Numerical simulation of spatial network models

Axel Målqvist

Fredrik Edelvik, Fredrik Hellman, Gustav Kettil and Morgan Görtz

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg
Fraunhofer Chalmers Centre
2022-06-21

Spatial network models

Fibre based materials

- Fraunhofer Chalmers Centre, Stora Enso, Albany International
- Paper forming, network model (Gustav Kettil, 2014-2019)
- Mechanical properties, solvers (Morgan Görtz, 2019-)
- Development (fiber dimensions, distribution, virtual lab)
- Evaluation (tensile, bending, defects)
- Numerical simulation is not used extensively in paper industry

Numerical simulation of spatial network models

- Efficient solver for

$$
K u=F
$$

a simplified network model of an elliptic PDE

- K is SPD but ill-conditioned (FCC uses direct solver)
- Multiscale problem (similar to rapidly varying diffusion)

Outline

(Graph Laplacian and model problem
(2) Network assumptions
(0) Semi-iterative solver
(9) Network model of paper
(6) Numerical examples
((Multiscale solver
(Ongoing projects and future directions

Graph Laplacian

- Let $\mathcal{G}=(\mathcal{N}, \mathcal{E})$ be a graph of nodes and edges
- Notation: $i \sim j$ if x_{i} and x_{j} are connected by an edge
- Let D be the degree and A be the adjacency matrix
- The graph Laplacian $L^{g}:=D-A$ is $\mathrm{SP}\left(\right.$ semi-) $\mathrm{D}, L^{g} 1=0$
- Let $\hat{V}: \mathcal{N} \rightarrow \mathbb{R}$ be scalar functions on \mathcal{N}. For $v, w \in \hat{V}$

$$
\begin{aligned}
(v, w) & =\sum_{j} v\left(x_{j}\right) w\left(x_{j}\right) \\
\left(L^{g} v, v\right) & =\sum_{(i, j) \in \mathcal{E}}\left(v\left(x_{i}\right)-v\left(x_{j}\right)\right)^{2} \\
L^{g} & =\sum_{i} L_{i}^{g} \\
\left(L_{i}^{g} v, v\right) & =\frac{1}{2} \sum_{j \sim i}\left(v\left(x_{i}\right)-v\left(x_{j}\right)\right)^{2}
\end{aligned}
$$

Example:

$$
L^{g}=\left(\begin{array}{cccc}
2 & -1 & -1 & 0 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 3 & -1 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

Weighted graph Laplacian

- A weighted graph Laplacian and diagonal mass matrix

$$
\begin{aligned}
\left(L_{i} v, v\right)=\frac{1}{2} \sum_{j \sim i} \frac{\left(v\left(x_{i}\right)-v\left(x_{j}\right)\right)^{2}}{\left|x_{i}-x_{j}\right|}, \quad L=\sum L_{i} \\
\left(M_{i} v, v\right):=\frac{1}{2} v\left(x_{i}\right)^{2} \sum_{j i i}\left|x_{i}-x_{j}\right|, \quad M=\sum M_{i}
\end{aligned}
$$

- Consider the 1D mesh $0=x_{0}<x_{1}<\cdots<x_{n}=1$.

$$
(L v, v):=\sum_{(i, j) \in \mathcal{E}} \frac{\left(v\left(x_{i}\right)-v\left(x_{j}\right)\right)^{2}}{\left|x_{i}-x_{j}\right|}
$$

- L is the P1-FEM stiffness matrix $(-\Delta)$
- $L u=M f$ corresponds to P1-FEM with lumped mass matrix

