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Abstract

Paper modeling results in complex geometries that lead to enormous numeri-
cal problems. The complexity lies in the material’s microstructure. Individual
paper fibers must be considered for useful material simulations in paper de-
velopment, where wood composition and other fiber-based parameters are
essential. Multiple time-dependent and nonlinear modeling techniques have
been proposed in the literature. In this work, a simplified approach to paper
modeling is proposed. A simple but effective model can be created by see-
ing the paper as a network of one-dimensional beams and using linearized
one-dimensional beam theory. Working in the industrial collaboration Inno-
vative Simulation Of Paper (ISOP), the model was constructed to be relevant
for product developers in papermaking industry, which means fast evaluations
and representative results. The model was validated against experimental data
for tensile stiffness, tensile strength, and bending resistance in both cross and
machine direction for several low-density sheets. These simulations are fast,
taking no more than a couple of minutes to generate and evaluate randomly
generated paper samples.

For larger simulations, a multiscale approach is proposed. The multiscale
method is the Localized Orthogonal Decomposition (LOD) method, a gener-
alized finite element method. In this method, the heterogeneities (fibers) in
the paper model are resolved using special local orthogonal projection opera-
tors. This work presents the theoretical foundation of using the LOD method
on discrete network models, which builds up to an a priori error bound for
the multiscale approximations. The theoretical a priori error results are con-
firmed with numerical examples. Both structural problems and scalar-valued
discrete network problems are presented in these examples. This work ends
with numerical results showing the successful use of the LOD method on one
of the structural simulations in the validation of the paper model, showing
that the LOD method can be used for practical simulations.

Keywords: Bending, local orthogonal decomposition, multiscale, network
model, paper model, paper simulation.
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CHAPTER 1

Introduction

Paper has been around for a long time. At its core, a sheet of paper is com-
posed of paper fibers meshed together through mechanical interlocking and
microscopic forces [1]. The paper’s properties depend on the manufacturing
processes, but also wood species, tree age, and other material properties.

From wood to a sheet of paper, there are several steps. First, typically the
wood is processed (mechanical or chemical) to separate the cellulose fibers.
This process produces a fibrous material called pulp and the process is called
pulping. After pulping, the pulp is refined and mechanically treated. With
the raw material treated, the pulp is mixed in water and potential additives to
produce what is known as a stock. This stock then goes in a paper machine,
where the liquid is sprayed onto a forming fabric, to form the initial fiber net-
work in the paper. In several dewatering steps including pressing and drying,
the final sheet of paper is created.

The papermaking process involves many steps, with each step introduc-
ing some functionality in the paper produced. With modern papermaking
machines requiring increasing amounts of energy and faster computers get-
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1 Introduction

ting accessible, simulations of papermaking processes are getting realistic and
preferable. A papermaker could check hypotheses on a computer before mak-
ing prototypes, thus creating more educated trial runs. Moreover, simulations
produce detailed results, and information about the microscopic components
in their papers can gain insights for future development.

Several groups have worked with simulating parts of the papermaking pro-
cess, and properties of paper [2]–[4]. The Innovative Simulation Of Paper
(ISOP) project is an industrial research project performed by a consortium
consisting of Albany International, Stora Enso, and Fraunhofer-Chalmers
Centre. This project aims to produce validated and actively used simulation
tools in the product development of paper-based products. Within the project,
tools for both forming simulations of paper [5] and edge wicking (fluid ab-
sorption) [6] have been developed. The paper model presented and validated
in this thesis was performed within this project. The companies have played
a vital role in this model’s development by producing experimental data for
mechanical properties, experimental data for the fibers used, and input on
important features that the model should capture.

Simulating paper is challenging because of the material’s complex mi-
crostructure. For an effective model in papermaking, the individual paper
fibers need to be represented. The paper fibers play a vital role in the end
product’s properties. A simplified approach to paper simulation is presented
in this work, where the individual paper fibers are edges in a network. Us-
ing a network model means that the geometries of the individual paper fibers
are one-dimensional. However, cross-sectional information about the fibers
is used and added analytically. The resulting paper model has been validated
and can reproduce several structural experiments through simulation. These
are tensile stiffness, tensile strength, and bending resistance. Moreover, pa-
per has different structural properties depending on fiber orientation (similar
to wood, wood grain) because of the manufacturing process, and the model
can represent these differences for the experiments mentioned. These simu-
lations are fast and accessible for a papermaker, taking a couple of minutes to
generate random paper models and perform the simulations.
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1 Introduction

Even though the simulations are fast, they scale poorly. Paper simulations
produce representative results on small scales [7], which is good because of its
complex microstructure. Larger simulations are bottlenecked by memory or
computational complexity. However, larger simulations are still interesting,
and in this work, a method that resolves these computational complexities is
presented.

The method proposed for analyzing large paper models is a multiscale
method that separates the problem into different scales. By only analyzing
the details of the paper model in small areas, the method trades one enormous
problem to multiple smaller ones. This process is known as homogenization
or upscaling. Several network problems have been upscaled, for example,
heat conductivity in network models [8], traffic [9], and flow in porous media
[10].

There are several multiscale methods for solving partial differential equa-
tions with rapidly varying coefficients. Two of them are the Heterogeneous
Multiscale Method (HMM) [11] and the Multiscale Finite Element Method
(MsFEM) [12]. The multiscale method chosen for the paper model is the
Local Orthogonal Decomposition (LOD) method [13]. This method can han-
dle problems that are not periodic or scale separable. Moreover, elasticity
problems have been analyzed with this method [14], [15], and initial numer-
ical work in [16] showed that a discrete LOD method could handle models
similar to the proposed paper network model.

This thesis presents the paper network model, how the individual fibers are
modeled, bonded together, and presents the governing model for evaluating
its structural properties. With the model presented, several structural simula-
tions are performed, presented, and validated against experimental data. This
validation provides numerical metrics of the simulations, illustrating that a
different approach is required for larger simulations. The proposed LOD
method in this work is then presented, alongside theoretical work motivat-
ing the method’s use on discrete network models. Numerical examples illus-
trate these theoretical results, and the thesis ends with one of the validation
simulations being performed with the LOD method successfully.
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CHAPTER 2

Paper Network Model

Paper on a microscopic scale looks like a network of interconnected paper
fibers. The sheer amount of fibers in a sheet of paper makes representative
models inherently complex, with models no larger than one square centimeter
typically considered [3], [17]. However, these small domains can be suffi-
cient. In [7], it was observed that 1.2 times the longest fiber in the composite
material produced representative results for tensile simulations and two times
the longest fiber for strength simulations. These findings are consistent with
the domain analysis performed in Article B for tensile stiffness, strength, and
bending resistance simulations for low-density paper models. Although the
simulations are on small domains, the computations are non-trivial. In one
approach, a 0.5 × 0.5 mm tensile simulation of a low-density paper required
6 hours to evaluate [3]. This chapter aims to present a simplified paper model,
where each paper fiber is a one-dimensional line, and the cross-section infor-
mation of each fiber is incorporated analytically.
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2 Paper Network Model

2.1 Approach

In [18] a network model is presented, where the edges in the network rep-
resent the paper fibers, and the nodes are discretization points. The model,
a generalization of the finite difference discretization of the linear elastic-
ity equation, is presented and expanded on in this chapter. These additions
include adding cross-section information to all the fibers, making structural
properties and bonding more accurate, and motivating the different parame-
ters in the model using either experimental results or published values.

