w ∈ V f

h : w = 0 in Ω \ U(T )}.

Accordingly, we also define

K f
h(U(T )) := {w ∈ V f

h (U(T )) : ∇ ·w = 0}.

11



Using this localized space, we define the localized corrector operators. Localized quantities
are indexed by the patch layer size k.

Definition 10 (Localized corrector operators). For each T ∈ TH and k ≥ 1 layers, we
define a localized element corrector operator GT

h,k : V → K f
h(Uk(T )):

a(GT
h,kv,w) = aT (v,w) (11)

for all w ∈ K f
h(Uk(T )). Further, we define the localized global corrector operator Gh,k :=∑

T∈TH G
T
h,k.

The localized corrector operators are again well-defined by the Lax-Milgram theo-
rem, exploiting that a(·, ·) is a weighted L2-scalar product. Note that the definition of
K f
h(Uk(T )) implies Neumann boundary conditions on the localized corrector problems

(11). We define a localized multiscale function space by

V ms,k
H,h := (Id−Gh,k)(VH)

and state the localized multiscale problem as follows.

Definition 11 (Localized multiscale problem). The localized multiscale problem reads:
find ums,k

H,h ∈ V ms,k
H,h and pH ∈ QH , such that

a(ums,k
H,h ,vh) + b(vh, pH) = 0,

b(ums,k
H,h , qH) = −(f, qH),

(12)

for all vh ∈ V ms,k
H,h and qH ∈ QH .

Definitions 10 and 11 constitute the proposed multiscale method. Next, we show that
the above stated problem is well-posed.

Lemma 12 (Unique solution of localized multiscale problem). Under Assumptions (A1)–
(A3) and (B1)–(B3), the localized multiscale problem (12) has a unique solution for all
k, h and H.

Proof. We use similar arguments as in Lemma 8. The basic difference is that we need to
show stability for the localized corrector operator Gh,k. We start with the stability of the
localized element corrector operators. Here we have for arbitrary v ∈ V

∣∣∣∣∣∣GT
h,kv

∣∣∣∣∣∣2 = a(GT
h,kv, G

T
h,kv) = aT (v, GT

h,kv) ≤ |||v|||T
∣∣∣∣∣∣GT

h,kv
∣∣∣∣∣∣. (13)

Now, we can prove L2-stability of the localized global operator. We get

‖Gh,kv‖2
L2(Ω) =

∥∥∥∥∥
∑

T∈TH
GT
h,kv

∥∥∥∥∥

2

L2(Ω)

≤ α−1a

(∑

T∈TH
GT
h,kv,

∑

T ′∈TH
GT ′
h,kv

)

= α−1
∑

T∈TH

∑

T ′⊂Uk(T )

a(GT
h,kv, G

T ′
h,kv)

≤ 1

2
α−1

∑

T∈TH

∑

T ′⊂Uk(T )

(∣∣∣∣∣∣GT
h,kv

∣∣∣∣∣∣2 +
∣∣∣
∣∣∣
∣∣∣GT ′

h,kv
∣∣∣
∣∣∣
∣∣∣
2
)

≤ α−1Cρk
d
∑

T∈TH

∣∣∣∣∣∣GT
h,kv

∣∣∣∣∣∣2 (13)

≤ α−1Cρk
d
∑

T∈TH
|||v|||2T ≤ α−1βCρk

d‖v‖2
L2(Ω),

12



where Cρ is a constant only depending on the shape regularity constant ρ of the coarse
mesh. Similar to (8) we derive inf-sup stability with

γ ≤ inf
q∈QH

sup
v∈VH

b(v, q)

‖q‖Q ‖v‖V
≤ (1 + α−1/2β1/2C1/2

ρ kd/2) inf
q∈QH

sup
v∈V ms,k

H,h

b(v, q)

‖q‖Q ‖v‖V
.

Observe that the inf-sup stability constant γ0
k := γ(1 + α−1/2β1/2C

1/2
ρ kd/2)−1 depends on

k this time.

The inf-sup stability constant γ0
k depends on k due to overlapping patches. We come

back to another estimate of the inf-sup stability constant in Section 4.3 after proving the
decay of the correctors.

It is important to note that in the localized case we do not have orthogonality between
V ms,k
H,h and K f

h as in the ideal case (cf. equation (6)). This orthogonality was crucial in the
error estimate for the ideal method presented in Lemma 9. In the localized case, we rely
on the exponential decay of the localized element correctors, which justifies localization
to patches.

4.1 Error estimate for localized problem

In this section we state the main result of this paper, which is an a priori error estimate
in the energy norm between the reference solution and the localized multiscale approx-
imation. We first present a logarithmic stability result for the nodal Raviart–Thomas
interpolation operator ΠH for fine scale functions and then state a lemma on the ex-
ponential decay of the correctors. Then the main theorem follows. The proof of the
exponential decay is contained in Section 4.2. The notation a . b stands for a ≤ Cb with
some constant C that might depend on d, Ω, α, β and coarse and fine mesh regularity
constants, but not on the mesh sizes h and H. In particular it does not depend on the
possibly rapid oscillations in A.

We recall a well known stability result for the nodal Raviart–Thomas interpolation
operator.

Lemma 13 (Logarithmic stability of the nodal interpolation operator for divergence free
functions). Assume (B1)–(B4). For any given element T ∈ TH there exists a constant C
that only depends on the regularity of T and the quasi-uniformity of Th, such that

‖ΠHvh‖2
L2(T ) ≤ Cλ(H/h)2‖vh‖2

L2(T ),

with λ(H/h) := (1 + log(H/h))1/2 for all vh ∈ Vh with ∇ · vh = 0.

A proof for this can be found in [32, Lemma 4.1]. This result holds for both d = 2
and 3.