Spatial network vs. PDE

Spatial network notation

Continuous analogue

$$
\begin{array}{lll}
\hline \hline(L u, v) & \leftrightarrow & \int_{\Omega} \nabla u \cdot \nabla v \\
\left(L_{\omega} u, v\right):=\sum_{x_{i} \in \omega}\left(L_{i} u, v\right) & \leftrightarrow & \int_{\omega} \nabla u \cdot \nabla v \\
(M u, v) & \leftrightarrow & \int_{\Omega} u v \\
\left(M_{\omega} u, v\right):=\sum_{x_{i} \in \omega}(M i u, v) & \leftrightarrow & \int_{\omega} u v \\
|v|_{L}:=(L v, v)^{1 / 2} & \leftrightarrow & \|\nabla v\|_{L^{2}(\Omega)} \\
|v|_{L, \omega}:=\left(L_{\omega} v, v\right)^{1 / 2} & \leftrightarrow & \|\nabla v\|_{L^{2}(\omega)} \\
|v|_{M}:=(M v, v)^{1 / 2} & \leftrightarrow & \|v\|_{L^{2}(\Omega)} \\
|v|_{M, \omega}:=\left(M_{\omega} v, v\right)^{1 / 2} & \leftrightarrow & \|v\|_{L^{2}(\omega)} \\
\hline \hline
\end{array}
$$

Model problem

Let $u \in V:=\left\{v \in \hat{V}: v\left(x_{i}\right)=0\right.$ for $\left.x_{i} \in \Gamma_{D}\right\}$ solve

$$
K u=M f \Longleftrightarrow(K u, v)=(M f, v), \quad v \in V
$$

We assume K to be symmetric, invertable and

$$
\alpha(L v, v) \leq(K v, v) \leq \beta(L v, v), \quad \forall v \in V
$$

Example:

- Weighted graph Laplacian

$$
(K v, v)=\sum_{(i, j) \in \mathcal{E}} \gamma_{i j} \frac{\left(v\left(x_{i}\right)-v\left(x_{j}\right)\right)^{2}}{\left|x_{i}-x_{j}\right|}, \quad \alpha \leq \gamma_{i j} \leq \beta
$$

- Elasticity model for a fibre network.

Example: random infinite lines

- Poisson line process
- Given random points (θ, r), perpendicular chords are constructed in a circle
- Unit square is cut out, principal component kept
- Intersections are nodes, two nodes are connected by an edge
- Dirichlet nodes on the boundary

Condition number

Outline

(1) Graph Laplacian and model problem
(2) Network assumptions
((Semi-iterative solver
(- Numerical examples
(3) Multiscale solver
(0) Ongoing projects and future directions

Multilevel solver: coarse scale representation

- \mathcal{T}_{H} is a mesh of squares
- \hat{V}_{H} is Q1-FEM with basis $\left\{\varphi_{y}\right\}_{y}{ }^{1}$
- $V_{H} \subset \hat{V}_{H}$ satisfy the boundary conditions
- Clément type interpolation operator

$$
I_{H} V=\sum_{\text {free DoFs } y} \frac{\left(M_{U(y)} 1, v\right)}{\left(M_{U(y)} 1,1\right)} \varphi_{y} \in V_{H}
$$

Lemma (Stability and approximability of I_{H})

Under assumptions on network and mesh, for all $v \in V, T \in \mathcal{T}_{H}$, and for sufficiently large H ,

$$
H^{-1}\left|v-I_{H} v\right|_{M}+\left|I_{H} v\right|_{L} \leq C|v|_{L} .
$$

[^0]
Network homogeneity assumption

(1) All edges are shorter than $R_{0}>0$ (length scale)
(2) For any square $B_{R}(x)$, centered at x with side length $2 R$, with $R \geq R_{0}$,

$$
\rho \leq(2 R)^{-d}|1|_{M, B_{R}}^{2} \leq \sigma \rho
$$

where $\sigma \geq 1$ and $\rho>0$ are uniformity and density constants.

- For a certain pair (σ, ρ), the boxes must be at least R_{0} large to satisfy the conditions.
- R_{0} is a length scale at which the material is homogeneous.