The model considered is simpler than many other approaches in the litera-
ture ([2], [3]). These simplifications allow for faster computations and eval-
uations. However, simplifications have to be motivated. Working with pa-
permaking companies in the industrial research consortium Innovative Sim-
ulation of Paper (ISOP) has been a great asset with their input on essen-
tial properties and functionality in a paper model. ISOP is performed by a
consortium consisting of Albany International, Stora Enso, and Fraunhofer-
Chalmers Center, with the end goal being validated and actively used simula-
tion tools in the product development of paper-based products.

The network model consists of geometric and mathematical representations
to create a realistic and efficient paper model. Each fiber is modeled and given
an initial relaxed position, and every paper model consists of a composition
of these fibers. The paper fibers connect through bonds to create a cohesive
material. Like real paper, only fibers close to each other will bond. The
model allows separate structural properties in bonds and fibers. The network
model’s geometry is generated by placing the fibers in a domain and con-
necting them. With this geometry, structural-mechanical relations are applied
mathematically to analyze the model’s structural properties. In this chapter,
the four parts of the model are presented in succession: the fiber model, fiber
bonding, fiber placement, and lastly, the governing model used to evaluate the
model’s structural properties.
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2 Paper Network Model

2.2 Paper fiber representation

Each fiber in the network model is modeled individually. The fiber model’s
geometry consists of several straight line segments representing the fiber’s
centerline. These line segments are the edges in the network model, where the
points between the edges are the nodes. These nodes are where the fiber may
bend. Because the edges can not bend, the fiber model’s dynamic movement
and shape depend on the number of edges. However, increasing the number
of edges representing each fiber will increase the entire paper model’s com-
plexity. A proposed length of the edges is 0.1 mm, giving a 1 mm long fiber
about 10 equally spaced nodes where the fiber can be shaped and bent. For a
geometric representation, see Figure 2.1.

Figure 2.1: Illustration of the fiber model. The left figure shows a section of fiber
with its centerline, and the right shows the fiber model representation
with straight lines(edges).

Each edge in the paper model has information about its cross-section. The
cross-section information includes fiber shape, cross-section area, fiber width,
and cell wall thickness. These properties play an essential role in bonding,
where the volumes of the edges are analyzed. Moreover, in evaluating struc-
tural properties of the edge, cross-section area is used for calculations of ten-
sile strains, and the geometry defines the second moment of areas for bending
related forces. An illustration of the parameters defining the cross-section of
each edge is presented in Figure 2.2.
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2 Paper Network Model

Width Width

W
allT

hickness

Cross-section areaCross-section area

Figure 2.2: Cross section parameters for an elliptic shape and rectangular shape.
Cross section area defines the total area of the cross section, width the
width of the fiber, and cell wall thickness the thickness of the fiber walls.

2.3 Fiber bonding

Bonds connect the fibers in the network model. In the network model, bond-
ing occurs if two fibers intersect based on the fibers’ center lines and cross-
sectional information. The bonding algorithm utilizes an R-tree for efficiency
to find relevant segments that may intersect in the model based on the as-
sociated edges’ midpoints. Intersections are found by triangularizing these
three-dimensional fiber segments using the edges and their cross-section in-
formation and performing a geometric analysis. If two fiber segments inter-
sect, the bond is placed based on the two points on the edges closest to each
other. An illustration of the intersection process is provided in Figure 2.3.

Figure 2.3: Illustration of the bonding process.

There are several ways to represent the individual bonds in a network
model, and in finding an ideal approach, several bonds were analyzed. The
first and most straightforward approach used is node-based bonding. Here a
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2 Paper Network Model

node is created between the two closest points between the segments to be
bonded, and detour the segments to this common node (see Figure 2.4).

Figure 2.4: Illustration of the node bond. The left figure shows the two fibers seg-
ments before getting bonded, the right the resulting node bond.

Node bonds can successfully model tensile properties compared to valida-
tion data, but locking is observed for bending resistance simulations. More-
over, breaking a bond requires one of the fibers to break, which is not ideal.
Instead, edge-based bonds can be used. For edge-based bonds, an edge is
placed between the two closest nodes of the fiber segments. This edge is
modeled as a fiber segment with structural properties similar to a fiber seg-
ment. An illustration of such an edge bond is presented in Figure 2.5.

Figure 2.5: Illustration of the edge bond. The left figure shows the two fibers seg-
ments before getting bonded, the right the resulting edge bond.

The edge bond approach allows bonds to break, but locking is still ob-
served. However, removing bending resistance in one plane removes the
locking. With this restriction, these edge bonds are unable to model torsion
if only one edge bond is present in a bond. This problem can be solved by
adding multiple edge bonds per intersection and is the bonding technique that
produces the best results. The amount of bonds created per intersection is de-
fined as a discretization parameter, bond delta, and can be seen as the amount
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2 Paper Network Model

of refinement allowed of a fiber segment around a bond. The bonds’ struc-
tural properties are weighted with bond delta to remove the structural effects
of adding more bonds. The algorithm that places these edge bonds starts as
before, with the closest pair of nodes in the two intersecting fiber segments.
Then moving along each fiber in both directions by this discretization pa-
rameter, additional bonds are placed if the associated subvolumes intersect as
well. An illustration of such an edge bond is presented in Figure 2.6

∆

Figure 2.6: Illustration of the edge bond with multiple bonds with discretization pa-
rameter ∆. The left figure shows the two fibers segments before getting
bonded, the right the resulting bond.

2.4 Network model generation

The paper forming process consists of paper fibers suspended in water pushed
onto a forming fabric to create the fibrous material. The resulting sheet of
paper depends on the machine used, its settings, the fiber mixture used in the
process, and the post-processing steps such as pressing involved. With so
many variables, the model’s parameters are categorized into three categories:
macro-scale, micro-scale, and structural.

Macro-scale parameters are attributes that describe the properties of the
paper sheet rather than the individual fibers. First, the paper sheet size gives a
starting point for the model. The sheet’s size gives the total area of the paper
model, and a given grammage (weight per square meter) gives the total weight
of all the paper fibers in the model. The paper fibers are placed somewhere
in the domain specified by the sheet size. This placement may be determined
by simulating the forming process as in [5], or through randomization given
a fixed thickness. In either case, the fibers are typically oriented more in one
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2 Paper Network Model

direction (machine direction) than the other (cross direction), and this bias is
introduced using a specified fiber orientation distribution.

Micro-scale parameters describe the properties of the individual paper fibers.
Fibers generated in the modeling process have an initial position and orienta-
tion. However, each fiber may vary in length and width, and different wood
types might be present in composites. In the generation process, wood type is
randomly decided based on wood composition. A random fiber is generated
using distributions for the specified wood type. The length of the fiber times
the coarseness (weight per meter) of the wood defines the weight of the fiber.