Remark 14. There exist unconditionally L2-stable Clément-type interpolation operators
for which we could define λ(H/h) := 1 for all h and H instead, see [5, 8, 9, 30]. In
particular, the operators introduced in [5, 9] are projections and were used as a technical
tool in the proof of Lemma 9 above. However, these operators are hard to implement in
practice and hence are not used in the proposed numerical method.
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Lemma 15 (Exponential decay of correctors). Under Assumptions (A1)–(A4) and (B1)–
(B4), there exists a generic constant 0 < θ < 1 depending on the contrast β/α, but not
on h or H such that for all positive k ∈ N:

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
∑

T∈TH

(
GT
hv −GT

h,kv
)
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

2

. kdλ(H/h)2θ2k/λ(H/h)
∑

T∈TH

∣∣∣∣∣∣GT
hv
∣∣∣∣∣∣2 (14)

for all v ∈ V .

Proof. The lemma is a direct consequence of Lemma 21 in Section 4.2.

Now, combining the error estimate for the ideal multiscale method in Lemma 9 and
Lemma 15 we get the following a priori error estimate of the localized multiscale method.

Theorem 16 (Error estimate for localized multiscale solution). Under Assumptions
(A1)–(A4) and (B1)–(B4), for a positive k ∈ N, let uh solve (2) and ums,k

H,h solve (12),
then ∣∣∣

∣∣∣
∣∣∣uh − ums,k

H,h

∣∣∣
∣∣∣
∣∣∣ . H‖f − PHf‖L2(Ω) + kd/2λ(H/h)2θk/λ(H/h)‖f‖L2(Ω), (15)

for some 0 < θ < 1 depending on the contrast β/α, but not on k, h and H.

Before stating the proof, we discuss the role and choice of k. The second term in
the error estimate (15) is an effect of the localization. This term can be made small by
choosing large values of k, i.e. large patch sizes. A natural question is how to choose k to
make the second term of order H to some power.

We write λ = λ(H/h) for convenience. Let k̃ = 2d−1 log(θ)λ−1k = −Cθλ−1k, where
Cθ = −2d−1 log(θ) > 0 is a constant independent of H and h. We are interested in the
asymptotic behavior, so we consider H � 1. Setting the second term in (15) equal to
H‖f‖L2(Ω) yields

k̃ek̃ = −Cθλ−4/d−1H2/d,

that is k̃ = W (−Cθλ−4/d−1H2/d), where W is the Lambert W -function. In terms of
the number of layers k, we get k = −C−1

θ λW (−Cθλ−4/d−1H2/d). This equation has two
solutions for sufficiently small H. Since we require k ≥ 1, we pick the branch W ≤ −1.

Another, more practical option is to choose k = Rλ log(1/H) for some constant R.
Then the expression kd/2λθk/λ will be asymptotically (as H → 0) dominated by the power
H−R log θ. Choosing R sufficiently large yields arbitrary order of accuracy of the term. The
fine mesh size h is often fixed and we can choose

k = (1 + | logr(H)|)1/2 logs(1/H) (16)

for some bases r and s of the two logarithms.

Remark 17. If Clément-type interpolation operators are used, we have λ ≡ 1 indepen-
dent of H/h. Choosing k = C log(1/H) makes the second term in (15) proportional to
log(1/H)d/2H−C log θ. For an appropriate C we can make the first term in (15) dominate
the error estimate.

14



Proof of Theorem 16. Let ũms,k
H,h := ((Id − Gh,k) ◦ ΠH)ums

H,h ∈ V ms,k
H,h , then ũms,k

H,h − ums,k
H,h is

divergence free. Hence, by Galerkin orthogonality we have

a(uh − ums,k
H,h ,uh − ums,k

H,h ) = a(uh − ums,k
H,h ,uh − ũms,k

H,h )

and obtain
∣∣∣
∣∣∣
∣∣∣uh − ums,k

H,h

∣∣∣
∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣
∣∣∣uh − ũms,k

H,h

∣∣∣
∣∣∣
∣∣∣ ≤

∣∣∣∣∣∣uh − ums
H,h

∣∣∣∣∣∣+
∣∣∣
∣∣∣
∣∣∣ums

H,h − ũms,k
H,h

∣∣∣
∣∣∣
∣∣∣.

The first term can be bounded by β1/2CΠ̂Cρ,dH‖f − PHf‖L2(Ω) by Lemma 9. Regarding
the second term, using [32, Lemma 4.1] and stability of the ideal multiscale solution, we
get

∑

T∈TH

∣∣∣∣∣∣GT
hΠHums

H,h

∣∣∣∣∣∣2 ≤
∑

T∈TH

∣∣∣∣∣∣ΠHums
H,h

∣∣∣∣∣∣2
T

=
∣∣∣∣∣∣ΠHums

H,h

∣∣∣∣∣∣2 . λ(H/h)2‖f‖2
L2(Ω)

and can combine this with Lemma 15 to get

∣∣∣
∣∣∣
∣∣∣ums

H,h − ũms,k
H,h

∣∣∣
∣∣∣
∣∣∣ =

∣∣∣∣∣∣(Gh,k −Gh)ΠHums
H,h

∣∣∣∣∣∣

=

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
∑

T∈TH
(GT

h,k −GT
h )ΠHums

H,h

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

. kd/2λ(H/h)θk/λ(H/h)

(∑

T∈TH

∣∣∣∣∣∣GT
hΠHums

H,h

∣∣∣∣∣∣2
)1/2

. kd/2λ(H/h)2θk/λ(H/h)‖f‖L2(Ω).

