
Error estimation and adaptivity for multiscale methods

Axel M ålqvist
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Outline and Papers

Outline
• Model problem

• Motivation and previous work

• Derivation of proposed method with examples

• A posteriori error estimates

• Adaptive algorithm

• Application to oil recovery problem

• Conclusions and future work

Papers
• M.G. Larson and A. Målqvist, Adaptive Variational Multiscale Methods Based on A

Posteriori Error Estimation: Energy Norm Estimates for Elliptic Problems, CMAME
2007

• A. Målqvist, Multiscale methods for elliptic problems (in review MMS)
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Model Problem

Elliptic equation: Find u such that
Lu = −∇ · a∇u + ∇ · (bu) + cu = f in Ω

where L is elliptic with multiscale coefficients, f is a given
function, and Ω ⊂ R

d is a domain.

Weak form: Let a(v,w) = (Lv,w) and l(w) = (f,w) for all
v,w ∈ V , for an appropriate function space V . Find u ∈ V such
that,

a(u, v) = l(v), for all v ∈ V .
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Motivation: Why Resolve the Coefficients?

Simple periodic example: Consider the Poisson equation

Lu = −∇ · a∇u = f,

with periodic coefficient a = a(x/ǫ) solved using the finite
element method on a mesh of size H, we have (Hou-Wu-Cai),

‖√a∇(u − uh)‖L2(Ω) ≤ C
H

ǫ
‖f‖L2(Ω),

• ǫ < H will give unreliable results even with exact quadrature.
• ǫ > H will be to computationally expensive to solve on a

single mesh.

From now on we assume nothing on the coefficients, more then
what is needed to guarantee existence and uniqueness.
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Some Previous Works and Related Methods

• Upscaling techniques: Durlofsky et al. 98, Nielsen et al. 98
• Variational multiscale method: Hughes et al. 95, Arbogast

04, Larson-Målqvist 05, Nolen et al. 08, Nordbotten 09
• Multiscale finite element method: Hou-Wu 96,

Efendiev-Ginting 04, Aarnes-Lie 06
• Multiscale finite volume method: Jenny et al. 03
• Heterogeneous multiscale method: Engquist-E 03,

E-Ming-Zhang 04
• Equation free: Kevrekidis et al. 05
• ...

Local approximations (in parallel) on a fine scale are used to
modified the coarse scale equation.
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The Variational Multiscale Method (VMS)

The weak form reads: find u ∈ V such that,

a(u, v) = l(v), for all v ∈ V .

Now let Vc ⊕ Vf = V .

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1

−0.5

0

0.5

1

x 10
−3

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1

−0.5

0

0.5

1

x 10
−3

• Vc is a finite dimensional approximation of V . (FE space)
• Vf can be chosen as e.g. hierarchical basis,

L2(Ω)-orthogonal to Vc, or wavelet modified hierarchical
basis.
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a-Orthogonal Split

We want to decouple the coarse and the fine scales. We
introduce two multiscale projection operators, let
T ,T ∗ : Vc → Vf such that

a(vc + T vc, vf ) = 0, for all vc ∈ Vc, vf ∈ Vf

a(vf , vc + T ∗vc) = 0, for all vc ∈ Vc, vf ∈ Vf

Let u = uc + T uc + uf ∈ Vc ⊕ Vf and v = vc + T ∗vc + vf in the
weak form,

a(uc + T uc, vc + T ∗vc) = l(vc + T ∗vc) for all vc ∈ Vc,

a(uf , vf ) = l(vf ) for all vf ∈ Vf ,

since a(uc + T uc, vf ) = a(uf , vc + T ∗vc) = 0.
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Modified Coarse Scale Equations

Find uc ∈ Vc such that

a(uc + T uc, vc + T ∗vc) = l(vc + T ∗vc) − a(uf , vc + T ∗vc)

for all vc ∈ Vc (note that a(uf , vf ) = l(vf ) for all vf ∈ Vf ).

• If a is symmetric we get T ∗vc = T vc i.e. a symmetric
formulation

• In standard VMS T ∗vc := 0 and uf is included in the coarse
scale. The computation of T uc + uf ∈ Vf is decoupled and
done analytically on each coarse element using
homogeneous Dirichlet boundary conditions.

• In MsFEM uf = 0 and therefore not present in the coarse
scale equations. Here the computation of vc + T vc is
decoupled and solved numerically on each element (or
larger domains) using approximate boundary conditions.
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Approximation of T , T ∗, and uf

Let uc =
∑

i ui
cφi with {φi} a basis in Vc.

We have T uc =
∑

i u
i
cT φi, T ∗vc =

∑

i vi
cT ∗φi, and uf =

∑

i uf,i

where,

a(T φi, vf ) = −a(φi, vf ) for all vf ∈ Vf ,

a(vf ,T ∗φi) = −a(vf , φi) for all vf ∈ Vf ,

a(uf,i, vf ) = (fφi, vf ) for all vf ∈ Vf .

