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Abstract

In this paper we present the adaptive variational multiscale method for
solving the Poisson equation in mixed form. We use the method introduced
in [3], and further analyzed and applied to mixed problems in [4], which is
a general tool for solving linear partial differential equations with multiscale
features in the coefficients. We extend the numerics in [4] from rectangular
meshes to triangular meshes which allow for computation on more compli-
cated domains. A new a posteriori error estimate is also included, which is
used in an adaptive algorithm. We present a numerical example that shows
the efficiency of incorporating a posteriori based adaptivity into the method.

1 Introduction

Multiscale problems appear in many applications in engineering and sciences,
for instance, composite materials, flow in porous media, fluid mechanics, and
quantum physics. A common feature of multiscale problems is that they are
very computationally challenging and often impossible to solve to an accept-
able tolerance with standard methods using only one mesh. Thus multiscale
methods are introduced, which uses both local and global information com-
puted on different scales.
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Multiscale methods have been developed in various ways the last 15 years. A
common feature is that information from decoupled local fine scale equations
are used to modify the coarse scale solution. Two early examples are the mul-
tiscale finite element method [1] and the variational multiscale method [2].
The adaptive variational multiscale method was first introduced by Larson
and Målqvist in [3], which presents a posteriori error estimates that can be
used in adaptive algorithms. That method is extended to mixed problems in
[4], and further developed in e.g [5].

This paper is based on [4], but we extend the numerics to triangular meshes
which allows for more complicated geometries. We also derive a new im-
proved a posteriori error estimate. This error estimate is used in an adaptive
algorithm, that automatically tunes the parameters of the method.

2 Preliminaries

We let Ω ⊂ Rd be a domain with Lipschitz boundary ∂Ω. We consider a
coarse scale and a fine scale, both of which need to be discretized. We denote
the coarse mesh by KH , with HK we refer to the diameter of the elements
in the coarse mesh, and we let H = maxKHK . The coarse mesh satisfies
∪K∈KH

K = Ω where all K are disjoint. The fine mesh however, is only
defined on local subregions ω ⊂ Ω, since we wish to decouple the fine scale
computations. The meshes will be nested so that all of those subregions are
made up of coarse elements. We therefore introduce the following notation,
KH(ω) = {K ∈ KH : K ∈ ω} and with Kh(ω) we refer to the set of fine scale
elements {K} such that ∪K∈Kh(ω)K = ω. Since the meshes are nested all
K ∈ KH(ω) can be written as a union of elements in Kh(ω). The diameter
of the elements K ∈ Kh(Ω) will be denoted hK , and we let h = maxKhK .

Next we define the function spaces V = {v ∈ H(div;Ω) : n ·v = 0 on ∂Ω}
and W = L2(Ω), where n is the outward unit normal to ∂Ω. The corre-
sponding finite element spaces on the coarse scale will be denoted Vc andWc

respectively, and we let

Vc = RT H , (1a)

Wc = PH , (1b)

where PH is the space of piecewise constants on the coarse mesh, and RT H
is the space of lowest order Raviart-Thomas elements on the coarse mesh.
We want an hierarchical split between the coarse and the fine scales and
if we introduce the operators ΠH : V → Vc and PH : W → Wc, as the
Raviart-Thomas interpolant and L2-projection onto the coarse scale spaces
respectively, we can define the fine scale spaces Vf , Wf by
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Vf = {v ∈ V : ΠHv = 0}, (2a)

Wf = {v ∈ W : PHv = 0}. (2b)

We let Ph(ω) and RT h(ω) be the piecewise constants, and the lowest order
Raviart-Thomas elements, on the subgrid Kh(ω). The fine scale finite element
spaces can now be defined in the following way

Pfh (ω) = {v ∈ Ph(ω) : PHv = 0}, (3a)

RT fh(ω) = {v ∈ RT h(ω) : ΠHv = 0 and n · v = 0 on ∂ω}, (3b)

where, Pfh (ω) approximates Wf and RT fh(ω) approximates Vf on the subre-
gion ω.

The patches ωi on which we define the fine scale finite element spaces, are
defined in the following way.

