Numerical simulation of spatial network models

Axel Målqvist

Fredrik Edelvik, Fredrik Hellman, Gustav Kettil and Morgan Görtz

Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Fraunhofer Chalmers Centre

2022-06-21

Målqvist (Department of Mathematical Sciences Numerical simulation of spatial network models

Spatial network models

Fibre based materials

- Fraunhofer Chalmers Centre, Stora Enso, Albany International
- Paper forming, network model (Gustav Kettil, 2014-2019)
- Mechanical properties, solvers (Morgan Görtz, 2019-)
- Development (fiber dimensions, distribution, virtual lab)
- Evaluation (tensile, bending, defects)
- Numerical simulation is not used extensively in paper industry

Numerical simulation of spatial network models

Efficient solver for

$$Ku = F$$

a simplified network model of an elliptic PDE

- *K* is SPD but ill-conditioned (FCC uses direct solver)
- Multiscale problem (similar to rapidly varying diffusion)

Graph Laplacian and model problem

- 2 Network assumptions
- Semi-iterative solver
- Output Network model of paper
- Sumerical examples
- Multiscale solver
- Ongoing projects and future directions

Graph Laplacian

- Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a graph of nodes and edges
- Notation: i ~ j if x_i and x_j are connected by an edge
- Let D be the degree and A be the adjacency matrix
- The graph Laplacian $L^g := D A$ is SP(semi-)D, $L^g 1 = 0$
- Let $\hat{V} : \mathcal{N} \to \mathbb{R}$ be scalar functions on \mathcal{N} . For $v, w \in \hat{V}$

Weighted graph Laplacian

A weighted graph Laplacian and diagonal mass matrix

$$(L_i v, v) = rac{1}{2} \sum_{j \sim i} rac{(v(x_i) - v(x_j))^2}{|x_i - x_j|}, \quad L = \sum L_i$$

 $(M_i v, v) := rac{1}{2} v(x_i)^2 \sum_{j \sim i} |x_i - x_j|, \quad M = \sum M_i$

• Consider the 1D mesh $0 = x_0 < x_1 < \cdots < x_n = 1$.

$$(L\mathbf{v},\mathbf{v}) := \sum_{(i,j)\in\mathcal{E}} \frac{(\mathbf{v}(\mathbf{x}_i) - \mathbf{v}(\mathbf{x}_j))^2}{|\mathbf{x}_i - \mathbf{x}_j|}$$

- L is the P1-FEM stiffness matrix $(-\Delta)$
- Lu = Mf corresponds to P1-FEM with lumped mass matrix

Spatial network vs. PDE

Spatial network notation		Continuous analogue
(Lu, v)	\leftrightarrow	$\int_{\Omega} \nabla u \cdot \nabla v$
$(L_{\omega}u,v) := \sum_{x_i \in \omega} (L_iu,v)$	\leftrightarrow	$\int_{\omega}^{-} \nabla u \cdot \nabla v$
(Mu, v)	\leftrightarrow	$\int_{\Omega} u v$
$(M_{\omega}u,v) := \sum_{x_i \in \omega} (M_iu,v)$	\leftrightarrow	$\int_{\omega} u v$
$ v _L := (Lv, v)^{1/2}$	\leftrightarrow	$\ \nabla v\ _{L^2(\Omega)}$
$ oldsymbol{v} _{L,\omega}:=(L_\omega v,v)^{1/2}$	\leftrightarrow	$\ \nabla v\ _{L^2(\omega)}$
$ v _M := (Mv, v)^{1/2}$	\leftrightarrow	$\ \mathbf{v}\ _{L^2(\Omega)}$
$ \mathbf{v} _{\mathbf{M},\boldsymbol{\omega}}:=(M_{\omega}\mathbf{v},\mathbf{v})^{1/2}$	\leftrightarrow	$\ \mathbf{V}\ _{L^2(\omega)}$

3

Model problem

Let
$$u \in V := \{v \in \hat{V} : v(x_i) = 0 \text{ for } x_i \in \Gamma_D\}$$
 solve

$$Ku = Mf \iff (Ku, v) = (Mf, v), v \in V.$$

We assume K to be symmetric, invertable and

$$\alpha(Lv,v) \leq (Kv,v) \leq \beta(Lv,v), \quad \forall v \in V.$$

Example:

Weighted graph Laplacian

$$(K\mathbf{v},\mathbf{v}) = \sum_{(i,j)\in\mathcal{E}} \gamma_{ij} \frac{(\mathbf{v}(x_i) - \mathbf{v}(x_j))^2}{|x_i - x_j|}, \quad \alpha \leq \gamma_{ij} \leq \beta$$

Elasticity model for a fibre network.