We compte approximations T̃ φi, T̃ ∗φi, and Uf,i by

• restricting to a localized patches supp(φi) ⊂ ωi,
• discretizing with a fine subgrid on ωi,
• and using homogeneous boundary conditions on the patch.
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Refinements and Layers

We let H be coarse scale mesh size and h be fine scale mesh
size. Further we let L denote the number of layers of coarse
elements in the patch.
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Since we exclude Vc from the fine scale the condition number is
only ∼

(

H
h

)2
log(H/h) using an hierarchical split (Marion-Xu 95).
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Simple Observation About Decay in Vf (Fourier)

Consider the Laplace equation,

−∆u = ϕi in Ω, u = 0 on ∂Ω,

where ϕi has local support in Ω. The weak form reads: find
u ∈ W s.t., (∇u,∇v) = (ϕi, v) for all v ∈ W.
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Solution on 3 layers
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Solution using interpolation on 3 layers
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Solution using L2 orthogonality on 3 layers

To the left W = Vc ⊕ Vf , middle W = Vf using hierarchical split,
and right W = Vf using L2-orthogonal split.

Constraints are realized using Lagrangian multipliers.
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Simple Observation About Decay in Vf

Decay of flux integrated over the boundary.
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We see exponential decay with respect distance measured in
number of coarse elements. This effect gives rapid convergence
as the patch size increases.
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The Proposed Multiscale Method

• Let T̃ , T̃ ∗ be the computable approximations of T ,T ∗

• Let Uf be the computable approximation of uf

We get: find Uc ∈ Vc such that

a(Uc + T̃ Uc, vc + T̃ ∗vc) = l(vc + T̃ ∗vc)−a(Uf , vc + T̃ ∗vc)

for all vc ∈ Vc. On matrix form this leads to a system,

KUc = b

Given Uc, Uf , and T̃ , U can be computed.

When a(Uf , vc + T̃ ∗vc) is included, the error is orthogonal to
vc + T̃ ∗vc i.e. a(u − Uc − T̃ Uc − Uf , vc + T̃ ∗vc) = 0.
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Parallel Structure

One local problem for each coarse dof, minimal communication.

Data a, f, Ω

K1, b1 K2, b2 K3, b3 K4, b4 . . .

(
∑

k Kk
)

Uc =
∑

k bk

U2

f

Data transfer

Local solves

Global solve

Postprocessing
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Examples of Applications

Oil recovery: We seek water saturation s (oil is 1 − s)
σ − aλ(s)∇u = 0

−∇ · σ = q

ṡ + σ · ∇f(s) = 0

f(s) is fractional flow function, λ(s) is total mobility, a is
permeability, and q is a source term.

Organic Semi-Conductor: We seek electric potential φ, hole
concentration p, and electron concentration n,

ṅ −∇ · (Dn∇n − µnn∇φ) = 0

ṗ −∇ · (Dp∇p + µpp∇φ) = 0

−∇ · ǫ∇φ = p − n,

where Di are diffusions, µi mobilities, i = n, p, ǫ dielectric func.
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The Mixed Problem in Oil Recovery

Poisson equation on mixed form:










1
aσ −∇u = 0 in Ω

−∇ · σ = f in Ω

n · σ = 0 on Γ

where the permeability a is constant, random, or taken from the
SPE data set (upperness in log-scale),
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We let a(v,w) = ( 1
av1, w1) + (v2,∇ · w1) + (∇ · v1, w2) and

l(w) = −(f,w2).
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Splitting Based on RT-elements

We use lowest order RT basis functions together with piecewise
constants.

• Let Πc be the RT-interpolant onto the space of lowest order
RT functions Vc and Pc be the L2-projection onto the space
of piecewise constants Wc

• We define Wf = (I − Pc)W, W = L2(Ω)

• We define Vf = (I − Πc)V , V = H(div; Ω)

• This means σc = πcσ ∈ Vc uc = Pcu ∈ Wc.
• Thus we are using an L2-orthogonal splitting in the scalar

variable.