The last parameters are called structural. These parameters are harder to
measure and require more in-depth analysis to attain. These are cross section
area, cell wall thickness, Young’s modulus, and fiber strength. These param-
eters may be chosen from research results on individual fiber analysis [19]–
[21] and can be dependent on wood type, fiber length, or other micro-scale
properties. A detailed approach to generate the cross-section parameters and
data on their dependence on other microscopic parameters can be found in
[22].

2.5 Governing model

A linear system models the structural-mechanical properties of the network
model. The system is formulated as:

Ku = F, u = [u1,u2, . . . ,un]
T , F = [F1,F2, . . . ,Fn]

T , (2.1)

where n is the number of network nodes, K ∈ R3n×3n is a connectivity ma-
trix, ui = [ui,x,ui,y,ui,z] are the three-directional nodal displacements, and
Fi = [Fi,x,Fi,y,Fi,z] are the applied forces in the i:th network node. The con-
nectivity matrix, K, is composed of three linear force-displacement relations:
edge extension, angular deviation and Poisson effect.

10



2 Paper Network Model

Edge extension defines the forces arising with the changes of the edges’
lengths. These changes are quantified by their strains ε = ∆L

L , where L is the
initial length of an edge and ∆L is its change. The strains used in the model
are linearized by using orthogonal projections (see Figure 2.7). Using the
projected strain in the definition of Young’s modulus, the magnitude of the
resulting force in the model is:

EA =
σ

ε
=

F ·L
A ·∆L

⇔ F =
EA ·A ·∆L

L
, (2.2)

where EA is the axial stiffness (Young’s modulus), A is the cross-section area,
and F is the quantified force arising from the displacement. These forces’
directions are chosen to be parallel to the edges initial axes, again for linearity.
An illustration of the forces arising from a displaced edge by edge extension
can be seen in Figure 2.7.

∆LL

Figure 2.7: The thick lines are the initial edges and the thin lines are their displace-
ments. The left figure shows how the difference in length is calculated
by projecting the displaced nodes onto the fibers initial axis and the right
shows the forces arising from the displacement.

Angular Deviation provides a counterforce when the angle between two
connected edges is changed. This angular change is evaluated in two planes,
one plane containing the pair of edges (in-plane) and the other orthogonal to
the first (out of plane). Normal vectors to the edges in each of the planes are
used in the angular deviation calculations (see Figure 2.8).

11



2 Paper Network Model

Figure 2.8: The normal vectors used in the two angular deviation equations. The left
picture shows the normal vectors in the plane and the right shows the
normal vectors out of the plane.

It is possible to approximate the angular change between the two edges in
the edge pair using the aforementioned normal vectors. In this section, only
the in-plane case is presented as the out of plane equations are analogous.
Using the normal distance ∆L1 in Figure 2.9, the angle δθ1 is approximated
using:

δθ1 ≈ tan(δθ1)≈
∆L1

L1
,

assuming the displacement is small. Doing the same for the other edge gives
an approximation for δθ2. These angles summed approximates the total an-
gular change:

∆θ = δθ1 +δθ2.

With this total angular change, the second derivative of the displacement in
the normal direction of the center node can be approximated by:

u′′ ≈ ∆θ

0.5(L1 +L2)
,

as it coincides with the second order central finite difference scheme for
straight edge pairs. Using Euler-Bernoulli beam theory, we have the follow-
ing deformation/moment relation:

EB · I ·u′′ =−M,

where EB is the bending stiffness (Young’s modulus), and I is the second
moment of area. This second moment of area depends on the edges’ cross-

12



2 Paper Network Model

section geometry. Evaluating and expanding the moments in the central node
gives the amplitude of the angular deviation forces:

Fi =−EB · I
Li

u′′ ≈−EB · I
Li

(
∆θ

0.5(L1 +L2)

)
, i = 1,2. (2.3)

The forces are placed in each edge node with directions parallel to the nor-
mal vectors used to calculate the angular change. An illustration of these
directional forces is provided in Figure 2.9.

∆
L 1

L
1

δθ1

F1

−F1

F2

−F2

Figure 2.9: The thick lines are the initial edges and the thin lines are their displace-
ments. The left figure shows the geometrical relation between L1, ∆L1,
and δθ1. The right figure shows the forces arising from the angular de-
viation equation given a displacement.

Poisson Effect is a force displacement relations that is added to make spe-
cific networks equivalent to a finite difference discretization of the linear elas-
ticity equations. The finite difference networks do not represent beams, but
rather some level of homogenization. To read more about the Poisson effect
and the different non-fiber based network models, see [18].
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CHAPTER 3

Mechanical Simulation of Paper

With the model presented in Chapter 2 several structural simulations are pos-
sible. This chapter presents three different types of simulations: tensile stiff-
ness, tensile strength, and bending resistance. Experiments performed by
Albany International and Stora Enso are used to validate these simulations in
both machine and cross direction.

3.1 Mechanical tests

The mechanical simulations considered try to replicate experiments used in
paper development. Paper has several key properties that papermakers keep
in mind in paper development. These include the three types analyzed in this
work: tensile stiffness, tensile strength, and bending resistance.

The tensile properties of the paper analyzed here are tensile strength and
tensile stiffness. A paper sample is placed in an apparatus that clamp two
opposite sides of the sheet in the experiment. The sheet is then strained pro-
gressively, with the forces required to hold the strains measured simultane-
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3 Mechanical Simulation of Paper

ously. This progression continues until the sample breaks. Tensile stiffness is
evaluated as the amount of force required to strain the paper for elastic defor-
mations, and tensile strength is the total force required to break the sample.

Square models are used in the simulation of the tensile experiments. These
square models are divided into three domains as in Figure 3.1, with two thin
domains along two opposite sides that represent the paper parts being fixed
into place by the tensile test equipment. One domain is fixed and can not
move, and the other is displaced to some specified strain. Similar to the
experiment, the strain is marginally increased in each iteration, with fibers
stretched above their breaking point removed to emulate breakage. This it-
eration is continued until the force required to strain the model drops below
70% of the highest force observed, at which point the paper is assumed to be
structurally compromised.

For tensile stiffness simulations, the strain is set far below the breaking
point, and the stiffness is calculated based on the force required to achieve
the specified strain using the following formula:

Tensile Stiffness =
F

Width ·Strain
,

whereas, tensile strength simulations are performed until breakage and calcu-
lated by the following formula:

Tensile Strength =
Fmax

Width
.

Width

∆ Length ∆

Figure 3.1: Tensile test geometry. Gray areas are clamped and pulled (arrow) to
strain the white zone of the model.
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3 Mechanical Simulation of Paper

In a bending resistance experiment, the force of bending a sheet of paper
is evaluated given specific leverage and angle. A paper sample is fixed at one
end and then bent, with the leverage, to the specified degree. A measuring
probe does the pushing and measures the force simultaneously. The normal-
ized force with respect to the width of the paper required to push the paper is
considered the bending resistance.

The bending resistance simulation is performed on rectangular paper mod-
els, with the paper sample’s length (leverage) being the same as in the ex-
periment. This simulation fixes the paper model on one side, again similar
to the tensile setup, and displaces the model at the specified leverage to the
given angle. An illustration of this setup is presented in Figure 3.2. Unlike
the tensile simulations, this bending simulation is slightly different from its
experimental counterpart. In the bending resistance experiments, the mea-
surement probe that bends the sheet can move along the sheet, whereas it
does not move in the simulation. This simplification is motivated by the ef-
fect of the small movements is assumed to be negligible. Slight modifications
to the model are made in the bending resistance simulations. This constraint
occurs in a slim domain, so extra nodes are placed on edges passing through
this area. With this slight modification, the bending resistance with leverage
and angle θ is calculated by:

Bending Resistance =
Fz cos(θ)+Fx sin(θ)

Width
,

where Fx, and Fy are the directional components of the force observed in the
simulation.

