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The model problem

Model problem:  Convection-Diffusion problem
with multiscale features in b, € > 0,

—eAu+ V- (bu) = f InQQ,
u=0 onl.

Weak form:  Find v € V = H}(Q) such that,
a(u,v) = l(v) forallv € Hi (),

where a(v w) = |, eVv-Vwdr+ [V - (bv)wdx
and [(v) = [, fvdz.




Example of a Solution

Let e = 0.01, b = [rand,rand|, and f = I, <0.05}.
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Figure 1. Mesh size: h = 1/96.
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« We assume that we can form matrices and

solve linear systems of equations on a coarse
mesh with mesh parameter 4.

- We introduce h,,;, < H as a reference mesh
on which we would like to make our
computations.

» By solving several "small” local problems and
a coarse global problem we would like to get a
good approximation of the reference solution.
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The variational multiscale method

Find u. € V. and uy € Vy, V. & Vy = V such that,
CL(UC +Uf,?}c +Uf) — Z(Uc +Uf)7

forall v. € V. and vy € V7.

a(tue, ve) + alur,ve) =l(v.) forallv. €V,
a(ur,ve) = (R(ue),ve) forallvy e Vy.

where we introduce the residual distribution
R:V =V (Rw),w)=Ilw)—a(v,w), forall
v,w e V.




The variational multiscale method

Figure 2: u,, us, and u. + uy.




Approximation (Our version)

We derive the method in two steps.

« We decouple the fine scale equations by
introducing a partition of unity » ., ;i = 1,

a(uri,vy) = (@iR(ue),vr) forallvy € V.

- For each i € A/ we discretize V; and solve the
resulting problem on a patch w; rather then (2,

a(Uyi,vp) = (i R(U;),vp) forall vy e th(wi).

We use homogeneous Dirichlet bc.




The patch w;
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One and two layer mesh stars. The coarse mesh
size Is H the fine mesh size h Is independent
between the patches and H > h > h,,;,.
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The resulting method reads: find U, € V. and
Ur = > ;en Usi where Uy; € Vi'(w;) such that

a(U.,ve) +a(Uy,v.) = l(v,),
a(Uyi,vp) = (i R(U:),vy),

for all v, € V, vy € th(wi), and i € \V.

The patch is chosen such that
supp(y;) C w; C 2.




Thelocal solution Uy

The solution improves as the patch size
Increases.
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M otivation of the method

Why do we expect the method to work?

» The right hand side of the fine scale
equations has support on a coarse mesh star,
©;R(U.). The size of ¢ will affect the size of
the patches.

» The fine scale solution Uy; € V{'(w;) which is
a slice space.

This makes U;; decay rapidly, which makes it
possible to get a good approximation using small
patches.




| mplementation

We have: find Uy, € V;'(wy) such that

a'(Uf,ka Uf) — (f? Ufgﬁk) - a(U67 Ufgpk)

for all vy € V{'(w;). Instead we solve: find
Xi» e € V(wy) such that

(

a(Xy, vr) = —alws, vior)
&(Ukavf) — (f? Ufgpk)

\

forall vy € th(wk) and supp(p;) N supp(pr) # 0.




| mplementation

This means that: >°,_,- Ulxi + n; solves:

a(Y Uixi + mesvr) = (f,vpr) — a(Ue, vpor),
ieEN

SO Uy = > .o Ulxh + i and

Up=> ) Uxi+m=>> Ux+n,

keN ieN 1eN

where x' =Y, v xeand n =", Mk




| mplementation

We include this in the coarse scale equations:
Find U. = >_,_\ Ulp; such that,

(f,05) =a(Ue, @) + a(Uy, ;)

=a(Y Ulpi,pj)+a(d U +n,9;).

ieEN ieN

forall j € N or

Y Ula(pi+ X' 05) = (f,¢5) — aln, ;).
ieEN




| mplementation

This can now be written on matrix form as,

(A+T)U,=b—d

where,




| mplementation

Implementing the method comes down to
calculating 7 and d locally, T = >, _, T"* and

d = Zke/\/ d”.

Tz? — CL(X};, Spj)a
and
di = a(ng, ¢;).

These can be computed on the patches without
knowing U...




Duality Based Error Analysis

Dual Problem  FInd ¢ € V such that
a(w, ) = (w,y) forallweV.