4.2 Proof of exponential decay of correctors

This section consists of four lemmas, Lemma 18–21, of which the last one is the main
result. The two first lemmas are auxiliary and are motivated by steps in the proofs of
the latter two. Before starting, we need to set some notation and introduce some tools.
We use the notation W 1,2

loc (Rd) = {f : f ∈ H1(ω) ∀ compact subsets ω ⊂ Rd}. Note
that we will use the letter K to denote arbitrary triangles of the coarse mesh TH . The
first lemma says that every divergence free function w in H(div,Ω) is the divergence of a
skew-symmetric matrix.

Lemma 18. Let Ω be a simply connected domain with Lipschitz boundary and let w ∈
H(div,Ω) with ∇ · w = 0 in Ω. Then there exists a skew-symmetric matrix ψ ∈
[W 1,2

loc (Rd)]d×d with ∇ψij ∈ [L2(Rd)]d and
∫

Ω
ψ = 0 such that

w = ∇ · ψ in Ω and ‖∇ψij‖L2(ω) . ‖w‖L2(ω) for ω ⊂ Ω. (17)

Here, the divergence of ψ is defined along the rows.
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Proof. The result is a combination of well-known results. First, we extend the divergence-
free vector field w ∈ H(div,Ω) to a divergence-free vector field w̃ ∈ H(div,Rd). In
particular we have w̃ ∈ [L2(Rd)]d and w̃ = w in Ω. Note that the extension of w to Rd

will be typically not zero outside of Ω. The existence of such an extension operator was
proved in [31, Proposition 3.8]. It is well known that there exists a skew-symmetric matrix
ψ ∈ [W 1,2

loc (Rd)]d×d with ∇ψij ∈ [L2(Rd)]d, such that w̃ = ∇·ψ (see [21, Lemma 2.3]). The
matrix is only unique up to a constant, so we fix the constant by

∫
Ω
ψ = 0 (which gives

us a Poincaré inequality). The inequality ‖∇ψij‖L2(ω) . ‖w̃‖L2(ω) (for ω ⊂ Rd) can be
extracted from the proof given for [21, Lemma 2.3] and is based on the observation that
it holds ∇ψij = ∇∆−1(∂jw̃i − ∂iw̃j). Lets consider the case d = 2. Obviously, if i = j
we obtain ∇ψii = ∇ψjj = 0 and estimate (17) is trivial. If i 6= j, we obtain by using the
skew-symmetry

‖w‖2
L2(ω) = ‖∇ · ψ‖2

L2(ω) = ‖∂1ψ11 + ∂2ψ12‖2
L2(ω) + ‖∂1ψ21 + ∂2ψ22‖2

L2(ω)

= ‖∂2ψ12‖2
L2(ω) + ‖∂1ψ21‖2

L2(ω) = ‖∂2ψ12‖2
L2(ω) + ‖∂1ψ12‖2

L2(ω)

= ‖∇ψ12‖2
L2(ω) = ‖∇ψ21‖2

L2(ω),

i.e. we obtain even equality in estimate (17).

We also require suitable cut-off functions that are central for the proof. For T ∈ TH
and positive k ∈ N, we let the function ηT,k ∈ P1(TH) (globally continuous and piecewise
linear w.r.t. TH) be defined as

ηT,k(x) = 0 for x ∈ Uk−1(T ),

ηT,k(x) = 1 for x ∈ Ω \ Uk(T ).
(18)

We start with the following lemma, which enables us to approximate truncated func-
tions from K f

h.

Lemma 19. Let wh ∈ K f
h and let ψ ∈ [W 1,2

loc (Ω)]d×d with wh = ∇ · ψ denote the cor-
responding skew-symmetric matrix as in Lemma 18. Let furthermore ψK := |K|−1

∫
K
ψ

denote the average on K ∈ TH and let ψH ∈ [L2(Ω)]d×d denote the corresponding piece-
wise constant matrix with ψH(x) = ψK for x ∈ K. The broken divergence-operator
∇H · is given by ∇H · v := ∇ · v|K for K ∈ TH . The function ηT,k ∈ P1(TH) is a
given cut-off function as defined in (18) for k > 0. Then, we have that the function
w̃h := Πh (∇ · (ηT,kψ)) − (ΠH ◦ Πh) (∇ · (ηT,kψ)) ∈ K f

h fulfills the following estimate for
any K ∈ TH :

‖∇ · (ηT,kψ)−∇H · (ηT,kψH)− w̃h‖L2(K)

.
{
λ(H/h)‖wh‖L2(K) K ⊂ Uk(T ) \ Uk−1(T )

0 otherwise.

Obviously we also have supp(w̃h) ⊂ Ω \ Uk−1(T ).

Proof. First, we observe that the skew-symmetric matrix ψ must be a polynomial of
maximum degree 2 on each fine grid element. We use this in the following without
mentioning.
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We fix the element T ∈ TH and k ∈ N and denote η := ηT,k. Furthermore, we define
for K ∈ TH

cK := |K|−1

∫

K

η and ψK := |K|−1

∫

K

ψ.

We define w̃h := Πh (∇ · (ηψ)) − (ΠH ◦ Πh) (∇ · (ηψ)) and observe that w̃h ∈ K f
h and

wh = w̃h on Ω\Uk(T ). The property ΠH(w̃h) = 0 is clear. The property∇·w̃h = 0 follows
from the fact that ηψ is still skew symmetric and that ∇ · (ΠH ◦Πh)(·) = (PH ◦Ph)(∇ · ).
Since ψK and cK are constant on K we have

Πh (∇ · (cKψK)) = ∇ · (cKψK) = 0 on K. (19)

Furthermore, since ΠH(vH) = vH for all vH ∈ VH and since ∇ · (ηψK) ∈ VH we also have

(ΠH ◦ Πh)(∇ · (ηψK)) = Πh (∇ · (ηψK)) on K. (20)

Finally, we also have on K,

(ΠH ◦ Πh)(∇ · (cKψ)) = cK(ΠH ◦ Πh)(∇ · ψ) = cKΠH(wh) = 0. (21)