Network connectivity assumption

Existence of a Poincaré and Friedrich-type constants

There is a $\mu<\infty$, such that for all $x \in \Omega$, and $H>R_{0}$

$$
\begin{aligned}
|v-\bar{v}|_{M, B_{H}(x)} \leq \mu H|v|_{L, B_{H+R_{0}}(x)}, \quad \forall v \in \hat{V} \\
|V|_{M, B_{H}(x)} \leq \mu H|v|_{L, B_{H+R_{0}}(x)}, \quad \forall v \in V
\end{aligned}
$$

Large μ, R_{0}

Small μ, R_{0}

Network connectivity assumption

If there exists a connected subgraph $\mathcal{G}^{\prime}=\left(\mathcal{N}^{\prime}, \mathcal{E}^{\prime}\right) \subset \mathcal{G}$ so that

- all nodes in $B_{H}(x)$ are included
- no nodes in $B_{H+R_{0}}(x)$ are included

Then

$$
|v-\bar{v}|_{M, B_{H}(x)} \leq|v-\bar{v}|_{M, \mathcal{N}^{\prime}} \leq \lambda_{2}^{-1 / 2}|v|_{L, \mathcal{N}^{\prime}} \leq \lambda_{2}^{-1 / 2}|v|_{L, B_{H+R_{0}}(x)}
$$

where $\lambda_{2}=\inf _{\left(M^{\prime} 1, v\right)=0} \frac{\left(L^{\prime}, v\right)}{\left(M^{\prime}, v\right)}$ measure connectivity ${ }^{1}$.
If \mathcal{G}^{\prime} is isoperimetric ${ }^{2}|\delta(X)| \geq c_{d} \operatorname{vol}(X)^{(d-1) / d},|X| \leq\left|\mathcal{N}^{\prime} \backslash X\right|$ isoperimetric $\Longrightarrow \lambda_{2} \geq C H^{2} \Longrightarrow|v-\bar{v}|_{M, B_{H}(x)} \leq \mu H|v|_{L, B_{H+R_{0}}(x)}$

${ }^{1}$ Cheeger 1970, Fiedler 1973

${ }^{2}$ F. Chung, Spectral graph theory, AMS, 1997

Interpolation error bound and product rule

Homogeneity and connectivity allow us to prove

Lemma (Stability and approximability of I_{H})

For $\mathrm{H}>\mathrm{R}_{0}$ it holds

$$
H^{-1}\left|v-I_{H} v\right|_{M}+\left|I_{H} v\right|_{L} \leq C_{\mu, \sigma}|v|_{L}, \quad \forall v \in V
$$

Local Poincaré and Friedrich inequalities are used.

$$
\begin{aligned}
& |v \varphi|_{L, \omega}^{2}=\left(L_{\omega}(v \varphi), v \varphi\right)=\frac{1}{2} \sum_{x_{i} \in \omega} \sum_{i \sim j} \frac{\left(v\left(x_{i}\right) \varphi\left(x_{i}\right)-v\left(x_{j}\right) \varphi\left(x_{j}\right)\right)^{2}}{\left|x_{i}-x_{j}\right|} \\
& =\frac{1}{2} \sum_{x_{i} \in \omega} \sum_{i \sim j} \frac{\left(v\left(x_{i}\right)\left(\varphi\left(x_{i}\right)-\varphi\left(x_{j}\right)\right)+\left(v\left(x_{i}\right)-v\left(x_{j}\right)\right) \varphi\left(x_{j}\right)\right)^{2}}{\left|x_{i}-x_{j}\right|} \\
& \leq \sum_{x_{i} \in \omega} \sum_{i \sim j} \frac{v\left(x_{i}\right)^{2}\left|x_{i}-x_{j}\right|^{2} H^{-2}+\left(v\left(x_{i}\right)-v\left(x_{j}\right)\right)^{2}}{\left|x_{i}-x_{j}\right|}=2\left(H^{-2}|v|_{M, \omega}^{2}+|v|_{L, \omega}^{2}\right)
\end{aligned}
$$

Outline

(1) Graph Laplacian and model problem
(2) Network assumptions
(3) Semi-iterative solver
(4) Numerical examples
(5) Multiscale solver
(6) Ongoing projects and future directions