Example: random infinite lines

- Poisson line process
- Given random points (θ, r), perpendicular chords are constructed in a circle
- Unit square is cut out, principal component kept
- Intersections are nodes, two nodes are connected by an edge
- Dirichlet nodes on the boundary

Condition number

2022-06-21

Graph Laplacian and model problem

Output A set work assumptions

- Semi-iterative solver
- Oumerical examples
- Multiscale solver
- Ongoing projects and future directions

Multilevel solver: coarse scale representation

- \mathcal{T}_H is a mesh of squares
- \hat{V}_H is Q1-FEM with basis $\{\varphi_y\}_y^{-1}$
- $V_H \subset \hat{V}_H$ satisfy the boundary conditions
- Clément type interpolation operator

$$\mathcal{I}_{H} \mathbf{v} = \sum_{\text{free DoFs } y} \frac{(M_{U(y)} \mathbf{1}, \mathbf{v})}{(M_{U(y)} \mathbf{1}, \mathbf{1})} \varphi_{y} \in V_{H}$$

Lemma (Stability and approximability of I_H)

Under assumptions on network and mesh, for all $v \in V$, $T \in \mathcal{T}_H$, and for sufficiently large H,

$$H^{-1}|\boldsymbol{v}-\boldsymbol{I}_{H}\boldsymbol{v}|_{M}+|\boldsymbol{I}_{H}\boldsymbol{v}|_{L}\leq C|\boldsymbol{v}|_{L}.$$

¹ M. & Peterseim, Numer. Math., 2015

Network homogeneity assumption

- Solution All edges are shorter than $R_0 > 0$ (length scale)
- For any square $B_R(x)$, centered at x with side length 2R, with $R \ge R_0$,

$$\rho \leq (2R)^{-d} |1|_{M,B_R}^2 \leq \sigma \rho$$

where $\sigma \ge 1$ and $\rho > 0$ are uniformity and density constants.

- For a certain pair (σ, ρ), the boxes must be at least R₀ large to satisfy the conditions.
- *R*₀ is a length scale at which the material is homogeneous.

Network connectivity assumption

Existence of a Poincaré and Friedrich-type constants There is a $\mu < \infty$, such that for all $x \in \Omega$, and $H > R_0$

$$\begin{aligned} |\mathbf{v} - \bar{\mathbf{v}}|_{M,B_{H}(x)} &\leq \mu H |\mathbf{v}|_{L,B_{H+R_{0}}(x)}, \quad \forall \mathbf{v} \in \hat{V} \\ |\mathbf{v}|_{M,B_{H}(x)} &\leq \mu H |\mathbf{v}|_{L,B_{H+R_{0}}(x)}, \quad \forall \mathbf{v} \in V \end{aligned}$$

Network connectivity assumption

If there exists a connected subgraph $\mathcal{G}' = (\mathcal{N}', \mathcal{E}') \subset \mathcal{G}$ so that

- all nodes in $B_H(x)$ are included
- no nodes in $B_{H+R_0}(x)$ are included

Then

$$|v - \bar{v}|_{M,B_{H}(x)} \le |v - \bar{v}|_{M,\mathcal{N}'} \le \lambda_{2}^{-1/2} |v|_{L,\mathcal{N}'} \le \lambda_{2}^{-1/2} |v|_{L,B_{H+R_{0}}(x)}$$

where
$$\lambda_2 = \inf_{(M'1,v)=0} \frac{(L'v,v)}{(M'v,v)}$$
 measure connectivity¹.