Combining (19), (20), and (21) we obtain for every K ∈ TH

‖(ΠH ◦ Πh) (∇ · (ηψ))− Πh(∇ · (ηψK))‖L2(K)

= ‖(ΠH ◦ Πh) (∇ · (ηψ)−∇ · (cKψ)−∇ · (ηψK) +∇ · (cKψK)) ‖L2(K)

= ‖(ΠH ◦ Πh) (∇ · ((η − cK)(ψ − ψK))) ‖L2(K). (22)

Now, we consider the quantity we want to estimate. For any K ∈ TH ,

‖∇ · (ηψ)−∇H · (ηψH)− w̃h‖L2(K)

≤ ‖∇ · (η(ψ − ψK))− Πh (∇ · (η(ψ − ψK))) ‖L2(K)

+ ‖Πh (∇ · (η(ψ − ψK)))− Πh (∇ · (ηψ)) + (ΠH ◦ Πh) (∇ · (ηψ)) ‖L2(K)

= ‖∇ · (η(ψ − ψK))− Πh (∇ · (η(ψ − ψK))) ‖L2(K)

+ ‖(ΠH ◦ Πh) (∇ · (ηψ))− Πh(∇ · (ηψK))‖L2(K)

(22)
= ‖∇ · ((η − cK)(ψ − ψK))− Πh (∇ · ((η − cK)(ψ − ψK))) ‖L2(K)

+ ‖(ΠH ◦ Πh) (∇ · ((η − cK)(ψ − ψK))) ‖L2(K)

. λ(H/h)‖∇ · ((η − cK)(ψ − ψK))‖L2(K). (23)

In the last step we used Lemma 13, the property that Πh∇ · ((η − cK)(ψ − ψK)) is
divergence free and the fact that Πh is locally L2-stable when applied to functions of
small fixed polynomial degree, i.e. for fixed t ∈ Th and r ∈ N there exists a constant C(r)
that only depends on r and the shape regularity of t such that

‖Πh(v)‖L2(t) ≤ C(r)‖v‖L2(t) for all v ∈ [Pr(t)]d.
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Continuing from (23) we obtain

‖∇ · ((η − cK)(ψ − ψK)‖2
L2(K)

. ‖(η − cK)∇ · ψ‖2
L2(K) + ‖(ψ − ψK)∇η‖2

L2(K)

. H2‖∇η‖2
L∞(K)‖∇ψ‖2

L2(K)

(17)

.
{
‖w‖2

L2(K) K ⊂ Uk(T ) \ Uk−1(T )

0 otherwise.
(24)

Note that we used the properties of η to obtain the Lipschitz bound ‖η − cK‖L∞(K) .
H‖∇η‖L∞(K) . 1 and that ∇η has no support outside Uk(T )\Uk−1(T ). We also used the
Poincaré inequality for η − cK which has a zero average on K. Combining (23) and (24)
yields the sought result.

We continue with a lemma showing the exponential decay of solutions to problems of
the form in (5).

Lemma 20. Now, let wT ∈ K f
h be the solution of

∫

Ω

A−1wT · vh = FT (vh) for all vh ∈ K f
h (25)

where FT ∈ (K f
h)
′ is such that FT (vh) = 0 for all vh ∈ K f

h(Ω \ T ). Then, there exists
a generic constant 0 < θ < 1 (depending on the contrast β/α) such that for all positive
k ∈ N:

∣∣∣∣∣∣wT
∣∣∣∣∣∣

Ω\Uk(T )
. θk/λ(H/h)

∣∣∣∣∣∣wT
∣∣∣∣∣∣

Ω
. (26)

Proof. The proof exploits similar arguments as in [28]. Let us fix k ∈ N. We denote again
η := ηT,k ∈ P1(TH) (as in (18)). We apply Lemma 19 to wT ∈ K f

h. The corresponding
skew symmetric matrix shall again be denoted by ψ = ψ(wT ) and we define

w̃T := Πh(∇ · (ηψ))− (ΠH ◦ Πh) (∇ · (ηψ)) .

We obtain that ∇ · (ηψ)−∇H · (ηψH)− w̃T is zero outside Uk(T ) \ Uk−1(T ) and

‖∇ · (ηψ) − ∇H · (ηψH) − w̃T‖L2(Uk(T )\Uk−1(T )) . λ(H/h)‖wT‖L2(Uk(T )\Uk−1(T )). (27)

First observe that
∫

Ω\Uk−1(T )

A−1wT · w̃T =

∫

Ω

A−1wT · w̃T = FT (w̃T ) = 0 (28)

and

ηwT = η∇ · ψ = ∇ · (ηψ)− ψ∇η. (29)
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With that we have
∫

Ω\Uk(T )

A−1wT ·wT ≤
∫

Ω\Uk−1(T )

A−1wT · (ηwT )

(29)
=

∫

Ω\Uk−1(T )

A−1wT · (∇ · (ηψ)− ψ∇η)

(28)
=

∫

Ω\Uk−1(T )

A−1wT ·
(
∇ · (ηψ)− ψ∇η − w̃T

)

=

∫

Ω\Uk−1(T )

A−1wT ·
(
∇ · (ηψ)−∇H · (ηψH)− w̃T

)

︸ ︷︷ ︸
=:I

+

∫

Ω\Uk−1(T )

A−1wT · (∇H · (ηψH)− ψ∇η)

︸ ︷︷ ︸
=:II

.

For I we use (27) to obtain

I . λ(H/h)
∣∣∣∣∣∣wT

∣∣∣∣∣∣2
Uk(T )\Uk−1(T )

and for II we obtain

II =

∫

Ω\Uk−1(T )

A−1wT · ((ψH − ψ)∇η)

.
∑

K∈TH
K⊂Uk(T )\Uk−1(T )

∣∣∣∣∣∣wT
∣∣∣∣∣∣
K
H‖∇η‖L∞(K)‖∇ψ‖L2(K)

.
∣∣∣∣∣∣wT

∣∣∣∣∣∣2
Uk(T )\Uk−1(T )

.