Length· tan(θ)
Width

∆ Length Extra

Figure 3.2: Bending test geometry. Gray area to the left is clamped and the right
dashed line is displaced (arrows) given a bending angle θ.
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3 Mechanical Simulation of Paper

3.2 Model Validation

The network model needs to be validated to be justified. The validation com-
pares simulated results to experimental results achieved during two separate
experimental runs performed at Stora Enso years apart. The first experimen-
tal run analyzed the structural properties of sheets generated in a pilot paper
machine at The Packaging Greenhouse in 2012. For the second experimental
run, sheets were generated at Albany International in 2020. The same param-
eter setup will be used for both experiments, with the macro-level parameters
defining the simulation parameters for the different experiments.

The parameters used in the model for the following validation are given by
experimental or published values. The macro-level parameters grammage and
thickness are measured for each sample in the experiments, with sheet size
being chosen based of domain studies, and fiber orientation from the work
performed in [23]. Micro-scale parameters are generated using fiber distribu-
tion data from an analysis performed on one of the pulp mixtures used in the
experiments. The structural parameters are chosen from literature [19]–[21],
[24]. The fibers in the model are placed at random, cyclicly, with uniform
coverage given a measured thickness for each sample. Laydown simulations
[5] were not used for efficiency. For a more in-depth discussion of the choice
of the parameters, and the domain study, see Article B.

The Packaging Greenhouse experiments, 2012

In the packaging greenhouse experiments: tensile stiffness, tensile strength,
and bending resistance, among others, were measured for an assortment of
low-density samples. The low-density samples were produced over three days
on a pilot board machine in a standard configuration. Of the resulting sam-
ples, fourteen are used in this validation with grammages between 30 and 60
g/m2. The three structural properties of these samples, in machine and cross
direction, were tested at Stora Enso and lay the foundation for the validation
data in Paper B.

The three experimental setups: tensile stiffness, tensile strength, and bend-
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3 Mechanical Simulation of Paper

Figure 3.3: In the left figure are strains resulting in a tensile stiffness simulation,
and in the right figure there is a dot on each edge broken in a strength
simulation.

Figure 3.4: Profile of a bend curve in a bending resistance simulation.

ing resistance, are modeled using the setups presented. In the tensile simula-
tions, 4 mm square paper models were used to evaluate the model’s properties,
whereas a 4 × 11 mm model was used for the bending resistance simulations
with leverage 10mm and angle 15 degrees. Both machine direction and cross
direction were simulated and compared for each experimental result.

For the simulations to be relevant, the models need to move appropriately
and produce validated results. The tensile strains in a tensile simulation, a
fault line from a strength simulation, and a bending curve are presented. In
Figure 3.3 both extended and compressed fibers are visible in a tensile stiff-
ness simulation along with a nontrivial fault line in a tensile strength simula-
tion. A bending profile is presented in Figure 3.4 to illustrate how the model
acts in the bending resistance simulation. In all cases, it is clear that the model
moves as one would expect.

Ten samples were evaluated for each sample in the experiment, in both ma-
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3 Mechanical Simulation of Paper

Figure 3.5: Validation results of The Packaging Greenhouse experiments.

chine and cross direction, and the mean and standard deviation of the runs are
the presented results. The same procedure was performed in the simulations,
generating ten random models for each sample. The validation results are
presented in Figure 3.5.

These results are promising, considering the model’s simplicity. The linear
relation in tensile data and the quadratic relation in the bending data are ob-
servable. Moreover, the results are in good agreement, considering the num-
ber of properties each model can represent. Altogether, the model generated
with justified parameters produces representative results for both tensile stiff-
ness, tensile strength, and bending resistance in cross and machine direction
for several different grammages.

The simulations are fast and are performed in minutes. In Figure 3.6 the
numerical metrics for a tensile stiffness and tensile strength simulation for
each case in the experiment is presented. These execution times are viable
for a paper developer who wants to check a hypothesis on consumer-grade
hardware.
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3 Mechanical Simulation of Paper

Figure 3.6: The numerical metrics for the mechanical simulations of the Packaging
Greenhous experiments.

Stora Enso and Albany experiments, 2020

The second set experiment used for validation is on low-density sheets pro-
duced at Albany International on an experimental paper machine, with me-
chanical properties experiments conducted by Stora Enso. These sheets are
almost twice as thick as the Packaging Greenhouse samples. Only tensile
stiffness and tensile strength were included in these experiments, not bending
resistance, with one experiment performed per property. Similar to The Pack-
aging greenhouse validation, ten different random networks (with the same
parameters and fibers as the previous validation) are generated and analyzed
for each paper in the experiment. The mean value and standard deviation of
the ten simulations for each experiment are presented in Figure 3.7.

Figure 3.7: Validation results using experiments on low density sheets. Ten random
network models were used to simulate each experiment.

20



3 Mechanical Simulation of Paper

The combined results from validating the two sets of experimental data
show a model that can correctly anticipate structural properties with justifi-
able parameters. These results motivate the development of simplified paper
models, and due to the effective nature of the model, far denser paper models,
such as paperboard, should be possible to simulate. Moreover, as shown in
the following chapters, these network models are candidates for a multiscale
method. This multiscale method can enable effective large-scale simulations
assuming periodic structures on the size analyzed in this section.
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CHAPTER 4

Multiscale Methodology for Discrete Network Models

The network model presented in Section 2 constitutes a detailed representa-
tion of a paper sheet. These details result in numerical problems requiring
excessive resources for small models (see Figure 3.6). Enabling simulations
on substantially larger paper sheets than the ones presented in Chapter 3 will
require some form of numerical upscaling, for example, a multiscale method.

The multiscale method proposed to handle the large discrete paper models
is the Localized Orthogonal Decomposition (LOD) method, a generalization
of the finite element method, and is not dependent on periodicity in the model.
The original method aimed to handle elliptic partial differential equations
with highly varying coefficients [25], and a detailed overview of the method
and theory can be found in [13]. In [18], a discrete version of the method was
proposed for network models, along with initial numerical results on semi-
structured discrete linear elasticity models. This numerical validation was
extended to include network models similar to the ones presented in Chapter 2
in Paper A. At that point, the application was entirely experimental, and
after theoretical development in Paper C, the implementation has changed
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4 Multiscale Methodology for Discrete Network Models

slightly. However, numerical experiments show that the new implementation
act similarly or better than the old results.

In the following chapter, a discrete LOD method is presented that is moti-
vated by the theoretical foundation laid out in Paper C. First, an overview of
the LOD method is presented, followed by some theoretical background and
assumptions on the networks considered. Then the scope of problems cov-
ered by the theory is defined. With the network and problems specified, the
coarse grid of the model is constructed. This chapter ends with formulating
an ideal multiscale method and the LOD method with associated a priori error
bounds.