Subspace decomposition preconditioner ${ }^{3}$

Let

$$
V_{0}=V_{H}, \quad V_{j}=V\left(U\left(y_{j}\right)\right), \quad j=1, \ldots, m
$$

and let $P_{j}: V \rightarrow V_{j}$ to be orthogonal projections fulfilling

$$
\left(K P_{j} v, v_{j}\right)=\left(K v, v_{j}\right), \quad \forall v_{j} \in V_{j} .
$$

The existence and uniqueness follows since $V_{j} \subset V$. We let

$$
P=P_{0}+P_{1}+\cdots+P_{m} .
$$

- $P=B K$ will be used as a preconditioner: $B K u=B M f$.
- Involves direct solution of decoupled problems (semi-iterative).
$(K u, P v)=\sum_{j=0}^{m}\left(K u, P_{j} v\right)=\sum_{j=0}^{m}\left(K P_{j} u, P_{j} v\right)=\sum_{j=0}^{m}\left(K P_{j} u, v\right)=(K P u, v)$
${ }^{3}$ Kornhuber \& Yserentant, MMS, 2016

Spectral bound of P

Lemma

Under the network and operator assumptions and for $\mathrm{H} \geq \mathrm{R}_{0}$ there is a decomposition $v=\sum_{j=0}^{m} v_{j}$ that satisfies

$$
\sum_{j=0}^{m}\left|v_{j}\right|_{K}^{2} \leq C_{1} \mid v_{K}^{2} .
$$

Moreover, every decomposition $v=\sum_{j=0}^{m} v_{j}$ with $v_{j} \in V_{j}$ satisfies

$$
|v|_{K}^{2} \leq C_{2} \sum_{j=0}^{m}\left|v_{j}\right|_{K}^{2} .
$$

$C_{1}=C_{d} \beta \alpha^{-1} \sigma \mu^{2}, C_{2}=C_{d} \beta \alpha^{-1}, C_{d}$ only depends ond.

Spectral bound of P

Sketch of proof:
We start in L-norm:

$$
|v|_{L}^{2} \leq 2\left|v_{0}\right|_{L}^{2}+2\left|\sum_{j=1}^{m} v_{j}\right|_{L}^{2}
$$

Pick $T \in \mathcal{T}_{H}$. Since $v_{j} \in V\left(U\left(y_{j}\right)\right)$ and $L_{T} v=0$ for $v \in V\left(\Omega \backslash U_{2}\left(y_{j}\right)\right)$, $L_{T} v_{j}$ can be non-zero for at most C_{d} meshnodes j. We get

$$
\left|\sum_{j=1}^{m} v_{j}\right|_{L, T}^{2} \leq C_{d} \sum_{j=1}^{m}\left|v_{j}\right|_{L, T}^{2}
$$

Summing over $T \in \mathcal{T}_{H}$ proves the inequality in L-norm and therefore also in K with $C_{2}=C_{d} \beta \alpha^{-1}$.

Spectral bound of P

Sketch of proof:

$$
\begin{aligned}
\sum_{j=1}^{m}\left|v_{j}\right|_{L}^{2} & :=\sum_{j=1}^{m}\left|\varphi_{j}\left(v-I_{H} v\right)\right|_{L}^{2} \\
& \leq 2 \sum_{j=1}^{m} \sum_{T \in U_{2}\left(y_{j}\right)}\left(H^{-2}\left|v-I_{H} v\right|_{M, T}^{2}+\left|v-I_{H} v\right|_{L, T}^{2}\right) \\
& \leq C_{d}\left(H^{-2}\left|v-I_{H} v\right|_{M}^{2}+\left|v-I_{H} v\right|_{L}^{2}\right) \leq C_{d} \sigma \mu^{2}|v|_{L}^{2} .
\end{aligned}
$$

Furthermore $\left|v_{0}\right|_{L}=\left|I_{H} v\right|_{L} \leq C_{d} \sigma^{1 / 2} \mu|v|_{L}$. All together we have

$$
\sum_{j=0}^{m}\left|v_{j}\right|_{L}^{2} \leq C_{d} \sigma \mu^{2}|v|_{L}^{2} .
$$

Equivalence of L - and K-norms gives $C_{1}=C_{a} \beta \alpha^{-1} \sigma \mu^{2}$.