Now, denote by L := Cλ(H/h), and we get

∣∣∣∣∣∣wT
∣∣∣∣∣∣2

Ω\Uk(T )
≤ L

∣∣∣∣∣∣wT
∣∣∣∣∣∣2
Uk(T )\Uk−1(T )

≤ L
(∣∣∣∣∣∣wT

∣∣∣∣∣∣2
Ω\Uk−1(T )

−
∣∣∣∣∣∣wT

∣∣∣∣∣∣2
Ω\Uk(T )

)

where C is independent of T , k and A, but can depend on the contrast. We obtain

∣∣∣∣∣∣wT
∣∣∣∣∣∣2

Ω\Uk(T )
≤ (1 + L−1)−1

∣∣∣∣∣∣wT
∣∣∣∣∣∣2

Ω\Uk−1(T )
.

A recursive application of this inequality and
∣∣∣∣∣∣wT

∣∣∣∣∣∣
Ω\U0(T )

≤
∣∣∣∣∣∣wT

∣∣∣∣∣∣
Ω

yields

∣∣∣∣∣∣wT
∣∣∣∣∣∣2

Ω\Uk(T )
≤ e− log(1+L−1)k

∣∣∣∣∣∣wT
∣∣∣∣∣∣2

Ω
≤ e− log(1+C−1)k/λ(H/h)

∣∣∣∣∣∣wT
∣∣∣∣∣∣2

Ω
,

where we used Bernoulli’s inequality and that 0 < L−1 ≤ C−1 in the last step. The choice
θ := (1 + C−1)−1 proves the lemma.

The following lemma is the main result of this subsection. It can be directly applied
to the localized corrector problems (11) with FT (vh) = aT (v,vh), G

T
h,kv = wT,k and

GT
hv = wT for any v ∈ V .
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Lemma 21. Let the setting of Lemma 20 hold true and let additionally wT,k ∈ K f
h(Uk(T ))

denote the solution of

∫

Uk(T )

A−1wT,k · vh = FT (vh) for all vh ∈ K f
h(Uk(T )). (30)

Then, there exists a generic constant 0 < θ < 1 (depending on the contrast) such that for
all positive k ∈ N:

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
∑

T∈TH

(
wT −wT,k

)
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

2

Ω

. kdλ(H/h)2θ2k/λ(H/h)
∑

T∈TH

∣∣∣∣∣∣wT
∣∣∣∣∣∣2

Ω
. (31)

Proof. Let ηT,k be defined according to (18) and denote z :=
∑

T∈TH (wT − wT,k) ∈ K f
h.

We obtain

|||z|||2Ω =
∑

T∈TH
(A−1(wT −wT,k), (1− ηT,k+1)z)︸ ︷︷ ︸

=:I

+ (A−1(wT −wT,k), ηT,k+1z)︸ ︷︷ ︸
=:II

.

The first term is estimated by

I ≤
∣∣∣∣∣∣wT −wT,k

∣∣∣∣∣∣
Ω
|||z(1− ηT,k+1)|||Uk+1(T ) ≤

∣∣∣∣∣∣wT −wT,k
∣∣∣∣∣∣

Ω
|||z|||Uk+1(T ).

For the second term we have z ∈ K f
h, hence there exists again a skew-symmetric matrix

ψ = ψ(z) with the properties as in Lemma 18 with

ηT,k+1z = ηT,k+1∇ · ψ = ∇ · (ηT,k+1ψ)− ψ∇ηT,k+1.

We define z̃ := Πh(∇ · (ηT,k+1ψ)) − (ΠH ◦ Πh) (∇ · (ηT,k+1ψ)). Using Lemma 19 and
supp(ηT,k+1z)∩supp(wT,k) = ∅ we get

(A−1(wT −wT,k), ηT,k+1z) = (A−1wT , ηT,k+1z)

(28)
=

∫

Ω\Uk(T )

A−1wT · (∇ · (ηT,k+1ψ)− ψ∇ηT,k+1 − z̃)

=

∫

Ω\Uk(T )

A−1
(
wT −wT,k

)
· (∇ · (ηT,k+1ψ)− ψ∇ηT,k+1 − z̃) .

Now proceed as in Lemma 20 to obtain

II . λ(H/h)
∣∣∣∣∣∣wT −wT,k

∣∣∣∣∣∣
Ω
|||z|||Uk+1(T ).

Combining the estimates for I and II and applying Hölder’s inequality finally yields, for
k ≥ 1,

|||z|||2Ω . λ(H/h)
∑

T∈TH

∣∣∣∣∣∣wT −wT,k
∣∣∣∣∣∣

Ω
|||z|||Uk+1(T )

. k
d
2λ(H/h)

(∑

T∈TH

∣∣∣∣∣∣wT −wT,k
∣∣∣∣∣∣2

Ω

) 1
2

|||z|||Ω.
(32)
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It remains to bound
∣∣∣∣∣∣wT −wT,k

∣∣∣∣∣∣2
Ω

. In order to do this, we use Galerkin orthogonality
for the local problems, which gives us

∣∣∣∣∣∣wT −wT,k
∣∣∣∣∣∣2

Ω
≤ inf

w̃T,k∈Kf
h(Uk(T ))

∣∣∣∣∣∣wT − w̃T,k
∣∣∣∣∣∣2

Ω
.

Again, we use Lemma 20 to show

∣∣∣∣∣∣wT −wT,k
∣∣∣∣∣∣2

Ω
. θ2k/λ(H/h)

∣∣∣∣∣∣wT
∣∣∣∣∣∣2

Ω
. (33)

Combining (32) and (33) proves the lemma.

