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Spatial network models
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Fibre based materials
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Fraunhofer Chalmers Centre, Stora Enso, Albany International
Paper forming, network model (Gustav Kettil, 2014-2019)
Mechanical properties, solvers (Morgan Görtz, 2019-)
Development (fiber dimensions, distribution, virtual lab)
Evaluation (tensile, bending, defects)
Numerical simulation is not used extensively in paper industry



Numerical simulation of spatial network models
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Efficient solver for
Ku = F

a simplified network model of an elliptic PDE
K is SPD but ill-conditioned (FCC uses direct solver)
Multiscale problem (similar to rapidly varying diffusion)
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Graph Laplacian
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Let G = (N ,E) be a graph of nodes and edges
Notation: i ∼ j if xi and xj are connected by an edge
Let D be the degree and A be the adjacency matrix
The graph Laplacian Lg := D − A is SP(semi-)D, Lg1 = 0
Let V̂ : N → R be scalar functions on N . For v ,w ∈ V̂

(v ,w) =
∑

j

v(xj)w(xj)

(Lgv , v) =
∑
(i,j)∈E

(v(xi) − v(xj))
2

Lg =
∑

i

Lg
i

(Lg
i v , v) =

1
2

∑
j∼i

(v(xi) − v(xj))
2

Example:

1

3

4

2

Lg =


2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1





Weighted graph Laplacian
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A weighted graph Laplacian and diagonal mass matrix

(Liv , v) =
1
2

∑
j∼i

(v(xi) − v(xj))
2

|xi − xj |
, L =

∑
Li

(Miv , v) :=
1
2

v(xi)
2
∑
j∼i

|xi − xj |, M =
∑

Mi

Consider the 1D mesh 0 = x0 < x1 < · · · < xn = 1.

(Lv , v) :=
∑
(i,j)∈E

(v(xi) − v(xj))
2

|xi − xj |

L is the P1-FEM stiffness matrix (−∆)
Lu = Mf corresponds to P1-FEM with lumped mass matrix



Spatial network vs. PDE
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Spatial network notation Continuous analogue
(Lu, v) ↔

´
Ω ∇u · ∇v

(Lωu, v) :=
∑

xi∈ω(Liu, v) ↔
´
ω
∇u · ∇v

(Mu, v) ↔
´
Ω u v

(Mωu, v) :=
∑

xi∈ω(Miu, v) ↔
´
ω

u v
|v |L := (Lv , v)1/2 ↔ ∥∇v∥L2(Ω)

|v |L ,ω := (Lωv , v)1/2 ↔ ∥∇v∥L2(ω)

|v |M := (Mv , v)1/2 ↔ ∥v∥L2(Ω)

|v |M,ω := (Mωv , v)1/2 ↔ ∥v∥L2(ω)



Model problem
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Let u ∈ V := {v ∈ V̂ : v(xi) = 0 for xi ∈ ΓD} solve

Ku = Mf ⇐⇒ (Ku, v) = (Mf , v), v ∈ V .

We assume K to be symmetric, invertable and

α(Lv , v) ≤ (Kv , v) ≤ β(Lv , v), ∀v ∈ V .

Example:
Weighted graph Laplacian

(Kv , v) =
∑
(i,j)∈E

γij
(v(xi) − v(xj))

2

|xi − xj |
, α ≤ γij ≤ β

Elasticity model for a fibre network.



Example: random infinite lines
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Poisson line process
Given random points (θ, r), perpendicular chords are
constructed in a circle
Unit square is cut out, principal component kept
Intersections are nodes, two nodes are connected by an edge
Dirichlet nodes on the boundary



Condition number
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Multilevel solver: coarse scale representation
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TH is a mesh of squares
V̂H is Q1-FEM with basis {φy}y

1

VH ⊂ V̂H satisfy the boundary conditions
Clément type interpolation operator

IHv =
∑

free DoFs y

(MU(y)1, v)
(MU(y)1, 1)

φy ∈ VH

Lemma (Stability and approximability of IH)
Under assumptions on network and mesh, for all v ∈ V, T ∈ TH,
and for sufficiently large H,

H−1|v − IHv |M + |IHv |L ≤ C |v |L .