4.1 Overview of the LOD method

The localized orthogonal decomposition (LOD) method is a generalized finite
element method. A coarse grid represents a model’s initial geometry as in a
classic finite element method, and a set of shape functions is defined on the
grid’s points. These shape functions should be able to represent the solution.
The shape functions have often simple shapes and require the grid to be fine
enough to handle any potential heterogeneities. For inherently heterogeneous
models, this approach is insufficient, and the LOD method solves this issue
by resolving the heterogeneities by the basis functions. A triangulation of a
discrete bilinear basis function and triangulation of a discrete bilinear basis
function used in a LOD method can be found in Figure 4.1.

The heterogeneities must be handled locally for the LOD method to be
computationally feasible. In Paper A it was numerically confirmed for net-
work models, and in Paper C it was proven. The method is feasible but not
faster. The method is slower than using a standard linear solver to solve an
individual problem. However, memory constraints are an issue for large prob-
lems (where off-the-shelf iterative methods have convergence issues). These
memory issues are not a problem for the LOD method, which breaks the prob-
lem into smaller local subproblems. The method may be faster in iterative
processes, like fracture propagation, where most modifications are identical
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4 Multiscale Methodology for Discrete Network Models

Figure 4.1: The left image shows a bilinear shape function, and the right shows a
modified bilinear shape function used in an LOD method.

between iterations. Another motivator would be the use of periodic models. If
the model is periodic, embeddings will be periodic, and hence only a fraction
of the modified shape functions need to be computed.

4.2 Theoretical foundation

Before anything, we define what we mean by a spatial network, some fun-
damental network properties, important function spaces, and network related
operators.

Definition 1 (Spatial network): A spatial network, G = (N ,E), is defined
by a finite nodal set N = {x1,x2, . . .}, xi ∈ R d , i = 1, . . ., and an edge set
E ⊂ {{xi ∈ N ,x j ∈ N } : xi ̸= x j}, where d is the spatial dimension of the
network. An element in the nodal set N is called a node and these nodes are
connected by edges that are defined by the unordered pairs in the edge set E .
The notation i ∼ j is used to say that {xi,x j} ∈ E .

The edges in these spatial networks can be seen as paths, or connections,
between the nodes. These edges might represent springs or beams in a struc-
tural network, and in a logistic network, the edges might represent routs be-
tween transit points. Considering the logistic example, whether a path exists
between two transit points is important. This property will be essential in the
following discussion, so a formal definition of a path and connected network
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4 Multiscale Methodology for Discrete Network Models

is formalized.

Definition 2 (Path): Let {zl}m
l=1 be a sequence of nodes from the node set of

a network. Then we call the sequence {{zk,zk+1}}m−1
k=1 a path from node xi to

x j if z1 = xi, z1 ∼ z2, z2 ∼ z3, . . . ,zm−1 ∼ zm, and zm = x j.

Definition 3 (Connected Network): A spatial network G = (N ,E) is con-
nected if for any two distinct nodes xi,x j ∈ N , there exists path between
them.

Definition 4 (Edge length): The edge length of an edge, {xi,x j} ∈ E , in a
spatial network is defined by the euclidian distance, |xi−x j|, between the two
nodes in the node pair.

The following restrictions on the network models considered are imposed:

Assumption 1:
• The nodes in the nodal set reside in the unit cube Ω = [0,1]d .
• Every edge in the network has a non zero length.
• The network is connected

The first assumption is imposed for notational brevity, where rectangular do-
mains are also covered, and polygonal domains should be possible with minor
modifications (see Remark 4.9 in Paper C). The second assumption guaran-
tees that the lengths of the edges are non-vanishing, which will be important
for the network operators defined below. For the third and final assumption,
the network needs to be connected. If the network is disconnected, the prob-
lems induced by the network model are either separable or attain no solution.
This assumption can be imposed by either removing the disconnected com-
ponents or breaking the problem into several smaller ones.

With the network model defined, we define the function space V̂ as the set
of real-valued functions defined for each node in N . Note, the spatial network
considered induces this space. With this function space, we introduce the
linear operator M : V̂ → V̂ , and the linear operator L : V̂ → V̂ :
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4 Multiscale Methodology for Discrete Network Models

Definition 5:

(Mu,v) = ∑
xi∈N

(Miu,v), (Miu,v) =
1
2 ∑

i∼ j
|xi − x j|u(xi)v(xi).

Definition 6:

(Lu,v) = ∑
xi∈N

(Liu,v), (Liu,v) =
1
2 ∑

i∼ j

(u(xi)−u(x j))(v(xi)− v(x j))

|xi − x j|
.

From these two definitions we can derive the M-norm: |u|2M = (Mu,u) (G
connected, edge lengths are non zero), and the L semi-norm |u|2L = (Lu,u).
Moreover, local versions of these norms need to be defined. For compact-
ness, we define the set function N that maps a set in Rd to the node indices
contained in that set, i.e:

Definition 7:
N(ω) =

{
i : xi ∈ N , xi ∈ ω

}
.

Using this definition our local operators can be defined as (Mωu,v)=∑i∈N(ω)(Miu,v),
|u|2M(ω) = (Mωu,u), where the local counterparts of L are defined annalo-
goulosly.

The models considered maps information to and from the same data space.
This data space can be scalar or vector-valued. In heat conductivity, the data
might be temperature (scalar), and in the structural model presented in Chap-
ter 2 the data is either a displacement or a force (vector-valued). To handle
the vector-valued case, we introduce the product space of all possible data

V̂ = V̂ n,

where n is the dimension of the data for each node.
A function of this space, v ∈ V, is written as a list of its components: v =

[v(1), . . . ,v(n)]. Two vector valued operators that will be used are the following
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4 Multiscale Methodology for Discrete Network Models

vector valued counterparts of L and M:

Miv = [Miv(1), . . . ,Miv(n)]

Liv = [Liv(1), . . . ,Liv(n)],
(4.1)

where domain restrictions are denoted as in the scalar case. Vector valued
semi-norm equivalents are defined:

|v|2M = (Mv,v), |v|2L = (Lv,v), (u,v) =
n

∑
i=1

(u(i),v(i)), (4.2)

again with spatial restrictions denoted as in the scalar case.

4.3 Model formulation

The problems considered are spatial network models paired with a linear op-
erator, K : V̂ → V̂, and written on the following form:{

Ku = Mf
u(Γ) = 0

(4.3)

where Γ is the Dirichlet boundary and f is a given right-hand side data. This
Dirichlet boundary does not need to be the same for each solution dimension
for the theory to work, the simplification is made to ease notation. With this,
we define the scalar-valued solution space

V = {v ∈ V̂ : v(Γ) = 0},

and the vector-valued solution space

V =V n.
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4 Multiscale Methodology for Discrete Network Models

The problem homogenized is the weak formulation of (4.3):

Find u ∈ V : (Ku,v) = (Mf,v), ∀v ∈ V. (4.4)

The operator K in the problem is assumed to have the following properties:

Assumption 2: The operator K
• is bounded and coercive on V with respect to L, i.e. there are constants

α > 0 and β ≤ ∞ such that

α(Lv,v)≤ (Kv,v)≤ β(Lv,v) (4.5)

for all v ∈ V, and
• can be written as a sum K = ∑i∈N Ki of operators Ki : V̂ → V̂, where

Ki are symmetric positive semi-definite and only depends and has sup-
port on xi and nodes adjacent to xi.