4.3 Inf-sup stability revisited

The decay results can be used to prove another inf-sup stability constant γ1
k in addition to

γ0
k from Lemma 12 for the bilinear form b(·, ·) with the localized multiscale space. Using

Lemma 21, we obtain

‖Gh,kv −Ghv‖2
L2(Ω) =

∥∥∥∥∥
∑

T∈TH
(GT

h,kv −GT
hv)

∥∥∥∥∥

2

L2(Ω)

. kdλ(H/h)2θ2k/λ(H/h)
∑

T∈TH
‖GT

hv‖2
L2(Ω)

. kdλ(H/h)2θ2k/λ(H/h)‖v‖2
L2(Ω).

We get the following stability

‖Gh,kv‖L2(Ω) ≤ ‖Gh,kv −Ghv‖L2(Ω) + ‖Ghv‖L2(Ω)

. (kd/2λ(H/h)θk/λ(H/h) + 1)‖v‖L2(Ω).

Using the same technique as in Lemma 12, we obtain an inf-sup stability constant γ1
k :=

γ(2 + kd/2λ(H/h)θk/λ(H/h))−1.
For the nodal Raviart–Thomas interpolation operator ΠH , λ(H/h) depends on h and

H, and we cannot obtain a uniform bound on the constant for this estimate either.
However, for L2-stable Clément-type interpolation operators (discussed in Remark 14),
we have λ(H/h) ≡ 1, independently of h and H. If using such an interpolator in place of
ΠH , the inf-sup stability constant γ1

k can be bounded from below by a positive constant
independent of h and H, since kd/2θk is bounded from above with respect to k.

5 Numerical experiments

Four numerical experiments are presented in this section. Their purpose is to show that
the error estimate for the localized multiscale method presented in Theorem 16 is valid
and useful for determining the patch sizes and that the method is competitive.

A brief overview of the implementation of the method follows. The two dimensional
Raviart–Thomas finite element is used. For all free degrees of freedom e (interior edges),
the localized global corrector Gh,kΦe for the corresponding basis function Φe is computed
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according to equation (11). The additional constraints on the test and trial functions to
be in the kernel to the coarse Raviart–Thomas projection operator are implemented using
Lagrange multipliers (in addition to those already there due to the mixed formulation).
The corrector problems are cheap since they are solved only on small patches. This can
be done in parallel over all basis functions. Finally, problem (12) is solved. Regarding the
linear system arising here, we compare it with the linear system arising from a standard
Raviart–Thomas discretization (using VH for the flux) of the mixed formulation on the
corase mesh: (

K BT

B 0

)
=

(
0
b

)
,

for matrices K and B and a vector b. The difference with the multiscale method is that
matrix corresponding to the bilinear form a(·, ·) is computed using the low dimensional
modified localized multiscale basis {ΦE −Gh,kΦE}E spanning V ms,k

H,h . Since the correctors

are divergence free, K is replaced by a different matrix K̃ in the system above, whereas
B and b are left intact.

In all numerical experiments below, the diffusion matrix is diagonal with identical
diagonal elements, A(x) = A(x)I, with I being the identity matrix, for a scalar-valued
function A.

5.1 Investigation of error from localization

In this experiment, we investigate how the error in energy norm of the localized multiscale
solution is affected by the localization to patches of the correctors. The error due to
localization is bounded by the second term in the estimate in Theorem 16. This term will
be the focus of this experiment.

The computational domain is the unit square Ω = [0, 1]2 and the source function is
given by

f(x) =





1 if x ∈ [0, 1/4]2,

−1 if x ∈ [3/4, 1]2,

0 otherwise.

We consider three different diffusion coefficients A:

1. Constant: A(x) = 1 in the whole domain.

2. Noise: A(x) is piecewise constant on a 27×27 uniform rectangular grid. In each grid
cell, the value of A is equal to a realization of exp(10ω), where ω is a cell-specific
standard uniformly distributed variable.

3. Channels: A(x) is as is shown in Figure 2. It is piecewise constant on a 27 × 27

uniform rectangular grid. The coefficient A(x) = 1 for x in black cells and A(x) =
exp(10) for x in white cells.

Figure 3 shows the mesh used in the experiment. Both fine and coarse meshes are con-
structed as shown in the figure. A reference solution uh was computed with the standard
Raviart–Thomas spaces Vh and Qh with h = 2−8. Solutions ums,k

H,h to the localized multi-
scale problem were computed using H = 2−2, 2−3, . . . , 2−6. The patch size k was chosen
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Figure 2: Coefficient A defined on a 27 × 27 grid of Ω.

(a) Coarsest mesh, h = 1. (b) One refinement, h = 1/2.

Figure 3: Family of triangulations of the unit square.

as
k = C(1 + log2(H/h))1/2 log2(H−1)

rounded to the nearest integer with C = 0.25 and C = 0.5. The relative error (using the

reference solution in place of the exact solution) in energy norm, i.e.
∣∣∣
∣∣∣
∣∣∣uh − ums,k

H,h

∣∣∣
∣∣∣
∣∣∣/|||uh|||

was computed. See Figure 4 for the resulting convergence of this error with respect to
H for the two values of C. Note that since f ∈ QH for all examples, the first term in
(15) vanishes. The error is hence bounded by kd/2λ(H/h)2θk/λ(H/h)‖f‖L2(Ω), which allows
for a careful investigation of the influence of k, H and h. A reference line proportional
to H2 is plotted for guidance. We can see that we achieve convergence for both choices
of C. However, since k is rounded to an integer, the convergence plots have a staggered
appearance. This example shows that the error due to localization can be kept small and
decreasing with H. The plots also show the relative error in energy norm for the stan-
dard Raviart–Thomas discretization on the coarse mesh. It is evident that the localized
multiscale space has good approximation properties since it permits convergence while
the standard space of the same dimension does not.