Hierarchical split for lagrangian elements leads to nodal
exactness in the coarse solution Uc ≈ πcu while here we get
exactness of average values on coarse elements Uc ≈ Pcu.
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Example of Local Solutions T̃σφi

{

( 1
a T̃σφi, vf ) + (T̃uφi,∇ · vf ) = −( 1

aφi, vf )

−(∇ · T̃σφi, wf ) = 0.
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We use 3 layer patches and plot absolute value of the flux |T̃σφi|.
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Example of Convergence

• The reference mesh has 32 × 32 elements
• The coarse mesh has 8 × 8 elements.
• We let f = 1 lower left corner and f = −1 in upper right,

otherwise f = 0.
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China-Norway-Sweden Workshop on Computational Mathematics, Bergen, 10th June, 2010 – p. 19/30



Two Convection Dominated Problems

Lu = −ǫ△u + ∇ · (bu) = f in Ω, u = 0 on ∂Ω,

i. Let b = [N(0, 1) + 0.25, N(0, 1) + 0.25] and ǫ = 0.008

ii. Let b = [sin(25πy) + 0.3, cos(25πx) + 0.3], and ǫ = 0.005.
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In both examples f = 1 for 0 ≤ x, y ≤ 0.1 and zero otherwise.
We let a(v,w) = (ǫ∇v,∇w) + (∇ · (bv), w) and l(w) = (f,w).
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Split Based on Lagrangian Basis Functions

• We let the coarse mesh consist of 16 × 16 and the reference
mesh of 128 × 128 rectangular elements.

• We let πc be the interpolant onto bilinear functions of the
coarse mesh and let Vf = (1 − πc)V , i.e. an hierarchical split

• We remember the definition of the fine scale equations,

a(T φi, vf ) = −a(φi, vf ),

a(vf ,T ∗φi) = −a(vf , φi),

a(uf,i, vf ) = l(φivf ),

for all vf ∈ Vf and i ∈ N (coarse nodes).
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Decay of Local Solutions

We use three refinements in all local problems and vary the
number of layers. We plot local solutions T̃ φi and T̃ ∗φi using
four layers (random).
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We still get decay but not as quick as in the non-convective
problem. Directed patches would reduce the work.
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Error in Multiscale Solution

We now plot the max norm of the error ‖u − U‖L∞(Ω) with and

without T̃ ∗ in the right slot.
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We observe quick decay (slower) starting from two layers.

The random coefficient appears to be more difficult to resolve.
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Adaptive Multiscale Method

The adaptive version of the method (sometimes referred to as
AVMS) builds on the following ingredients:

• Error estimation framework
• Adaptive strategy for tuning of critical discretization

parameters

The method is designed so that:

error → 0 when h → 0 and L → ∞

• A priori error estimates in progress.
• To circumvent difficulties with choosing discretization

parameters h and L we use an adaptive algorithm based on
a posteriori error estimates
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A Posteriori Error Estimate (Poisson, mixed)

The following energy norm bound holds

‖ 1√
a
(σ − Σ)‖2 ≤ Ca

∑

i

(

R2
ωi

+ R2
∂ωi

)

where

R2
ωi

= ‖1

a
(Σi

c(φi + T̃σφi) + Σi
f ) −∇U i,∗

f ‖2
ωi

+

‖h
a
(fψi + ∇ · (Σi

c(φi + T̃σφi) + Σi
f ))‖2

ωi
+

∑

K∈ωi

‖h−1/2[U i,∗
f ]‖2

∂K

R2
∂ωi

= ‖h−1/2U
i,∗
f ‖2

∂ωi\Γ

U∗ is a post processed version (Lovadina and Stenberg 06)
of U , Ca ∼ ‖√a‖L∞(ωi).
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Adaptive Algorithm

We have the error bound

‖σ − Σ‖2
a ≤ Ca

∑

i

(

R2
ωi

+ R2
∂ωi

)

Let h = H/2 and L = 1 for all i.
for i = 1, . . . , n do

Compute T̃ φi, T̃ ∗φi (if non-symmetric), and Uf,i.
end for
Compute the solution {U,Σ}.
for i = 1, . . . , n do

Compute residuals R2
ωi

and R2
∂ωi

.
end for
Mark large entries.
For marked entries in R2

ωi
let h := h/2.

For marked entries in R2
∂ωi

let L := L + 1.
Return to step two or stop if estimators are small enough.
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Back to the Oil Recovery Example

Layer 1 and 50 in the SPE comparative sol. proj. (log scale).

Plot of the sol. (pressure), q = 1 upper right q = −1 lower left.
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Refinements and Layers SPE50

We use 55 × 15 coarse elements and a reference mesh with
440 × 120 elements.
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We start the adaptive algorithm with one refinement and one
layer in all local problems. After three iterations in the algorithm
marking 30%.
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Convergence of Adaptive Algorithm

We compare error in energy norm with reference solution.
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• Critical areas are found
• A majority of the patches uses one layer and one

refinement.
• As the water front travels only local problems at the front

need to be recomputed.
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Summary and Future Work

The adaptive variational multiscale method (AVMS) provides:
• Systematic technique for construction of a computable

approximation of the fine scale part of the solution using
decoupled localized subgrid problems.

• A posteriori error estimation framework
• Adaptive algorithms for automatic tuning of critical

discretization parameters

The decay in Vf together with the adaptive strategy makes the
method efficient.

Future work includes: 3D implementation, a priori error analysis,
time-dependent convection dominated problems, other
applications
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