• has a null space such that ker(K)∩V = ∅, to guarantee a unique so-
lution.

A direct consequence of these assumptions is that K is symmetric and that
(K·, ·) = (·, ·)K is an inner product on V. With this inner product, we intro-
duce the problem-specific semi-norm |u|2K = (u,u)K. Local versions of the K
operator and norms are defined the same way using the Ki operators as the
local versions of M and L.

4.4 Coarse scale

The LOD method constructs an accurate course scale representation of the
model. This representation is a Galerkin formulation similar to a finite ele-
ment construction. Neither the network nor the problem is assumed to con-
form to this construction.

Before we introduce the coarse-scale construction, we first impose three
assumptions on the network. These assumptions will guarantee sufficient ho-
mogeneity, connectivity, and locality required for the theory. These condi-
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4 Multiscale Methodology for Discrete Network Models

tions are constructed using the following boxes:

B̃R(x) = [x1 −R,x1 +R)×·· ·× [xd −R,xd +R)

and
BR(x) = B̃R(x)∪ (B̃R(x)∩∂Ω).

Using these boxes, we formulate the following network assumptions.

Assumption 3 (Network assumptions): There is a length-scale R0, a unifor-
mity constant σ, a density ρ, and a connectivity constant µ, so that

1. (homogeneity) for all R ≥ R0 and x ∈ Ω, it holds that

ρ ≤ (2R)−d |1|2M,BR(x) ≤ σρ,

2. (connectivity) for all R ≥ R0, x ∈ Ω, and v ∈ V̂ , it holds that

|v− c|M,BR(x) ≤ µR|v|L,BR+R0 (x)

for some constant function c = c(R,x,v) ∈ V̂ ,
3. (locality) the edge length |xi − x j|< R0 for all edges {xi,x j} ∈ E .

The homogeneity assumption requires that the network’s density, in terms
of the M norm, is sufficient, the second assumption guarantees connectivity in
terms of a discrete poincaré-type inequality, and the third guarantees locality
by restricting the geometric range of which the Ki terms have an effect. For
a further discussion and example of the first two assumptions, and how the
second assumption is connected to the network’s Fiedler number [26] and
Cheeger constant [27], [28], see Paper C.

Like a finite element method, a grid is defined. The grid used is the partition
of uniform hypercubes with side length H = 1/2,1/4, . . . of Ω:

TH = {BH/2(x) : x=(x1, . . . ,xd)∈Ω and H−1xi+1/2 are integers for i= 1, . . . ,d},

where the use of BR guarantees that TH is a true partition of Ω. To guaran-
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4 Multiscale Methodology for Discrete Network Models

tee the model has sufficient coverage and connectivity in each partition, we
require that:

H ≥ 4R0.

On this grid, we also define a standard first-order function space. This
space, Q̂H , is the union of all element spaces, Q̂H(T ), T ∈ T , that can be
written as the product of componentwise first-order polynomials, i.e,

Q̂H(T ) = {p : p(z1, . . . ,zd) = p1(z1)p2(z2) · · · pd(z2)), pi ∈ P1 for all i}.

Moreover, we set QH and QH(T ) to be the subspaces of Q̂H and Q̂(T )H that
are zero on the Dirichlet boundary.

For brevity, we will assume that H is fixed and will ommit notation for
components of discrete spaces.

Let φ1,φ2, . . . ,φm ∈ Q̂H be the Lagrangian finite element nodal basis of
Q̂H . We order the indices such that the first m0 nodal functions are not on the
Dirichlet boundary, and therefore span QH .

Discrete versions of all these components need to be defined. We denote
the restrictions of Q̂H , QH , and Q̂H(T ) to the nodal set N as V̂H , VH , and
V̂H(T ) respectively. The nodal basis {φ1,φ2, . . . ,φm} is discretized as well,
where ϕi is the restriction of φi to the nodal set for every i.

With the discrete finite element space defined, we can construct an inter-
polation operator that takes the network into account. This interpolant is in-
spired by the Scott-Zhang interpolant [29] and will be the interpolant used to
define the multiscale space in the LOD method.

Definition 8 (Interpolant):

I (v) =
m0

∑
k=1

(MTk ψk,v),

where Tk is the element that contains the nodal point k and ψk ∈ V̂H(Tk) has
the property:

(MTk ψk,ϕl) = δkl, l = 1, . . . ,m.
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4.5 Numerical homogenizaiton

Taking a classical finite element approach, u in (4.4) can be approximated by
approximating V by a finite dimensional space. One such example would be:

VH =
{

v ∈ V : v(i) ∈VH , ∀i = 1, . . . ,n
}
,

where the FEM-like approximation uFEM
H would be:

Find uFEM
H ∈ VH : (KuFEM

H ,v) = (Mf,v), ∀v ∈ VH . (4.6)

This approach could work as long as the heterogeneity are resolved by the
coarse grid. However, in the paper models presented in Chapter 2 the model
is hetrogenous throughout. To deal with this problem, the LOD method aims
to find a more approriate discrete space to deal with these heterogeneity.

The ideal multiscale method

In a multiscale formulation, we seperate the model into different scales. For
this approach, two scales are considered, a representative coarse scale and the
complemental fine scale space. The interpolation operator defined in Defini-
tion 8 define this fine scale space:

W = ker(IH) = {v ∈ V : IH(v) = 0},
IH(v) = [IH(v(1)), . . . ,IH(v(ds))]

(4.7)

With the coarse scale, Vms
H , defined as the orthogonal complement to W with

respect to the inner product induced by K, i.e,

Vms
H = {v ∈ V : (Kv,w) = 0, ∀w ∈ W}.

This coarse space, Vms
H , has the same dimension as VH , and the ideal multi-

scale approximation, ums
H is formulated as:

Find ums
H ∈ Vms

H : (Kums
H ,v) = (Mf,v), ∀v ∈ Vms

H . (4.8)
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The following a priori error estimate was proven in Paper C under the as-
sumptions presented in this chapter.

Lemma 1: The error in the approximate solution ums
H , defined in equation

(4.8), fulfills
|u−ums

H |K ≤Cµ,σ,αH|f|M,

where Cµ,σ,α denotes a dependence on the constants µ,σ, and α from Assump-
tions 2 and 3.

The LOD method

The ideal multiscale approximation, ums
H , is accurate, however finding ums

H is
a harder problem than solving the original problem. The difficulty of the ideal
method lies in finding a basis for the multiscale space Vms

H .
A basis for Vms

H , can be found by using projections. Let Q : V → W be the
fine scale projection operator defined by:

(KQv,w) = (Kv,w), ∀w ∈ W, ∀v ∈ V. (4.9)

Then an alternative way of defining Vms
H would then be:

Vms
H = {(1−Q)v : v ∈ V},

with any vector v ∈ V having the unique decomposition

v = (v−Qv)+Qv ∈ Vms
H ⊕W.