If \mathcal{G}' is isoperimetric² $|\delta(X)| \ge c_d \operatorname{vol}(X)^{(d-1)/d}, |X| \le |\mathcal{N}' \setminus X|$

 $\text{isoperimetric} \implies \lambda_2 \geq CH^2 \implies |v - \bar{v}|_{M, B_H(x)} \leq \mu H |v|_{L, B_{H+R_0}(x)}$

²F. Chung, Spectral graph theory, AMS, 1997

Målqvist (Department of Mathematical Sciences Numerical simulation of spatial network models

¹Cheeger 1970, Fiedler 1973

Interpolation error bound and product rule

Homogeneity and connectivity allow us to prove

Lemma (Stability and approximability of I_H)

For $H > R_0$ it holds

$$H^{-1}|v - \mathcal{I}_H v|_M + |\mathcal{I}_H v|_L \le C_{\mu,\sigma}|v|_L, \quad \forall v \in V$$

Local Poincaré and Friedrich inequalities are used.

$$\begin{split} |v\varphi|_{L,\omega}^{2} &= (L_{\omega}(v\varphi), v\varphi) = \frac{1}{2} \sum_{x_{i} \in \omega} \sum_{i \sim j} \frac{(v(x_{i})\varphi(x_{i}) - v(x_{j})\varphi(x_{j}))^{2}}{|x_{i} - x_{j}|} \\ &= \frac{1}{2} \sum_{x_{i} \in \omega} \sum_{i \sim j} \frac{(v(x_{i})(\varphi(x_{i}) - \varphi(x_{j})) + (v(x_{i}) - v(x_{j}))\varphi(x_{j}))^{2}}{|x_{i} - x_{j}|} \\ &\leq \sum_{x_{i} \in \omega} \sum_{i \sim j} \frac{v(x_{i})^{2}|x_{i} - x_{j}|^{2}H^{-2} + (v(x_{i}) - v(x_{j}))^{2}}{|x_{i} - x_{j}|} = 2\left(H^{-2}|v|_{M,\omega}^{2} + |v|_{L,\omega}^{2}\right) \end{split}$$

Målqvist (Department of Mathematical Sciences Numerical simulation of spatial network models

Graph Laplacian and model problem

Network assumptions

Semi-iterative solver

- Oumerical examples
- Multiscale solver
- Ongoing projects and future directions

Subspace decomposition preconditioner³

Let

$$V_0 = V_H, \quad V_j = V(U(y_j)), \quad j = 1, \ldots, m,$$

and let $P_j: V \rightarrow V_j$ to be orthogonal projections fulfilling

$$(KP_jv, v_j) = (Kv, v_j), \quad \forall v_j \in V_j.$$

The existence and uniqueness follows since $V_i \subset V$. We let

$$P=P_0+P_1+\cdots+P_m.$$

- P = BK will be used as a preconditioner: BKu = BMf.
- Involves direct solution of decoupled problems (semi-iterative).

$$(Ku, Pv) = \sum_{j=0}^{m} (Ku, P_j v) = \sum_{j=0}^{m} (KP_j u, P_j v) = \sum_{j=0}^{m} (KP_j u, v) = (KPu, v)$$

³Kornhuber & Yserentant, MMS, 2016

Lemma

Under the network and operator assumptions and for $H \ge R_0$ there is a decomposition $v = \sum_{j=0}^{m} v_j$ that satisfies

$$\sum_{j=0}^{m} |v_{j}|_{K}^{2} \leq C_{1} |v|_{K}^{2}.$$

Moreover, every decomposition $v = \sum_{j=0}^{m} v_j$ with $v_j \in V_j$ satisfies

$$|v|_{K}^{2} \leq C_{2} \sum_{j=0}^{m} |v_{j}|_{K}^{2}.$$

 $C_1 = C_d \beta \alpha^{-1} \sigma \mu^2$, $C_2 = C_d \beta \alpha^{-1}$, C_d only depends on d.