Spectral bound of P

We get the following spectral bound for P^{4}.

Lemma

Under the same assumptions

$$
C_{1}^{-1}|v|_{K}^{2} \leq(K P v, v) \leq C_{2}|v|_{K}^{2} .
$$

and for any polynomial p it holds

$$
|p(P)|:=\sup _{v \in V} \frac{|p(P) v|_{K}}{|v|_{K}} \leq \max _{\lambda \in\left[C_{1}^{-1}, C_{2}\right]}|p(\lambda)| .
$$

${ }^{4}$ Kornhuber \& Yserentant, MMS, 2016

Preconditioned conjugate gradient

We use $P=B K$ as a preconditioner for CG:

$$
B K u=B M f .
$$

For some polynomial p_{ℓ} of degree ℓ fulfilling $p_{\ell}(0)=1$

$$
u-u^{(\ell)}=p_{\ell}(P)\left(u-u^{(0)}\right)
$$

CG minimizes $\left|u-u^{(t)}\right|_{K}$ over (Krylov) span($\left.\left\{s, P s, P^{2} s, \ldots, P^{\ell-1} s\right\}\right)$:

$$
\left|u-u^{(\ell)}\right| K \leq \min _{\substack{\text { degesp) } \\ p(0)=1}}\left|p (P) \left\|u-\left.u^{(0)}\right|_{K} \leq \min _{\substack{\text { demefo } \\ p(0) \leq \ell \\ p(0)=1}} \max _{\lambda \in\left[C_{1}^{-1}, C_{2}\right]}\left|p(\lambda) \| u-u^{(0)}\right|_{K}\right.\right.
$$

realized by a shifted and scaled Chebyshev polynomial:

$$
\left|u-u^{(\ell)}\right|_{\kappa} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{\ell}\left|u-u^{(0)}\right|_{\kappa}, \quad \sqrt{\kappa}=C_{d} \alpha^{-1} \beta \mu \sqrt{\sigma} .
$$

Outline

(1) Graph Laplacian and model problem
(2) Network assumptions
(0) Semi-iterative solver
(- Numerical examples
((Multiscale solver
(0) Ongoing projects and future directions

Example: connectivity $\lambda_{2}^{-1 / 2} \approx \mu R$

- Generate $n=256$ lines on smallest circle enclosing $[0,1]^{2}$.
- Cut a square $[0, R]^{2}, R=2^{-r}, r=0,1, \ldots, 5,100$ samples.

Example: weighted graph Laplacian

- Poisson line process $n=256,512,1024,2048$ lines (at most around 800 k dofs)
- No material data $\gamma=1$ i.e. we solve $L u=M f$
- Right hand side $f=1$ and homogeneous Dirichlet boundary conditions.
- Coarse mesh size $H=2^{-r}, r=2,3,4,5,6$

Example: weighted graph Laplacian

Example: weighted graph Laplacian

Right hand side $f=1$, homogeneous Dirichlet bc, $n=1024$.

- (left) $\gamma_{i j} \in U([0.01,1])$
- (center) $\gamma_{i j}=0.01$ or $\gamma_{i j}=1$ ($1 / 16$ lines)
- (right) $\gamma_{i j}=10^{-6}$ or $\gamma_{i j}=1$ (1/16 lines)

- Robust but high contrast may cause problems

Example: a fibre network model ${ }^{5}$

- $2 \cdot 10^{4}$ fibres, biased angle (x-axis), length $0.05,3 \cdot 10^{5}$ nodes, $\alpha=0.05, \beta=500$.
- Two forces in the model: edge extension and angular deviation.
- Find displacement $u: K u=M f$ (tensile, distributed load)
- Theory extends to vector valued setting (Korn, $K \sim L$)
- DD with $H=1 / 4,1 / 8,1 / 16,1 / 32$.
${ }^{5}$ Kettil et. al. Numerical upscaling of discrete network models, BIT 2020