Definition 2.1. We say that ω1
i is a 1-layer patch if ω1

i = supp(φi), where
φi is a coarse Raviart-Thomas basis function. Further we say that ωni is an
n-layer patch if,

ωni = ∪{i:supp(θi)∩ωn−1
i 6=∅}supp(θi), n = 2, 3, . . . (4)

where θi is a coarse scale continous piecewise linear nodal basis function. In
the text we omit the superscript n.

Let us also introduce the fine scale projection operator Ph,ω :W → Pfh (ω)
and the Scott-Zhang interpolants P 1

H : V → P1
H and P 1

h,ω,0 : V → P1
h,0, where

the latter projects onto functions that are zero on the boundary.

3 A Variational Multiscale Decomposition of Poisson’s
Equation in Mixed Form

The equation we wish to solve is the Poisson equation in mixed form, which
reads: find the pressure u ∈ W and the flux σ ∈ V such that

1
aσ = ∇u, in Ω, (5a)

−∇ · σ = f, in Ω, (5b)

n · σ = 0, on ∂Ω, (5c)

where a ∈ L∞(Ω) is the permeability satisfying a ≥ a0 > 0 for some constant
a0, and f ∈ L2(Ω) is a given external force such that

∫
Ω
fdx = 0. We use the

variational multiscale framework, see [2], and let u = uc + uf , σ = σc + σf ,
where σc ∈ Vc, u ∈ Wc, σf ∈ Vf , and uf ∈ Wf . Let ϕk denote the piecewise
constant basis functions on the coarse mesh, such that Wc = span({ϕk}M),
where M is the set of coarse scale elements. Also let N be the set of coarse
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faces and ψi be the partition of unity defined by ψi = 1
d+1 on supp(φi) (φi

being the continuous piecewise linear nodal basis functions). As in [4], the
multiscale finite element solution Σ corresponding to σ, is given by Σ =∑
i∈N Σi

c(φi + ξi) + β, where β =
∑
i∈N βi, and

( 1
a

∑
j∈N

Σj
cφj ,φi) + ( 1

a

∑
j∈N

Σj
cξj ,φi)− (

∑
k∈M

Ukc ϕk,∇ · φi) = −( 1
aβ,φi),

(6a)

(∇ ·
∑
j∈N

Σj
cφj , ϕk) = −(f, ϕk),

(6b)

∀i ∈ N ,∀k ∈M,

( 1
aξi,vf ) + (ηi,∇ · vf ) = −( 1

aφi,vf ), ∀vf ∈ RT fh(ωi),∀i ∈ N , (7a)

−(∇ · ξi, wf ) = 0, ∀wf ∈ Pfh (ωi),∀i ∈ N , (7b)

( 1
aβi,vf ) + (ρi,∇ · vf ) = 0, ∀vf ∈ RT fh(ωi),∀i ∈ N , (8a)

−(∇ · βi, wf ) = (f, ψiwf ), ∀wf ∈ Pfh (ωi),∀i ∈ N . (8b)

4 A Posteriori Error Estimate

In this section we present an a posteriori error estimate for the proposed
multiscale method. For simplicity we assume two spatial dimensions and that
a is piecewise constant. We follow ideas presented in [6], page 26-29. We start
by presenting a technical Lemma.

Lemma 4.1. Let P1
h(ω) ⊂ H1(ω) be the space of continuous piecewise lin-

ear functions and let RT h(ω) be the space of lowest order Raviart-Thomas
finite elements on a given triangulation K of a domain ω ⊂ Ω. Further let
∇× φ = [∂φ/∂y,−∂φ/∂x], for any φ ∈ H1(ω). Then

(i) ∇× φh ∈ RT h for all φh ∈ P1
h(ω).

(ii) For any function φh that vanishes on the boundary ∂ω we have that
n · ∇× φh = 0 on the boundary ∂ω, n being the normal of the boundary ∂ω.