1 M. & Peterseim, Numer. Math., 2015



Network homogeneity assumption
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1 All edges are shorter than R0 > 0 (length scale)
2 For any square BR(x), centered at x with side length 2R, with

R ≥ R0,
ρ ≤ (2R)−d |1|2M,BR

≤ σρ

where σ ≥ 1 and ρ > 0 are uniformity and density constants.

For a certain pair (σ, ρ), the boxes must be
at least R0 large to satisfy the conditions.
R0 is a length scale at which the material
is homogeneous.



Network connectivity assumption
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Existence of a Poincaré and Friedrich-type constants
There is a µ < ∞, such that for all x ∈ Ω, and H > R0

|v − v̄ |M,BH(x) ≤ µH|v |L ,BH+R0 (x)
, ∀v ∈ V̂

|v |M,BH(x) ≤ µH|v |L ,BH+R0 (x)
, ∀v ∈ V

Large µ, R0 Small µ, R0



Network connectivity assumption

1Cheeger 1970, Fiedler 1973
2F. Chung, Spectral graph theory, AMS, 1997
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If there exists a connected subgraph G′ = (N ′,E′) ⊂ G so that
all nodes in BH(x) are included
no nodes in BH+R0(x) are included

Then

|v − v̄ |M,BH(x) ≤ |v − v̄ |M,N ′ ≤ λ
−1/2
2 |v |L ,N ′ ≤ λ

−1/2
2 |v |L ,BH+R0 (x)

where λ2 = inf(M′1,v)=0
(L ′v ,v)
(M′v ,v) measure connectivity1.

If G′ is isoperimetric2 |δ(X)| ≥ cdvol(X)(d−1)/d , |X | ≤ |N ′ \ X |

isoperimetric =⇒ λ2 ≥ CH2 =⇒ |v − v̄ |M,BH(x) ≤ µH|v |L ,BH+R0 (x)



Interpolation error bound and product rule
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Homogeneity and connectivity allow us to prove

Lemma (Stability and approximability of IH)
For H > R0 it holds

H−1|v − IHv |M + |IHv |L ≤ Cµ,σ|v |L , ∀v ∈ V

Local Poincaré and Friedrich inequalities are used.

|vφ|2L ,ω = (Lω(vφ), vφ) =
1
2

∑
xi∈ω

∑
i∼j

(v(xi)φ(xi) − v(xj)φ(xj))
2

|xi − xj |

=
1
2

∑
xi∈ω

∑
i∼j

(v(xi)(φ(xi) − φ(xj)) + (v(xi) − v(xj))φ(xj))
2

|xi − xj |

≤
∑
xi∈ω

∑
i∼j

v(xi)
2|xi − xj |

2H−2 + (v(xi) − v(xj))
2

|xi − xj |
= 2

(
H−2|v |2M,ω + |v |

2
L ,ω

)
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Subspace decomposition preconditioner3

3Kornhuber & Yserentant, MMS, 2016
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Let
V0 = VH, Vj = V(U(yj)), j = 1, . . . ,m,

and let Pj : V → Vj to be orthogonal projections fulfilling

(KPjv , vj) = (Kv , vj), ∀vj ∈ Vj .

The existence and uniqueness follows since Vj ⊂ V . We let

P = P0 + P1 + · · ·+ Pm.

P = BK will be used as a preconditioner: BKu = BMf .
Involves direct solution of decoupled problems (semi-iterative).

(Ku,Pv) =
m∑

j=0

(Ku,Pjv) =
m∑

j=0

(KPju,Pjv) =
m∑

j=0

(KPju, v) = (KPu, v)



Spectral bound of P
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Lemma
Under the network and operator assumptions and for H ≥ R0 there
is a decomposition v =

∑m
j=0 vj that satisfies

m∑
j=0

|vj |
2
K ≤ C1|v |2K .

Moreover, every decomposition v =
∑m

j=0 vj with vj ∈ Vj satisfies

|v |2K ≤ C2

m∑
j=0

|vj |
2
K .

C1 = Cdβα
−1σµ2, C2 = Cdβα

−1, Cd only depends on d.



Spectral bound of P
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Sketch of proof:
We start in L -norm:

|v |2L ≤ 2|v0|
2
L + 2|

m∑
j=1

vj |
2
L .

Pick T ∈ TH. Since vj ∈ V(U(yj)) and LTv = 0 for v ∈ V(Ω \ U2(yj)),
LTvj can be non-zero for at most Cd meshnodes j. We get

|

m∑
j=1

vj |
2
L ,T ≤ Cd

m∑
j=1

|vj |
2
L ,T .