Example: A fibre network model

Outline

(1) Graph Laplacian and model problem
(2) Network assumptions
((Semi-iterative solver
(- Numerical examples
(5) Multiscale solver
(0) Ongoing projects and future directions

Interpolation and decomposition

Scott-Zhang type interpolation operator $I_{H}: V \rightarrow V_{H}$

$$
I_{H} v=\sum_{j=1}^{m_{0}}\left(\psi_{j}, v\right)_{T_{j}} \varphi_{j} .
$$

with $\left(\psi_{j}, \varphi_{i}\right)_{T_{j}}=\delta_{i j}$ being the dual basis defined on an element T_{j} adjacent to j (idempotent).

$$
W=\operatorname{ker}\left(I_{H}\right) \quad V_{H}^{\mathrm{ms}}=\{v \in V:(w, K v)=0 \forall w \in W\} .
$$

By defining $Q: V \rightarrow W$ fulfilling

$$
(w, K Q v)=(w, K v), \quad \forall w \in W
$$

we can write $V_{H}^{m s}=(1-Q) V_{H}$ and $V=V_{H}^{\mathrm{ms}} \oplus W$.

Example: weighted graph Laplacian

Localization

- $U^{k}(T)=U\left(U^{k-1}(T)\right)$ with $U^{1}(T)=U(T)$
- $W\left(U^{k}(T)\right)=\left\{w \in W: w\left(x_{i}\right)=0 x_{i} \notin U^{k}(T)\right\}$
- $K_{T}=\sum_{x_{i} \in T} K_{i}$

Find $Q_{T}^{k} v \in W\left(U^{k}(T)\right)$ such that

$$
\left(w, K Q_{T}^{k} v\right)=\left(w, K_{T} v\right), \quad \forall w \in W\left(U^{k}(T)\right)
$$

We let $Q^{k}=\sum_{T \in \mathcal{T}_{H}} Q_{T}^{k}$ and define $V_{H, k}^{\mathrm{ms}}:=\left(1-Q^{k}\right) V_{H}$.
The LOD formulation reads: find $u_{H, k}^{\mathrm{ms}} \in V_{H, k}^{\mathrm{ms}}$ such that

$$
\left(v, K u_{H, k}^{\mathrm{ms}}\right)=(v, M f), \quad \forall v \in V_{H, k}^{\mathrm{ms}}
$$

Error analysis

- Interpolation error bound under same network assumptions

$$
H^{-1}\left|v-I_{H} v\right|_{M}+\left|I_{H} v\right|_{L} \leq C|v|_{L}
$$

- Exponential decay of correctors established using fast convergences of iterative solvers in W. No V_{0} space means finite spread of information in each iteration ${ }^{67}$.

Theorem

If $k \sim|\log (H)|$ and $H>R_{0}$

$$
\left|u-u_{H, k}^{m s}\right|_{K} \leq C H|f|_{M}
$$

${ }^{6}$ Kornhuber Yserentant Peterseim, MMS 2016, MC 2018
${ }^{7}$ M. \& Peterseim, Math. Comp. 2014, SIAM Spotlight 2020

Example: A weighted graph Laplacian

We let f const, $\gamma_{i j} \in[0.1,1]$, and Dirichlet bc.

Left: $k=\left\lceil\log \left(H^{-1}\right)\right\rceil$

Right: $H=2^{-5}$

Relative errors in $|\cdot|_{M}$ and $|\cdot|_{K}$.

Example: LOD for fibre network model

Fixed boundary, constant force applied in all nodes, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$.

Example: LOD for fibre network model

Left: $k=\lceil 1.5 \log (0.004 / H)\rceil$. Right: $H=0.004 \cdot 2^{-5}$.

