Iterative solution of spatial network models by subspace decomposition

Axel Målqvist

Morgan Görtz and Fredrik Hellman

Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Fraunhofer Chalmers Centre

2022-09-07

Simulation of spatial network models at FCC

• We consider

$$Ku = f$$

a simplified network model of an elliptic PDE (K is SPD)

- *K* is ill-conditioned (geometry and material data variation), only direct solver works
- The goal is to develop an iterative solver¹

¹Görtz-Hellman-M., Iterative solution of spatial network models by subspace decomposition, arXiv:2207.07488

- Output Network assumptions
- Convergence of a semi-iterative solver
- Oumerical examples
- 5 Future work

Graph Laplacian

- Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a graph of nodes and edges, $x \in \Omega \subset \mathbb{R}^d$
- The graph Laplacian L^g is SP(semi-)D, $L^g 1 = 0$
- Let $\hat{V} : \mathcal{N} \to \mathbb{R}$ be scalar functions on \mathcal{N} . For $v, w \in \hat{V}$

 $x \sim y$ denotes that x and y are connected by an edge

Weighted graph Laplacian

• A weighted graph Laplacian and diagonal mass matrix

$$(L_x v, v) = rac{1}{2} \sum_{y \sim x} rac{(v(x) - v(y))^2}{|x - y|}, \quad L = \sum L_x$$

 $(M_x v, v) := rac{1}{2} v(x)^2 \sum_{y \sim x} |x - y|, \quad M = \sum M_x$

• Consider the 1D mesh $0 = x_0 < x_1 < \cdots < x_n = 1$.

$$(Lv, v) := \sum_{i=1}^{n} \frac{(v(x_i) - v(x_{i-1}))^2}{|x_i - x_{i-1}|}$$

 L is the P1-FEM stiffness matrix (-Δ) and M is the lumped mass matrix

Model problem

Find
$$u \in V := \{v \in \hat{V} : v(x) = 0 \text{ for } x \in \Gamma_D\}$$
:

$$(Ku, v) = (f, v), v \in V.$$

Assume: $(K \cdot, \cdot)$ is scalar product on V and

$$\alpha(Lv, v) \leq (Kv, v) \leq \beta(Lv, v), \quad \forall v \in V.$$

Example:

۲

$$(\kappa v, v) = \sum_{(x,y)\in\mathcal{E}} \gamma_{xy} \frac{(v(x) - v(y))^2}{|x - y|}, \quad \alpha \leq \gamma_{xy} \leq \beta$$

- P1-FEM for 1D diffusion-reaction model on network with continuity and Kirchhoff flux constraint in junctions
- Structural model of a fibre network.

Output A set work assumptions

- Convergence of a semi-iterative solver
- Oumerical examples
- 5 Future work

Multilevel solver: coarse scale representation

- \mathcal{T}_H is a mesh of squares
- \hat{V}_H is Q1-FEM with basis $\{\varphi_y\}_y$
- $V_H \subset \hat{V}_H$ satisfy the boundary conditions
- Clément type interpolation operator

$$\mathcal{I}_{H} \mathbf{v} = \sum_{\text{free DoFs } y} \frac{(M_{U(y)} \mathbf{1}, \mathbf{v})}{(M_{U(y)} \mathbf{1}, \mathbf{1})} \varphi_{y} \in V_{H}$$

Lemma (Stability and approximability of I_H)

Under assumptions on the network (below) and for $H > 2R_0$,

$$H^{-1}|\boldsymbol{v}-\boldsymbol{\mathcal{I}}_{H}\boldsymbol{v}|_{M}+|\boldsymbol{\mathcal{I}}_{H}\boldsymbol{v}|_{L}\leq \boldsymbol{C}|\boldsymbol{v}|_{L},\quad\forall\boldsymbol{v}\in\boldsymbol{V},$$

where
$$|\cdot|_M^2 = (M \cdot, \cdot), |\cdot|_L^2 = (L \cdot, \cdot)$$
 and $C = C_d \mu \sqrt{\sigma}$.

Network locality, homogeneity and connectivity

- All edges are shorter than R₀ > 0 (length scale)
- 2 Let $B_R(x)$ be a box at x of side length 2R, with $H \ge R_0$,

$$1 \le \frac{\max_{x} |1|_{M,B_{H}(x)}^{2}}{\min_{x} |1|_{M,B_{H}(x)}^{2}} \le \sigma(R_{0})$$

Solution For all x ∈ Ω and H > R₀ there is a (uniform) µ(R₀) < ∞ and c_x ∈ ℝ, such that the Poincaré-type inequality holds

$$|\mathbf{v} - \mathbf{c}_{x}|_{M,B_{H}(x)} \leq \mu H |\mathbf{v}|_{L,B_{H+B_{0}}(x)}, \quad \forall \mathbf{v} \in \hat{V}$$

Poincaré constant

Let $\mathcal{G}' = (\mathcal{N}', \mathcal{E}') \subset \mathcal{G}$ be connected and