Error Representation Formula

(67 w) — a(ev ¢)
— l(¢) o CL(U, ¢)
— Z l(§0@¢) — a(Um %¢) o a(Ufai7 ¢)
ieN




Quadrature Error

The oscillating coefficient b will most likely not be
computed using exact quadrature. We introduce,

ap(v,w) = (eVu, Vw) + (V - (bpv), w),

where b;, Is a piecewise polynomial on the space
Vi (w;) approximating b. We note,

a(v,w) — ap(v,w) = (V- ((b—byp)v),w).

By this approach the quadrature error will
decrease with the fine scale mesh size.




Error Representation Formula

We continue the calculation using coarse and
fine scale Galerkin Orthogonality,

(67 TP) — l(¢f) T Clh(U, ¢f) - ah(Ua ¢) o CL(U, ¢)
= Z (pi(of — mp,07)) — an(Ue, pi(dy — 75 05))

—a(Uyi, ¢ — m765) + (V- (b= by)U), 6),

Where w?,i IS the interpolant onto th(wi) l.e. zero
on dw;. We also introduce 7¢; as the nodal
interpolant on the mesh associated with V' (w;).




Error Representation Formula

We end up with three terms,
(e,1) = Z (pi(Qr — mri0r)) — an(Ue, 0i(Qp — mri¢r))

— a(Uyi, o5 — m1i05)
Z(v ' ((b — bh)Uc)7 %¢) (V ' ((b _ bh)Uf,i)7 ¢)

1

+ Z ei(mpits —mp,05)) — an(Ue, 0i(mpids — 77 ,05))

- a“h(Uf,ia Triff — 77?“,@'@)-




Solving the Dual Problem

Remember the dual problem: find ¢ € V' such
that,

a(w, ) = (w,vy), forallw eV, ie.
(eVop,Vw) — (b-Vo,w) = (Y,w), foralwelV.




Numerical Approximation of ¢.

The computational effort for computing ®
depends on what aim we have with our
computation. If we seek:

A good approximation of the error (e, ) we
can e.g. compute ¢ on the reference mesh
h,.., Or use AVMS with one more refinement
then for the primal.

» A good indicator for adaptivity we can e.g.
compute ¢ using the same method as for the
primal or just using h = H/2 for all local
problems.




Adaptive Algorithm

:“WE\J!A

INC
Va

Va

— Z Di(U, @ =y ®s)+Qi(U, )+F(U, @y).

ieN

Start with given r; and L; where h; = H/2".
Calculate U and o.

. Calculate D;, ();, and P,.
Stop If they are small enough, else order the

icators by size and let r; := 2r; for large
uesin D; + @Q); and let L, = L; + 1 for large
ues in P, return to 2.




Resolution of .

(e,0) = Di(U, ®y—mp;®5)+Q; (U, ®)+P;(U, @y).

ieN

1. To get a non-zero contribution from D; we
need better approximation of ® then U.

2.
t

3.

'0 get a good approximation of (); it appears
nat we need quite little from .

'0 get a good approximation of P, we need o

to be computed in a richer space then V..




Numerical Examples

We let e = 0.01, f = Iy1y<0.05y, and b = [bx, bx] as
In Figure.

Figure 3: b varies between 1 and 0.01, around 50
periods in the domain.




Numerical Examples

We let h = 1/96, H = 1/24, and study how the
relative error (e, 1)/(u, 1) (reference calculated

using h,,;, = 1/96) depends on the number of
layers in the patches.
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Numerical Examples

We plot the relative error (e, 1)/(u, 1) (compared
to reference solution) after each iteration.

Figure 5: We see rapid convergence in the quan-
tity of interest.
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Numerical Examples

Again we use the adaptive algorithm with a
refinement level of 40%. We solve the Dual
problem with different methods.
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Numerical Examples

We Iet € — 001, f — ]{33_|_y<0.05}, and
b = |rand, rand).
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Numerical Examples

Again we plot the relative error compared to a
reference solution in the quantity of interest.
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| mprovements and Comments

- Patches shaped adaptively to suite Uy;.

» A split between V. and V; that in a better way
captures mean values of the coarse solution
and perhaps depends on b.

+ A poorly computed dual solution often gives a
bad approximation of the error but serves as
a good indicator for adaptivity.

« Letting quadrature error replace discretization
error in the algorithm has a weak theoretical
foundation but it works in some cases.




* Prove a priori error estimates for the
multiscale method.

« Extend the multiscale method to non-linear
equations.

« Use more then two scales and consider more
extreme scale separation.

- Make an evaluation of how the method
performs compared to other methods.
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