Sketch of proof: We start in *L*-norm:

$$|v|_{L}^{2} \leq 2|v_{0}|_{L}^{2} + 2|\sum_{j=1}^{m} v_{j}|_{L}^{2}.$$

Pick $T \in \mathcal{T}_H$. Since $v_j \in V(U(y_j))$ and $L_T v = 0$ for $v \in V(\Omega \setminus U_2(y_j))$, $L_T v_j$ can be non-zero for at most C_d meshnodes *j*. We get

$$|\sum_{j=1}^{m} v_j|_{L,T}^2 \le C_d \sum_{j=1}^{m} |v_j|_{L,T}^2$$

Summing over $T \in \mathcal{T}_H$ proves the inequality in *L*-norm and therefore also in *K* with $C_2 = C_d \beta \alpha^{-1}$.

2022-06-21

20/45

Sketch of proof:

$$\begin{split} \sum_{j=1}^{m} |\mathbf{v}_{j}|_{L}^{2} &:= \sum_{j=1}^{m} |\varphi_{j}(\mathbf{v} - \mathbf{I}_{H}\mathbf{v})|_{L}^{2} \\ &\leq 2 \sum_{j=1}^{m} \sum_{\mathcal{T} \in U_{2}(y_{j})} \left(H^{-2}|\mathbf{v} - \mathbf{I}_{H}\mathbf{v}|_{M,\mathcal{T}}^{2} + |\mathbf{v} - \mathbf{I}_{H}\mathbf{v}|_{L,\mathcal{T}}^{2}\right) \\ &\leq C_{d} \left(H^{-2}|\mathbf{v} - \mathbf{I}_{H}\mathbf{v}|_{M}^{2} + |\mathbf{v} - \mathbf{I}_{H}\mathbf{v}|_{L}^{2}\right) \leq C_{d} \sigma \mu^{2} |\mathbf{v}|_{L}^{2}. \end{split}$$

Furthermore $|v_0|_L = |I_H v|_L \le C_d \sigma^{1/2} \mu |v|_L$. All together we have

$$\sum_{j=0}^m |\mathbf{v}_j|_L^2 \leq C_d \sigma \mu^2 |\mathbf{v}|_L^2.$$

Equivalence of *L*- and *K*-norms gives $C_1 = C_d \beta \alpha_{-1}^{-1} \sigma \mu_{-1}^2$.

We get the following spectral bound for P^4 .

Lemma

Under the same assumptions

$$C_1^{-1}|v|_K^2 \leq (KPv, v) \leq C_2|v|_K^2.$$

and for any polynomial p it holds

$$|\boldsymbol{p}(\boldsymbol{P})| := \sup_{\boldsymbol{v} \in \boldsymbol{V}} \frac{|\boldsymbol{p}(\boldsymbol{P})\boldsymbol{v}|_{\boldsymbol{K}}}{|\boldsymbol{v}|_{\boldsymbol{K}}} \leq \max_{\boldsymbol{\lambda} \in [C_1^{-1}, C_2]} |\boldsymbol{p}(\boldsymbol{\lambda})|.$$

⁴Kornhuber & Yserentant, MMS, 2016

Målqvist (Department of Mathematical Sciences Numerical simulation of spatial network models

Preconditioned conjugate gradient

We use P = BK as a preconditioner for CG:

BKu = BMf.

For some polynomial p_ℓ of degree ℓ fulfilling $p_\ell(0) = 1$

$$u - u^{(\ell)} = p_{\ell}(P)(u - u^{(0)}),$$

CG minimizes $|u - u^{(\ell)}|_{K}$ over (Krylov) span({ $s, Ps, P^{2}s, \ldots, P^{\ell-1}s$ }):

$$|u - u^{(\ell)}|_{K} \leq \min_{\substack{\deg(p) \leq \ell \\ p(0) = 1}} |p(P)||u - u^{(0)}|_{K} \leq \min_{\substack{\deg(p) \leq \ell \\ p(0) = 1}} \max_{\lambda \in [C_{1}^{-1}, C_{2}]} |p(\lambda)||u - u^{(0)}|_{K}$$

realized by a shifted and scaled Chebyshev polynomial:

$$|u-u^{(\ell)}|_{\mathcal{K}} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{\ell} |u-u^{(0)}|_{\mathcal{K}}, \quad \sqrt{\kappa} = C_{d}\alpha^{-1}\beta\mu\sqrt{\sigma}.$$

Graph Laplacian and model problem

- 2 Network assumptions
- Semi-iterative solver
- Numerical examples
- Multiscale solver
- Ongoing projects and future directions

Example: connectivity $\lambda_2^{-1/2} \approx \mu R$

- Generate n = 256 lines on smallest circle enclosing $[0, 1]^2$.
- Cut a square $[0, R]^2$, $R = 2^{-r}$, r = 0, 1, ..., 5, 100 samples.