Summing over T ∈ TH proves the inequality in L -norm and therefore
also in K with C2 = Cdβα

−1.



Spectral bound of P
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Sketch of proof:

m∑
j=1

|vj |
2
L :=

m∑
j=1

|φj(v − IHv)|2L

≤ 2
m∑

j=1

∑
T∈U2(yj)

(
H−2|v − IHv |2M,T + |v − IHv |2L ,T

)
≤ Cd

(
H−2|v − IHv |2M + |v − IHv |2L

)
≤ Cdσµ

2|v |2L .

Furthermore |v0|L = |IHv |L ≤ Cdσ
1/2µ|v |L . All together we have

m∑
j=0

|vj |
2
L ≤ Cdσµ

2|v |2L .

Equivalence of L - and K -norms gives C1 = Cdβα
−1σµ2.



Spectral bound of P

4Kornhuber & Yserentant, MMS, 2016
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We get the following spectral bound for P4.

Lemma
Under the same assumptions

C−1
1 |v |

2
K ≤ (KPv , v) ≤ C2|v |2K .

and for any polynomial p it holds

|p(P)| := sup
v∈V

|p(P)v |K
|v |K

≤ max
λ∈[C−1

1 ,C2]
|p(λ)|.



Preconditioned conjugate gradient
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We use P = BK as a preconditioner for CG:

BKu = BMf .

For some polynomial pℓ of degree ℓ fulfilling pℓ(0) = 1

u − u(ℓ) = pℓ(P)(u − u(0)),

CG minimizes |u − u(ℓ)|K over (Krylov) span({s,Ps,P2s, . . . ,Pℓ−1s}):

|u−u(ℓ)|K ≤ min
deg(p) ≤ ℓ
p(0) = 1

|p(P)||u−u(0)|K ≤ min
deg(p) ≤ ℓ
p(0) = 1

max
λ∈[C−1

1 ,C2]
|p(λ)||u−u(0)|K

realized by a shifted and scaled Chebyshev polynomial:

|u − u(ℓ)|K ≤ 2
( √

κ − 1
√
κ + 1

)ℓ
|u − u(0)|K ,

√
κ = Cdα

−1βµ
√
σ.
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Example: connectivity λ−1/2
2 ≈ µR
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Generate n = 256 lines on smallest circle enclosing [0, 1]2.
Cut a square [0,R]2, R = 2−r , r = 0, 1, . . . , 5, 100 samples.

100 realizations for each R.



Example: weighted graph Laplacian
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Poisson line process n = 256, 512, 1024, 2048 lines (at most
around 800k dofs)
No material data γ = 1 i.e. we solve Lu = Mf
Right hand side f = 1 and homogeneous Dirichlet boundary
conditions.
Coarse mesh size H = 2−r , r = 2, 3, 4, 5, 6



Example: weighted graph Laplacian
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Example: weighted graph Laplacian
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Right hand side f = 1, homogeneous Dirichlet bc, n = 1024.
(left) γij ∈ U([0.01, 1])
(center) γij = 0.01 or γij = 1 (1/16 lines)
(right) γij = 10−6 or γij = 1 (1/16 lines)

Robust but high contrast may cause problems



Example: a fibre network model5

5Kettil et. al. Numerical upscaling of discrete network models, BIT 2020
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2 · 104 fibres, biased angle (x-axis), length 0.05, 3 · 105 nodes,
α = 0.05, β = 500.
Two forces in the model: edge extension and angular deviation.
Find displacement u: Ku = Mf (tensile, distributed load)
Theory extends to vector valued setting (Korn, K ∼ L )
DD with H = 1/4, 1/8, 1/16, 1/32.



Example: A fibre network model
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Interpolation and decomposition
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Scott-Zhang type interpolation operator IH : V → VH

IHv =
m0∑
j=1

(ψj , v)Tjφj .

with (ψj , φi)Tj = δij being the dual basis defined on an element Tj

adjacent to j (idempotent).

W = ker(IH) Vms
H = {v ∈ V : (w,Kv) = 0 ∀w ∈ W }.

By defining Q : V → W fulfilling

(w,KQv) = (w,Kv), ∀w ∈ W

we can write Vms
H = (1 − Q)VH and V = Vms

H ⊕W .