- Relative errors in $|\cdot|_{M}$ and $|\cdot|_{K}$ norms.

Outline

(1) Graph Laplacian and model problem
(2) Network assumptions
((Semi-iterative solver
((Numerical examples
(6) Multiscale solver
© Ongoing projects and future directions

Isoperimetric dimension

- The edge boundary $|\delta(X)| \geq c_{d} \operatorname{vol}(X)^{(d-1) / d}$ for all $|X| \leq\left|\mathcal{N}^{\prime} \backslash X\right|$
- Can we say that c_{d} is above some threshold with high probability for PLP?
- Can it be generalized to finite length lines?
- What can we say in 3D (cylinders)?
- Initiated collaboration with probability theory group, Chalmers.

Bulk-interface model

$$
\begin{aligned}
u_{i}^{0} & =g_{i}, \quad \text { in } \bar{\Omega}_{i}^{0} \cap \partial \Omega \\
-\operatorname{div}_{\tau} A_{j} \nabla_{\tau} u_{j}^{1}-\delta\left(u_{i}^{0}-u_{j}^{1}\right) & =f_{j}, \quad \text { in } \partial \Omega_{i}^{0} \cap \Omega_{j}^{1} \\
u_{j}^{1} & =g_{j}, \quad \text { on } \bar{\Omega}_{j}^{1} \cap \partial \Omega,
\end{aligned}
$$

where u^{1} is continuous. Weak coupling by Robin condition ${ }^{8}$

$$
n \cdot \nabla u_{i}^{0}+\delta\left(u_{i}^{0}-u_{j}^{1}\right)=0, \quad \text { on } \partial \Omega_{i}^{0} \cap \Omega_{j}^{1}
$$

${ }^{8}$ Boon, PhD thesis, 2018

Bulk-interface model

We introduce the Robin-to-Dirichlet operator $\left.u_{i}^{0}\right|_{\partial \Omega_{i}^{0}}=\left.\mathcal{R} u_{j}^{1}\right|_{\Omega_{j}^{1}}$ and get the interface equation (Schur compliment)

$$
-\operatorname{div}_{\tau} A \nabla_{\tau} u^{1}+\delta u^{1}-\delta R u^{1}=f, \quad \text { in } \Gamma .
$$

P1-FEM gives the network formulation

$$
K u^{1}+\delta B u^{1}+\delta R u^{1}=B f
$$

$K \sim L, B \sim M$ (M is lumped) and R interacts over bulk regions.

- FEM (or possibly Boundary integral method) for RtD
- Prove $\alpha(L v, v) \leq((K+\delta B+\delta R) v, v) \leq \beta(L v, v)$
- DD convergence when $\delta \gg 0$?
- What can be done in 3D?
- Malin Nilsson (2nd year PhD) works on this problem

Wave propagation on spatial network models

- Network-LOD for wave equation

$$
M \ddot{u}+K u=M f .
$$

- Re-use basis. Combine existing theoretical results ${ }^{9}$.
- Assumptions on well prepared data.
- Elastic wave propagation with applications in fibre based materials. Interest from industry.
- Per Ljung (4th year PhD) and Morgan Görtz (3rd year PhD) works on this problem.
${ }^{9}$ Abdulle \& Henning, 2017

Algebraic LOD/DD for network models

- How to construct a coarse scale representation?
- Patches will most likely depend on structure of K.
- Construct LOD space using functionals $W=\left\{v \in V: \ell_{i}(v)=0\right\}$.
- Prove error bounds (isoperimetric dimension)?
- Initial discussions with Roland Maier and Fredrik Hellman.

Multilevel solvers for spatial networks

- Functional analysis in network setting ${ }^{10}$: Sobolev, Poincaré, Friedrich, Harnack, ...
- Multigrid, multi-level MC, Super-LOD, ...
- More applications

Thank you!
${ }^{10}$ Fan Chung, UCSD

[^0]: ${ }^{1}$ M. \& Peterseim, Numer. Math., 2015