Målqvist (Department of Mathematical Sciences Numerical simulation of spatial network models

- Poisson line process n = 256, 512, 1024, 2048 lines (at most around 800k dofs)
- No material data $\gamma = 1$ i.e. we solve Lu = Mf
- Right hand side *f* = 1 and homogeneous Dirichlet boundary conditions.
- Coarse mesh size $H = 2^{-r}$, r = 2, 3, 4, 5, 6

Målqvist (Department of Mathematical Sciences Numerical simulation of spatial network models

Right hand side f = 1, homogeneous Dirichlet bc, n = 1024.

- (left) $\gamma_{ij} \in U([0.01, 1])$
- (center) $\gamma_{ij} = 0.01$ or $\gamma_{ij} = 1$ (1/16 lines)
- (right) $\gamma_{ij} = 10^{-6}$ or $\gamma_{ij} = 1$ (1/16 lines)

Robust but high contrast may cause problems

Example: a fibre network model⁵

- $2 \cdot 10^4$ fibres, biased angle (*x*-axis), length 0.05, $3 \cdot 10^5$ nodes, $\alpha = 0.05, \beta = 500$.
- Two forces in the model: edge extension and angular deviation.
- Find displacement u: Ku = Mf (tensile, distributed load)
- Theory extends to vector valued setting (Korn, K ~ L)
- DD with H = 1/4, 1/8, 1/16, 1/32.

Example: A fibre network model

- Graph Laplacian and model problem
- 2 Network assumptions
- Semi-iterative solver
- Oumerical examples
- Multiscale solver
- Ongoing projects and future directions

Interpolation and decomposition

Scott-Zhang type interpolation operator $\mathcal{I}_H: V \to V_H$

$${\mathcal I}_H {f v} = \sum_{j=1}^{m_0} (\psi_j, {f v})_{T_j} arphi_j.$$

with $(\psi_j, \varphi_i)_{T_j} = \delta_{ij}$ being the dual basis defined on an element T_j adjacent to *j* (idempotent).

$$W = \ker(\mathcal{I}_H) \qquad V_H^{ms} = \{v \in V : (w, Kv) = 0 \ \forall w \in W\}.$$

By defining $Q: V \rightarrow W$ fulfilling

$$(w, KQv) = (w, Kv), \quad \forall w \in W$$

we can write $V_H^{ms} = (1 - Q)V_H$ and $V = V_H^{ms} \oplus W$.

33/45

Localization

•
$$U^{k}(T) = U(U^{k-1}(T))$$
 with $U^{1}(T) = U(T)$
• $W(U^{k}(T)) = \{w \in W : w(x_{i}) = 0 \ x_{i} \notin U^{k}(T)\}$
• $K_{T} = \sum_{x_{i} \in T} K_{i}$

Find $Q_T^k v \in W(U^k(T))$ such that

$$(w, KQ_T^k v) = (w, K_T v), \quad \forall w \in W(U^k(T))$$

We let
$$Q^k = \sum_{T \in \mathcal{T}_H} Q_T^k$$
 and define $V_{H,k}^{ms} := (1 - Q^k)V_H$.

The LOD formulation reads: find $u_{H,k}^{ms} \in V_{H,k}^{ms}$ such that

$$(v, Ku_{H,k}^{ms}) = (v, Mf), \quad \forall v \in V_{H,k}^{ms}$$

Error analysis

Interpolation error bound under same network assumptions

$$H^{-1}|v - \mathcal{I}_H v|_M + |\mathcal{I}_H v|_L \le C|v|_L$$

 Exponential decay of correctors established using fast convergences of iterative solvers in W. No V₀ space means finite spread of information in each iteration⁶⁷.