5.2 Investigation of instability

In this experiment we show how singularity-like features can appear in the solution, prob-
ably as a result of high contrast in combination with the L2-instability of the nodal
Raviart–Thomas interpolator.

Again, we consider the unit square Ω = [0, 1]2. The diffusion coefficient A is chosen
according to Figure 5. In other words, A is defined as

A(x) =

{
exp(10) if x2 < 1/2 or x ∈ [1

2
− 2−5, 1

2
+ 2−5]× [1

2
, 1

2
+ 2−5],

1 otherwise.
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(a) Diffusion coefficient is constant.
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(b) Diffusion coefficient is noisy.
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(c) Diffusion coefficient has channel structures.

Figure 4: Convergence plots for localization error experiment. Relative error in energy
norm for three choices of A, for different values of the constant C determining the patch
size. The number adjacent to a point is the actual value of k for the specific simulation
corresponding to that point.

24



Figure 5: Coefficient A defined on a 25 × 25 grid of Ω where A(x) = 1 for x in black cells
and A(x) = exp(10) for x in white cells.

The source function is chosen as

f(x) =

{
−1 if x2 < 1/2,

1 otherwise.

This particular choice of A and f yields a localized multiscale solution with a clear
singularity-like feature at x = (x1, x2) = (1/2, 1/2) in the localized multiscale solution.

We use the family of triangulations presented in Figure 3 and fix H = 1/4 so that f
is resolved on the coarse scale. Then f ∈ QH and all error stems from localization (see
Theorem 16). We let the resolution h of the fine space be h = 2−5, 2−6, . . . , 2−9. Choosing
k = 2, we compute the localized multiscale solution ums,k

H,h and reference solution uh for
the given values of h.

From the error estimate in Theorem 16, we expect to have

∣∣∣
∣∣∣
∣∣∣uh − ums,k

H,h

∣∣∣
∣∣∣
∣∣∣ . kd/2λ(H/h)2θk/λ(H/h)‖f‖L2(Ω)

∝ log
(
h−1
)

as h→ 0.

The energy norm of the error is plotted in Figure 6. We can see that for this particular
problem and range of h, the error increases with h and with rate log(h−1) as predicted by
the error estimate. However, the error estimate seems not to be sharp for this particular
example. Figure 7 shows the reference and multiscale flux solutions. The magnitude
of the reference solution is in the range [0, 3], while the multiscale solution has a spike
reaching magnitude 30 at x = (1/2, 1/2). Interesting to note is that the singularities
vanish for the ideal multiscale method, i.e. without localization, see Lemma 9.

5.3 Convergence in an L-shaped domain

Next, we consider an L-shaped domain with noisy diffusion coefficient A (case 2. in Sec-
tion 5.1) and with f /∈ QH . In this experiment, we show that the localization error
investigated in the previous section can be dominated by errors from projecting f .

We use the domain Ω = [0, 1]2 \ [1/2, 1] × [0, 1/2] and the triangulation presented in
Figure 8. Both fine and coarse meshes are constructed as shown in the figure. Further,

25



5 6 7 8 9

log2 h
−1

2 · 10−2

10−2|||u
h
−
u
m
s,
k

H
,h

|||

Localization error

2 · 10−3 · log2 h−1

Figure 6: Divergence of the energy norm of the localization error of a particular multiscale
solution as h decreases.

(a) Reference solution, h = 2−9. (b) Multiscale solution, h = 2−9, H = 2−2,
k = 2.

Figure 7: Magnitude of flux at the centroid of the triangles.

we choose source function as

f(x) =





1/2 + x1 − x2 if x2 < 1/2,

−(1/2 + x1 − x2) if x1 > 1/2,

0 otherwise.

Note that f /∈ QH and ‖f − PHf‖L2(Ω) . H‖f‖L2(Ω). A reference solution uh was
computed with the standard Raviart–Thomas spaces Vh and Qh with h = 2−8. Solutions
ums,k
H,h to the localized multiscale problem were computed using H = 2−2, 2−3, . . . , 2−6. The

patch size k was chosen as

k = C(1 + log2(H/h))1/2 log2(H−1)

rounded to the nearest integer, with C = 0.25 and C = 0.5. The relative error in energy
norm was recorded for the solutions corresponding to the values of H. The resulting
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(a) Coarsest mesh, h = 1/2. (b) One refinement, h = 1/4.

Figure 8: Family of triangulations of the L-shaped domain.

convergence plot can be found in Figure 9. We expect the first term in the error estimate,
∣∣∣
∣∣∣
∣∣∣uh − ums,k

H,h

∣∣∣
∣∣∣
∣∣∣ . H‖f − PHf‖L2(Ω) + kd/2λ(H/h)θk/λ(H/h)‖f‖L2(Ω) (34)

to be of order H2. From the convergence plots we can see that C = 0.25 is not sufficient
to make the localization error of at least order H2, however, C = 0.5 is.
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Figure 9: Convergence plot for experiment with L-shaped domain. Shows relative error
in energy norm for two values of C and a series of values of H. The number adjacent to
a point is the actual value of k for the specific simulation corresponding to that point.

5.4 Comparison with MsFEM

We compare the proposed method with the results obtained using the Multiscale Finite
Element Method (MsFEM) based approach in [3]. The domain is Ω = [0, 1.2] × [0, 2.2]
and the permeability coefficient A is given in a uniform rectangular grid of size 60× 220
by the 85th permeability layer in model 2 of SPE10 [10].