A basis of Vms
H can be constructed by taking a basis for VH , {φi}nm0

i , and
applying (1−Q) to each basis function. The choice of VH is sufficient be-
cause the interpolation operator, I, is idempotent under VH by construction.
The computational difficulties reside in calculating the correction term −Qv,
as it requires a global system to be solved. However, under the right circum-
stances −Qv can be approximated by local computations.

Before we introduce the localization, we decompose the projection opera-
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Figure 4.2: An illustration showing the growth of recursive use of the U operator.

tors element-wise. The projection operator Q can be written as Q=∑T∈T QT ,
where QT : V → W satisfies:

(KQT v,w) = (KT v,w), ∀w ∈ W, ∀v ∈ V,

because K = ∑T∈T KT .
For the method to be computationaly viable, these operators needs to be

evaluated locally around each element. This local computational area we call
a patch, and is defined using the set funciton U : Ω → Ω:

U(ω) := {x ∈ Ω : ∃T ∈ TH : x ∈ T,T ∩ω ̸=∅}, and Uk(ω) =U(Uk−1(ω)).

An illustration of T , U(T ), and U2(T ) is provided in Figure 4.2.
The LOD method approximates QT by only considering components in the

patch Uk(T ), where k is a localization parameter, by solving:

(KQk
T v,w) = (KT v,w), ∀w ∈ W(Uk(T )),

W(ω) = {w ∈ W : w(xi) = 0,∀i ∈ N(ω)}.
(4.10)
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These problems can be solved locally for every v ∈ V. This approximation
is accurate, and in Paper C it is proven to have the following exponential
convergence with respect to k:

Lemma 2: Under the assumptions presented in this chapter, and H ≥ 4R0,
we have that for any v ∈ V it holds:

|(QT −Qk
T )v|K ≤Cµ,σ,α,β exp(−kC)|v|K,T ,

for constants Cµ,σ,α,β and C.

The global projection operator QH is approximated by Qk
H = ∑T∈T Qk

T ,
that only require local compuations. This approximate projection operator is
used to approximate the ideal multiscale space, Vms

H , by:

Vms,k
H = {(1−Qk)v : v ∈ V}.

The LOD approximation, ums,k
H , is found by solving the following variational

problem:

Find ums,k
H ∈ Vms,k

H : (Kums,k
H ,v) = (Mf,v), ∀v ∈ Vms,k

H . (4.11)

With the main result of paper Paper C being the proof of the following a
priori error estimate.

Theorem 1: Under the assumptions presented in this chapter, and H ≥ 4R0,
the error in the approximate solution ums,k

H , defined in equation (4.11), fulfills

|u−ums,k
H |K ≤Cµ,σ,α,β (H + exp(−kC)) |f|M.
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CHAPTER 5

Numerical Upscaling of Network Models

Following the theory presented in Chapter 4, several numerical examples are
presented. The first three examples are the ones presented in Paper C. These
examples are used to verify the theoretical results, both the H convergence
and the k convergence of the LOD method. In these examples, both scalar
and vector-valued problems are analyzed.

The fourth and final example is one of the validation simulations in Chap-
ter 3, with the simulations redone using a LOD method. In the theoretical
results developed in Paper C, the network model is assumed to take the form
of a unit cube. The network models are thin three-dimensional objects. How-
ever, the choice of the domain was more for notational purposes, and initial
numerical results indicate that the LOD method can handle these models, with
the multiscale approximation able to recreate the tensile properties down to
less than one percent with a high degree of localization.

For implementation ideas and pointers on how to create an optimal LOD
method, see [30].
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Figure 5.1: The random network model used to validate the theoretical results in
Paper C.

5.1 A random fiber model

In Paper C several numerical examples are presented on a random two-
dimensional fiber network. The network was constructed by placing fibers
randomly in the unit square with a specified density and fiber length, with the
assumptions presented in Chapter 4 numerically confirmed. An illustration of
the network is presented in Figure 5.1

Diffusion problem

In the first example, a diffusion problem is upscaled. The problem is based
on the L operator presented in the previous chapter, where the components,
Li are weighted with random weights between 0.1 and 1. The problem in
question has a zero Dirichlet boundary on the entire domain and constant
right-hand side data f = 1.

The problem was solved using a linear solver, and that solution is used as
a reference solution. This reference solution is compared to the finite ele-
ment inspired approximation in (4.6) and the LOD approximation (4.11) with
localization parameter k = 2. The solution to the problem, along with the con-
vergence results for the two approximations with respect to H, is presented in
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Figure 5.2: The solution of the diffusion problem, along with the convergence results
for the finite element style and LOD approximation.

Explanation Parameter Value
Radius of wire rw 2.5 mm
Cross-section Area A πr2

w
Young’s modulus EA,EB 210GPa
Second moment of area I 0.25πr4

w

Table 5.1: Structural parameters of the wire mesh structural problem

Figure 5.2.
The numerical results clearly indicate that the finite element inspired method

is insufficient. The relative error stagnates into a convergence plateau. How-
ever, where the first approximation stagnates, the LOD approximations attain
the theoretical H convergence in the K-norm. The LOD approximation also
has H2 convergence in the M-norm, which is consistent with an optimal first-
order finite element method.

Structural problem

In the vector-valued example in Paper C, the governing model presented
in Chapter 2 is used. In this specific example, we use node bonds on the
intersection points. The model problem is inspired by a steel mesh of wires
with a specified radius, with the parameters presented in Table 5.1.

Two structural problems are analyzed. For the first structural simulation,
a two-dimensional tensile simulation is evaluated. In this specific problem,
the equilibrium is found given a specified strain. Because the right-hand side
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Figure 5.3: The solution of the two-dimensional equilibrium tensile simulation, and
the k-convergence results for the LOD approximation.

is zero and the displacement can be resolved precisely, the ideal multiscale
approximation attains the correct solution. Meaning the error introduced in
the LOD approximation is entirely based on the localization error of the pro-
jection operator Qk. With this in mind, the convergence error in this example
is evaluated with respect to k. An illustration of the exact solution to this
problem, along with the k convergence results, are presented in Figure 5.3.

The convergence results in Figure 5.3 is consistent with Theorem 1, where
exponential convergence is observed with respect to k. Exponential conver-
gence means that, in general, k should be proportional to | log(H)|. Exceed-
ingly good approximations can be attained for a localization factor of k = 2,
which illustrates that the LOD method can work with a high degree of local-
ization.

A constant lateral load is applied to the tensile simulation in the second
structural problem. This lateral load can be seen as gravity acting on the net-
work, pushing it down. In this problem, the ideal multiscale method does not
attain the exact solution, so convergence with respect to H is evaluated. The
convergence results for LOD approximations with k = 2, and an illustration
of the solution is presented in Figure 5.4.

Similar to the previous examples, the theoretical convergence results are
consistent with the results in Figure 5.4. We observe a slight stagnation for
the last grid analyzed in these results. This stagnation is consistent with the
k convergence results in Figure 5.3, which indicates that less localization is
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Figure 5.4: The solution of the three dimensional tensile problem with a structural
load, and relative errors for the LOD approximation for different H.

required for better results. However, the relative errors of the approximations
are less than one percent in the K-norm and a tenth of that in the M-norm,
which is sufficient in most structural simulations.