Theorem

If $k \sim |\log(H)|$ and $H > R_0$

$$|u - u_{H,k}^{ms}|_{K} \le CH|f|_{M}$$

2022-06-21

35/45

⁶Kornhuber Yserentant Peterseim, MMS 2016, MC 2018
 ⁷M. & Peterseim, Math. Comp. 2014, SIAM Spotlight 2020

Målqvist (Department of Mathematical Sciences Numerical simulation of spatial network models

We let *f* const, $\gamma_{ij} \in [0.1, 1]$, and Dirichlet bc.

Left: $k = \lceil \log(H^{-1}) \rceil$

Right: $H = 2^{-5}$

Relative errors in $|\cdot|_M$ and $|\cdot|_K$.

2022-06-21

36/45

Example: LOD for fibre network model

Fixed boundary, constant force applied in all nodes, $4mm \times 4mm$.

Example: LOD for fibre network model

Left: $k = [1.5 \log(0.004/H)]$. Right: $H = 0.004 \cdot 2^{-5}$.

• Relative errors in $|\cdot|_M$ and $|\cdot|_K$ norms.

- Graph Laplacian and model problem
- 2 Network assumptions
- Semi-iterative solver
- Numerical examples
- Multiscale solver
- Ongoing projects and future directions

Isoperimetric dimension

- The edge boundary $|\delta(X)| \ge c_d \operatorname{vol}(X)^{(d-1)/d}$ for all $|X| \le |\mathcal{N}' \setminus X|$
- Can we say that c_d is above some threshold with high probability for PLP?
- Can it be generalized to finite length lines?
- What can we say in 3D (cylinders)?
- Initiated collaboration with probability theory group, Chalmers.

Bulk-interface model

where u^1 is continuous. Weak coupling by Robin condition⁸

$$n \cdot \nabla u_i^0 + \delta(u_i^0 - u_j^1) = 0, \quad \text{on } \partial \Omega_i^0 \cap \Omega_j^1$$

⁸Boon, PhD thesis, 2018

Bulk-interface model

We introduce the Robin-to-Dirichlet operator $u_i^0|_{\partial\Omega_i^0} = \mathcal{R}u_j^1|_{\Omega_j^1}$ and get the interface equation (Schur compliment)

$$-\mathsf{div}_{\tau} \mathbf{A} \nabla_{\tau} u^1 + \delta u^1 - \delta \mathcal{R} u^1 = f, \quad \text{in } \Gamma.$$

P1-FEM gives the network formulation

$$Ku^1 + \delta Bu^1 + \delta Ru^1 = Bf$$

 $K \sim L, B \sim M$ (*M* is lumped) and *R* interacts over bulk regions.

- FEM (or possibly Boundary integral method) for RtD
- Prove $\alpha(Lv, v) \leq ((K + \delta B + \delta R)v, v) \leq \beta(Lv, v)$
- DD convergence when $\delta \gg 0$?
- What can be done in 3D?
- Malin Nilsson (2nd year PhD) works on this problem

Wave propagation on spatial network models

• Network-LOD for wave equation

 $M\ddot{u} + Ku = Mf.$

- Re-use basis. Combine existing theoretical results⁹.
- Assumptions on well prepared data.
- Elastic wave propagation with applications in fibre based materials. Interest from industry.
- Per Ljung (4th year PhD) and Morgan Görtz (3rd year PhD) works on this problem.

⁹Abdulle & Henning, 2017

Algebraic LOD/DD for network models

- How to construct a coarse scale representation?
- Patches will most likely depend on structure of K.
- Construct LOD space using functionals $W = \{v \in V : \ell_i(v) = 0\}.$
- Prove error bounds (isoperimetric dimension)?
- Initial discussions with Roland Maier and Fredrik Hellman.

Multilevel solvers for spatial networks

- Functional analysis in network setting¹⁰: Sobolev, Poincaré, Friedrich, Harnack, ...
- Multigrid, multi-level MC, Super-LOD, ...
- More applications

Thank you!

¹⁰Fan Chung, UCSD

Målqvist (Department of Mathematical Sciences Numerical simulation of spatial network models