The method proposed in [3] is based on a fine and a coarse mesh with quadrilateral
elements. The fine mesh is uniform 60 × 220, i.e. aligned with the permeability data,
and the coarse mesh is 6 × 22, so that each coarse element is subdivided into 10 × 10
fine elements. The implementation of the method proposed in this work uses triangular
meshes, which is why we divide each of the rectangular elements into two triangular
elements by a diagonal line drawn from the upper left corner to the lower right corner. As
coarse mesh, we use a similar triangular mesh that is constructed from a 6×22 rectangular
mesh such that the fine mesh is a conforming refinement of the coarse mesh.

The (quasi-singular) source data f is equal to 1 in the lower left and −1 in the upper
right fine quadrilateral element. Note that such f is a discretization of point sources
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that model production wells. In particular, the source terms on the continuous level are
mathematically described by Dirac delta functions. Hence, for h → 0, we only have
f ∈ W−m,2(Ω) for m > d

2
, opposed to f ∈ L2(Ω) as is required for our analysis. To

account for this difference, we follow [26] and compute the localized source corrections
F T,`
h f ∈ V f

h (U`(T )) on `-coarse-layer patches for T ∈ TH ,

a(F T,`
h f,vf

h) + b(vf
h, F̃

T,`
h f) + b(F T,`

h f, qf
h) = −(f, qf

h)T ,

for all vf
h ∈ V f

h (U`(T )) and qf
h ∈ Qf

h(U`(T )), where Qf
h(U`(T )) is the restriction of Qf

h

to U`(T ), analogous to the definition of V f
h (U`(T )). (The pressure solution F̃ T,`

h f is not
needed for correcting the flux and is discarded after its use as Lagrange multiplier). Since
f is non-zero only for the two triangles T1 and T2 in the lower left and upper right corners,
only two such corrector problems need to be solved. The total localized source correction
is F `

hf = F T1,`
h f + F T2,`

h f ∈ V f
h .

The localized corrector problems (11) are unaffected by the source correction. The
right hand side of the localized multiscale problem (12) is appended with the localized
source corrections and instead reads: find ums,k,`

H,h such that

a(ums,k,`
H,h ,vh) + b(vh, pH) + b(ums,k,`

H,h , qH) = −(f, qH)− a(F `
hf,vh).

Using a value of ` = 0 will be referred to as an ad-hoc source correction, since we do not
expect to have any decay of the correction already within the source triangle itself.

We emphasize that the need for source correctors for singular source terms is not
an exclusive drawback for our approach, but it is a common necessity shared by all
comparable multiscale methods in this setting. In particular they are also used for the
MsFEM-based approach in [3] that we use for our comparative study.

The proposed localized multiscale method was used to solve for the flux in the de-
scribed problem for three corrector patch sizes: k = 1, 2, and 3. Three variants of source
correction were used: i) without source correction, i.e. ums,k

H,h , ii) with ad-hoc source cor-

rection, i.e. ums,k,`
H,h for ` = 0 (without interpolation constraint), and iii) with source cor-

rection, i.e. ums,k,`
H,h for ` = k, k + 1,∞. A reference solution uh was computed on the fine

mesh. Table 1 shows the relative energy norm and L2-norm of the difference between the
localized multiscale solution and the reference solution for the different values of k and
`. The corresponding L2-norm of the error for the MsFEM method with oversampling
HE0-OS proposed in [3] is also presented in the table. Note that HE0-OS is based on a
discretization with roughly 33% less degrees of freedom than the proposed method, since
it uses quadrilaterals instead of triangles (however, since this holds for both the fine and
the coarse mesh, the relative change in the amount of degrees of freedom with respect to
the reference solution is the same). The flux solutions are plotted in Figure 10.

The results show that the proposed method even without error correction compares
favorably with the homogenization based approach. Ad-hoc error correction gives small
errors for this problem in both norms. For source correction with patch size ` = k,
instabilities similar to that studied in Section 5.2 cause the error to increase. However,
letting ` = k + 1 is enough to get errors that compare favorably with [3].
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Table 1: Relative error in energy norm and L2-norm for the SPE10-85 problem.

Method k ` Energy norm L2-norm

Proposed method
without source
correction

1 − 0.7863 0.4069
2 − 0.7856 0.3369
3 − 0.7855 0.3325

Proposed method
with ad-hoc source
correction (` = 0)

1 0 0.1541 0.2700
2 0 0.1515 0.1467
3 0 0.1537 0.1379

Proposed method
with source correction
(` = k, k + 1,∞)

1 1 0.1090 0.8292
1 2 0.0459 0.2703
1 ∞ 0.0350 0.2504

2 2 0.0549 0.7453
2 3 0.0185 0.0517
2 ∞ 0.0150 0.0490

3 3 0.0080 0.0178
3 4 0.0051 0.0424
3 ∞ 0.0041 0.0088

HE0-OS [3] − − − 0.3492
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[22] M. G. Larson and A. Målqvist. Adaptive variational multiscale methods based on
a posteriori error estimation: Energy norm estimates for elliptic problems. Comput.
Methods Appl. Mech. Engrg., 196:2313–2324, 2007.

30
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[25] A. Målqvist and D. Peterseim. Computation of eigenvalues by numerical upscaling.
Numer. Math. (Online First), 2014/15.
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(a) Reference solution (b) k = 1, ` = −1 (c) k = 1, ` = 0

(d) k = 1, ` = 1 (e) k = 1, ` = 2 (f) k = 2, ` = 3

Figure 10: Flux solutions for the SPE10-85 problem. Figure (a) shows the reference flux
solution and (b–f) show the multiscale flux solutions for k = 1 and 2, and different source
corrections (` = −1 means no source correction and ` = 0 means ad-hoc error correction).
The color maps to the magnitude of the flux at the midpoint of the triangular elements.
The colors map from 10−5 (white) to 10−2 (black) and is saturated at white and black for
lower and higher values, respectively.
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