Example: weighted graph Laplacian
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Localization
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Uk (T) = U(Uk−1(T)) with U1(T) = U(T)
W(Uk (T)) = {w ∈ W : w(xi) = 0 xi < Uk (T)}
KT =

∑
xi∈T Ki

Find Qk
T v ∈ W(Uk (T)) such that

(w,KQk
T v) = (w,KTv), ∀w ∈ W(Uk (T))

We let Qk =
∑

T∈TH
Qk

T and define Vms
H,k := (1 − Qk )VH.

The LOD formulation reads: find ums
H,k ∈ Vms

H,k such that

(v ,Kums
H,k ) = (v ,Mf), ∀v ∈ Vms

H,k



Error analysis

6Kornhuber Yserentant Peterseim, MMS 2016, MC 2018
7M. & Peterseim, Math. Comp. 2014, SIAM Spotlight 2020
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Interpolation error bound under same network assumptions

H−1|v − IHv |M + |IHv |L ≤ C |v |L

Exponential decay of correctors established using fast
convergences of iterative solvers in W . No V0 space means
finite spread of information in each iteration67.

Theorem
If k ∼ | log(H)| and H > R0

|u − ums
H,k |K ≤ CH|f |M



Example: A weighted graph Laplacian
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We let f const, γij ∈ [0.1, 1], and Dirichlet bc.

Left: k = ⌈log(H−1)⌉ Right: H = 2−5

Relative errors in | · |M and | · |K .



Example: LOD for fibre network model
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Fixed boundary, constant force applied in all nodes, 4mm × 4mm.



Example: LOD for fibre network model
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Left: k = ⌈1.5 log(0.004/H)⌉. Right: H = 0.004 · 2−5.

Relative errors in | · |M and | · |K norms.
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Isoperimetric dimension
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The edge boundary |δ(X)| ≥ cdvol(X)(d−1)/d for all |X | ≤ |N ′ \ X |
Can we say that cd is above some threshold with high
probability for PLP?
Can it be generalized to finite length lines?
What can we say in 3D (cylinders)?
Initiated collaboration with probability theory group, Chalmers.



Bulk-interface model

8Boon, PhD thesis, 2018
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−∆u0
i = 0, in Ω0

i ,

u0
i = gi , in Ω̄0

i ∩ ∂Ω,

−divτAj∇τu1
j − δ(u

0
i − u1

j ) = fj , in ∂Ω0
i ∩ Ω1

j ,

u1
j = gj , on Ω̄1

j ∩ ∂Ω,

where u1 is continuous. Weak coupling by Robin condition8

n · ∇u0
i + δ(u0

i − u1
j ) = 0, on ∂Ω0

i ∩ Ω1
j



Bulk-interface model
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We introduce the Robin-to-Dirichlet operator u0
i |∂Ω0

i
= Ru1

j |Ω1
j

and
get the interface equation (Schur compliment)

−divτA∇τu1 + δu1 − δRu1 = f , in Γ.

P1-FEM gives the network formulation

Ku1 + δBu1 + δRu1 = Bf

K ∼ L , B ∼ M (M is lumped) and R interacts over bulk regions.
FEM (or possibly Boundary integral method) for RtD
Prove α(Lv , v) ≤ ((K + δB + δR)v , v) ≤ β(Lv , v)
DD convergence when δ ≫ 0?
What can be done in 3D?
Malin Nilsson (2nd year PhD) works on this problem



Wave propagation on spatial network models

9Abdulle & Henning, 2017
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Network-LOD for wave equation

Mü + Ku = Mf .

Re-use basis. Combine existing theoretical results9.
Assumptions on well prepared data.
Elastic wave propagation with applications in fibre based
materials. Interest from industry.
Per Ljung (4th year PhD) and Morgan Görtz (3rd year PhD)
works on this problem.



Algebraic LOD/DD for network models
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How to construct a coarse scale representation?
Patches will most likely depend on structure of K .
Construct LOD space using functionals
W = {v ∈ V : ℓi(v) = 0}.
Prove error bounds (isoperimetric dimension)?
Initial discussions with Roland Maier and Fredrik Hellman.



Multilevel solvers for spatial networks

10Fan Chung, UCSD
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Functional analysis in network setting10: Sobolev, Poincaré,
Friedrich, Harnack, ...
Multigrid, multi-level MC, Super-LOD, ...
More applications

Thank you!