5.2 Validated paper model

The tensile stiffness simulation in the machine direction in Chapter 3 was
performed again with the LOD method. Unlike the previous example on the
two-dimensional network, the validated paper models are three-dimensional.
Each model is exceedingly thin compared to the width of the sheet. This
geometric irregularity is resolved by only placing one element in z-direction
in the coarse grid and dividing the coarse grid in X-Y direction as in a two-
dimensional example. For this particular example, 16×16 elements are used,
with localization parameter k = 2.

In the numerical experiment, each sheet is only evaluated once, unlike the
ten times in the validation. Moreover, nodes are placed on edges that intersect
the boundary to reduce boundary effects. With these slight modifications, the
results in Figure 5.5 show that the method produces almost identical results as
using a linear solver. Less than one percent difference in the approximation
compared to the exact solution for each simulation performed.

39



5 Numerical Upscaling of Network Models

Figure 5.5: The tensile stiffness simulation in machine direction using the LOD
method.
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CHAPTER 6

Summary and Future Work

This chapter will summarize the content of this thesis and discuss potential
future development.

6.1 Summary

A paper model based on linearized one-dimensional beam theory was pre-
sented in Chapter 2. The model is based on the initial work in [17] and was
developed further. This development includes shape-based structural param-
eters, analyzing and motivating parameters with experimental data, more ac-
curate bonding with the volumes of the paper fibers considered, and a new
way to represent fiber bonds.

The paper model presented in Chapter 2, was used to simulate and vali-
date structural experiments in Chapter 3. These experiments included tensile
stiffness, tensile strength, and bending resistance. These structural experi-
ments were performed and validated both in machine and cross direction.
The validation results show that the model can reproduce representative re-
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sults. Moreover, these simulations are fast, with a tensile type simulation
taking seconds and strength simulations a couple of minutes.

The linear systems resulting from fiber-based network models are enor-
mous, and convergence issues for standard preconditioners have led to non-
iterative methods. Even though the simulations with the paper model in Chap-
ter 3 are fast in execution time, they require a decent amount of memory. Sim-
ulations on larger domain sizes scale poorly, and to deal with this, numerical
upscaling is proposed.

In Chapter 4 the LOD multiscale method is presented. The chapter presents
some standard network notation, operators, and discrete functions spaces.
These definitions are used to formulate weak connectivity, homogeneity, and
locality assumptions on the network and model, with the paper model being
covered by these assumptions. Using a synthetic grid that the network does
not need to conform to, an interpolation operator is constructed that takes the
network into account. This interpolation operator is used to formulate the
LOD approximation, and an a priori error bound can be formulated under the
earlier assumptions.

The a priori error bound in Chapter 4 is numerically confirmed in Chap-
ter 5. In this chapter, multiple fiber-based numerical examples are presented
and analyzed, including a scalar diffusion problem and two structural prob-
lems based on the governing model in Chapter 2 on the same two-dimensional
network. This two-dimensional network was analyzed in Paper C, and the
network assumptions on the network model were numerically validated. The
numerical results are consistent with the theoretical a priori error bound pre-
sented in Chapter 4 and proven in Paper C. Chapter 4 ends with performing a
tensile stiffness validation simulation from Chapter 3 with the LOD method,
matching the validation results with less than one percent difference.

6.2 Future work

This thesis presents an efficient, thoroughly validated paper model and a
mathematically proven multiscale framework for upscaling it. These results

42



6 Summary and Future Work

provide a solid foundation for further development in several different direc-
tions.

The model is efficient and representative. Analyzing higher density sheets
like paperboard should still be manageable on smaller domain sizes on con-
sumer hardware. It might be possible to extend the validation results to thicker
multi-layer paper with further work. Moreover, thicker paper, such as paper-
board, has other structural properties of interest (for example, Z-strength) that
would be interesting to evaluate as well. Within the ISOP project, a frame-
work for laydown and paper forming simulations has been developed [5].
Using the geometry from a paper forming simulation as the geometries in a
structural simulation would provide a complete framework for a papermaker
to analyze the structural effects of paper for different machine settings.

Introducing time dependence in the paper model would be interesting. The
tensile stiffness simulations are accurate, and if a more advanced model pre-
dicts similar results, the simplified nature of the model would be further jus-
tified. In the tensile strength simulations, it might be possible to get accurate
stress/strain curves. Our model produces slightly stiffer values in the simula-
tion than in the bending resistance experiment, so it would be interesting to
see how bending stiffness differs in a time-dependent version.

An efficient LOD implementation of the strength simulations should be
possible. The computational difficulty of solving a stiffness problem might
be similar to a strength simulation by only updating the multiscale basis func-
tions where the edges break between iterations. A similar implementation can
be used for potential time-dependent implementations of the model, where the
multiscale basis functions are only updated under specified circumstances.

If the paper model is periodic on some scale, the LOD method resolves the
microscale (fibers) on only one period. The computational complexity will be
restricted to the coarse-scale problem by reusing the basis functions for the
multiscale space. Simulations as extensive as A4 sheets that take individual
paper fibers into account might be possible, using periodicity in the paper
model, depending on how the coarse problem scales.
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CHAPTER 7

Summary of included papers

This chapter provides a summary of the included papers.

7.1 Paper A

Morgan Görtz, Gustav Kettil, Axel Målqvist, Andreas Mark, Fredrik
Edelvik
A numerical multiscale method for fiber networks
Published in WCCM-ECCOMAS 2020 preceedings.

Article summarizing the initial numerical validations of the LOD method on
discrete fiber-based network models. The results are an extension of the re-
sults presented in [18], showing that the LOD method is capable of upscal-
ing less structured networks. These initial numerical results motivated us to
continue the theoretical development of the LOD method’s use on general
network problems.

44
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7.2 Paper B

Morgan Görtz, Gustav Kettil, Axel Målqvist, Mats Fredlund, Kenneth
Wester, Fredrik Edelvik
Network models for predicting structural properties of paper
Submitted.

In this article, the paper network model presented in Chapter 2 is presented,
analyzed, and validated. First, the network model parameters are methodi-
cally defined either with experimental data or using published values in lit-
erature. The model’s discretization parameters are analyzed, with sufficient
discretization parameters chosen. Tensile stiffness, tensile strength, and bend-
ing resistance experiments are simulated and validated against experimental
data in cross- and machine direction. The simulation domains chosen are
motivated by domain studies, showing that the forces scale appropriately for
different domains sizes. The validation results show that the paper network
model can simulate the mentioned structural experiments accurately. More-
over, the simulations are fast, with the simulations only taking a couple of
minutes on consumer-grade hardware.

7.3 Paper C

Fredrik Edelvik, Morgan Görtz, Fredrik Hellman, Gustav Kettil, Axel
Målqvist
Numerical homogenization of spatial network models
Article draft with the theoretical work so far.

This article presents the mathematical foundation used to prove an a priori
error bound for the LOD method on general network problems. The article
defines what assumptions are required on the networks and associated prob-
lems. These assumptions relate to the network’s and model’s connectivity,
homogeneity, and locality. The paper network model presented in Chapter 2
is covered by the assumptions. These assumptions make it possible to con-
struct an artificial uniform coarse grid and an effective interpolation operator
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for the LOD method. The main result of this paper is a proven a priori error
bound for LOD approximations.
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