Proof. For (i) we refer to [6] and (ii) is easily seen since if φh vanishes on the
boundary, the gradient ∇φh = [∂φh/∂x, ∂φh/∂y] must be parallell to n and
thus the curl ∇× φh = [∂φh/∂y,−∂φh/∂x] must be orthogonal to n.

We are now ready to present the main theorem.
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Theorem 4.1. We let Σ =
∑
i∈N Σi

c(φi + ξi) +β be the multiscale approx-
imation of σ and assume d = 2. It holds,

‖ 1√
a

(σ −Σ)‖2L2(Ω) ≤ C
∑
i∈N

∑
K∈K(ωi)

h2K‖fψi +∇ · (Σi
c(φi + ξi) + βi)‖2L2(K)

(9)

+
∑
i∈N

∑
K∈Kh(ωi)

hK‖[t ·
1

a
(Σi

c(φi + ξi) + βi)]‖2L2(∂K)

+
∑
i∈N

H‖Σ̃i‖2L2(∂ωi)

where [·] denotes the jump across the boundary ∂K, t is the tangent vector
to ∂K, and Σ̃i ∈ P1

h(∂ωi) is defined for each i ∈ N as the solution to,

(Σ̃i, v)L2(∂ωi) = (
1

a
(Σi

c(φi + ξi) + βi),∇× v)L2(ωi), for all v ∈ P1
h(ωi).

(10)

Proof. We note that there exists functions φ ∈ H1(Ω) and γ ∈ H1
0 (Ω) such

that, v = a∇γ +∇× φ for all v ∈ (L2(Ω))2 and furthermore

‖∇γ‖L2(Ω) + ‖∇φ‖L2(Ω) ≤ C‖v‖L2(Ω). (11)

We let σ −Σ = a∇γ +∇× φ and get,

‖ 1√
a

(σ −Σ)‖2L2(Ω) = (σ −Σ,∇γ) + (
1

a
(σ −Σ),∇× φ) = I + II. (12)

We treat the two terms separately.
We start with the first term and use Green’s formula and the orthogonal-

ity given by the multiscale method, as well as interpolation estimates and
equation (11), with a modified constant C depending on a.

I = (σ −Σ,∇γ) = (−∇ · (σ −Σ), γ) (13)

= (f +∇ ·Σ, γ − PHγ) (14)

=
∑
i∈N

(fψi +∇ · (Σi
c(φi + ξi) + βi), γ − PHγ − Ph,ωiγ) (15)

≤ C

∑
i∈N

∑
K∈Kh(ωi)

h2K‖fψi +∇ · (Σi
c(φi + ξi) + βi)‖2L2(K)

1/2

(16)

‖ 1√
a

(σ −Σ)‖L2(Ω),

Next we turn to the second term. We note that P 1 is the Scott-Zhang in-
terpolant onto continuous piecewise linear functions and use Lemma 4.1 to
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subtract the curl of a continuous piecewise linear function,

II = (
1

a
(σ −Σ),∇× φ) = −(

1

a
Σ,∇× φ) (17)

= −(
1

a
Σ,∇× (φ− P 1

Hφ)) (18)

= −
∑
i∈N

(
1

a
(Σi

c(φi + ξi) + βi),∇× (φ− P 1
Hφ)) (19)

= −
∑
i∈N

(
1

a
(Σi

c(φi + ξi) + βi),∇× (I − P 1
h,ωi

)(φ− P 1
Hφ)) (20)

−
∑
i∈N

(
1

a
(Σi

c(φi + ξi) + βi),∇× (P 1
h,ωi
− P 1

h,ωi,0)(φ− P 1
Hφ)),

where I is the identity operator. At this point we use Green’s formula for the
curl operator, that a is piecewise constant on the mesh and ∂v2/∂x−∂v1/∂y =
0 for all v = [v1, v2] ∈ RT h(ω) (since v1 independent of y and v2 independent
of x for first order Raviart Thomas functions), and equation (10) to get,

II ≤ C
∑
i∈N

∑
K∈Kh(ωi)

‖[t · 1

a
(Σi

c(φi + ξi) + βi)]‖L2(∂K) (21)

· ‖(I − P 1
h,ωi

)(φ− P 1
Hφ)‖L2(∂K)

+ C
∑
i∈N
‖Σ̃i‖L2(∂ωi)‖P

1
h,ωi

(φ− P 1
Hφ)‖L2(∂ωi).