- all nodes in $B_H(x)$ are included
- no nodes outside B_{H+R₀}(x) are included

With L', M' defined on \mathcal{G}' we have

$$\lambda_1 = \inf \frac{(L'z,z)}{(M'z,z)} = \frac{(L'1,1)}{(M'1,1)} = 0, \quad \lambda_2 = \inf_{(M'1,z)=0} \frac{(L'z,z)}{(M'z,z)} > 0.$$

With $c_x = \frac{(M'1,v)}{(M'1,1)}$ we have $(M'1, v - c_x) = 0$ so

$$|v - c_x|_{M,B_H(x)} \le |v - c_x|_{M'} \le \lambda_2^{-1/2} |v - c_x|_{L'} \le \lambda_2^{-1/2} |v|_{L,B_{H+B_0}(x)}$$

 λ_2 : measure connectivity² ~ CH^{-2} if isoperimetric³ dim d.

³F. Chung, Spectral graph theory, AMS, 1997

²Cheeger 1970, Fiedler 1973

Example: Connectivity $\lambda_2^{-1/2} \approx \mu R$

Finite length fibers r = 0.05 and $|1|_{M}^{2} = 1000$, $\Omega = [0, 1]^{2}$

Table: (σ, μ)	for	different	R
------------------------	-----	-----------	---

$R^{-1} = 4$	$R^{-1} = 8$	$R^{-1} = 16$	$R^{-1} = 32$	$R^{-1} = 64$
(1.04,0.49)	(1.08,0.53)	(1.27,0.57)	(1.85,0.675)	(3.42,1.53)
(1.04,0.59)	(1.08,0.61)	(1.27,0.69)	(1.87,0.83)	(2.93,1.35)
(1.04,0.53)	(1.57,0.54)	(2.13,0.58)	(3.1,0.76)	(6.86,1.45)

Example: Connectivity $\lambda_2^{-1/2} \approx \mu R$

Finite length fibers r = 0.05 and $|1|_{M}^{2} = 1000$, $\Omega = [0, 1]^{2}$

2022-09-07

- Over the second seco
- Convergence of a semi-iterative solver
- Oumerical examples
- 5 Future work

Subspace decomposition preconditioner⁴

Let $V_0 = V_H$. and

$$V_j = V(U(y_j)), \quad j = 1, \ldots, m.$$

Define projections $P_j: V \to V_j$ by

$$(KP_jv, v_j) = (Kv, v_j), \quad \forall v_j \in V_j \subset V.$$

We add the projections to form

$$P=P_0+P_1+\cdots+P_m.$$

- P = BK is used as a preconditioner: BKu = Bf.
- We use the preconditioned conjugate gradient method.
- Involves direct solution of decoupled problems (semi-iterative).

⁴Kornhuber & Yserentant, MMS, 2016

Convergence analysis

Lemma (Spectral bound of P)

For $H > R_0$ it holds

$$C_1^{-1}|v|_K^2 \leq (KPv, v) \leq C_2|v|_K^2, \quad \forall v \in V,$$

where $C_1 = C_d \beta \alpha^{-1} \sigma \mu^2$ and $C_2 = C_d \beta \alpha^{-1}$.

Theorem (Convergence of PCG)

With $\sqrt{\kappa} = \sqrt{C_1 C_2} = C_d \beta \alpha^{-1} \mu \sqrt{\sigma}$ and $H > 2R_0$ it holds

$$|u-u^{(\ell)}|_{\mathcal{K}} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{\ell}|u-u^{(0)}|_{\mathcal{K}}.$$

2022-09-07

< 得 > < ∃ >

- Over the second seco
- Convergence of a semi-iterative solver

Numerical examples

5 Future work

Example: Convergence graph Laplacian

Consider Ku = M1 with homogeneous Dirichlet bc $|1|_M^2 = 1000$.

Grid $\gamma = 1$ (left), rand $\gamma = 1$ (center), rand $\gamma \in U([0.1, 1])$ (right)

Målqvist (Department of Mathematical Sciences Iterative solution of spatial network models

16/20

Example: A fibre network model⁵

- $2 \cdot 10^4$ fibres, biased angle (*x*-axis), length 0.05, $3 \cdot 10^5$ nodes, $\alpha = 0.05, \beta = 500$.
- Two forces in the model: edge extension and angular deviation.
- Find displacement u: Ku = f (tensile, distributed load)
- Theory extends to vector valued setting (Korn, K ~ L)
- DD with H = 1/4, 1/8, 1/16, 1/32.

⁵Kettil et. al. Numerical upscaling of discrete network models, BIT 2020 = $\sim \sim$ Málqvist (Department of Mathematical Sciences Iterative solution of spatial network models 2022-09-07 17/20

Example: A fibre network model

2022-09-07

- Graph Laplacian and model problem
- Over the second seco
- Convergence of a semi-iterative solver
- Oumerical examples
- Future work

- Further investigation of (σ, μ)
- Mixed dim PDE (Hellman, Nilsson)
- LOD (Görtz, Kettil), SuperLOD (Hauck)
- Algebraic multilevel solver (Maier)
- Multilevel Monte Carlo
- Wave propagation (Ljung)
- Nonlinear fibre network model
- Pore network models