We use a trace inequality, that P 1 is stable in H1, and the Scott-Zhang
interpolation estimate (see [7]), to obtain

II ≤C
∑
i∈N

∑
K∈Kh(ωi)

hK‖[t ·
1

a
(Σi

c(φi + ξi) + βi)]‖L2(∂K)‖∇φ‖L2(K) (22)

+ C
∑
i∈N

H1/2‖Σ̃i‖L2(∂ωi)‖∇φ‖L2(ωi)

≤ C

∑
i∈N

∑
K∈Kh(ωi)

hK‖[t ·
1

a
(Σi

c(φi + ξi) + βi)]‖2L2(∂K)

1/2

(23)

· ‖ 1√
a

(σ −Σ)‖L2(Ω)

+ C

(∑
i∈N

H‖Σ̃i‖2L2(∂ωi)

)1/2

‖ 1√
a

(σ −Σ)‖L2(Ω).

The theorem follows immediately.

We can now present an adaptive algorithm (Algorithm 1).
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Algorithm 1

1: Start with the original mesh partition with 1-layer patches and zero level of refinements
everywhere.

2: Compute Σ.

3: Compute the terms in the right hand side of (9) and set

ηr,i =
∑

K∈Kh(ωi)

h2K‖fψi +∇ · (Σic(φi + ξi) + βi)‖2L2(K)
(24a)

+
∑

K∈Kh(ωi)

hK‖[t ·
1

a
(Σic(φi + ξi) + βi)]‖2L2(∂K)

ηl,i = H‖Σ̃i‖2
L2(∂ωi)

(24b)

4: Modify the mesh according to the following:

• Increase the level of refinements on patch i if ηr,i ≥ αrmaxiηr,i.
• Increase the number of layers on patch i if ηl,i ≥ αlmaxiηl,i.

5: Stop when ‖ 1√
a

(σ−Σ)‖2
L2(Ω)

/‖ 1√
a
σ‖2

L2(Ω)
≤ TOL, where TOL is a given tolerance.

5 Numerical example

In the numerical example we consider the domain Ω = [0, 1] × [0, 1] and as
our coarse mesh we use a Delaunay triangulation of Ω with H ≤ 0.1. The
fine scale mesh is obtained after two regular refinements of the coarse mesh.

We let f = 1 on the two fine scale elements in the lower left corner, f = −1
on the two fine scale elements in the upper right corner, and f = 0 everywhere
else. Thus our problem can be seen as modeling an oil reservoir with injector
at the lower left corner and producer at the upper right corner of the domain.

For the permeability a, we use a permeability from the tenth comparative
SPE project. See Figure 2 for illustration of the permeability we use.

We use the adaptive algorithm 1 and study the convergence of Σ. As a
reference solution for σ we use a multiscale solution computed on a mesh with
three level of refinements and four layers on all patches. We use αr = αl = 0.1
and TOL = 0.05. The convergence plot is found in Figure 1, with relative
error plotted against average number of degrees of freedoms in the patches.
We see that in average about 160 degrees of freedoms in the patches are
required to reach the desired tolerance. A uniformly refined mesh with two
levels of refinement and two layers for all patches only yielded a relative error
of 0.068 with 371 degrees of freedom in average, i.e the adaptive procedure
yields a far more efficient mesh than a uniformly refined mesh. Considering
that relatively few iterations are needed to reach the desired tolerance the
adaptive procedure is also time efficient. The resulting adaptively refined
mesh is found in Figure 2. It is apparent and somewhat expected that it is
important to refine close to the inlet and outlet. It is also clearly seen that
the refinement follows the flow, i.e where the permeability is large.
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Fig. 1: The relative error approaching the desired tolerance in the adaptive algorithm.

Fig. 2: The permeability function in log-scale and the adapted mesh. The thickness of

the discs indicate the number of layers (in the middle) and number of refinements (to the
right).


