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The model problem

Model problem: Convection-Diffusion problem
with multiscale features in b, ǫ > 0,

−ǫ△u+ ∇ · (bu) = f in Ω,

u = 0 on Γ.

Weak form: Find u ∈ V = H1
0(Ω) such that,

a(u, v) = l(v) for all v ∈ H1
0(Ω),

where a(v, w) =
∫

Ω
ǫ∇v · ∇w dx+

∫

Ω
∇ · (bv)w dx

and l(v) =
∫

Ω
fv dx.
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Example of a Solution

Let ǫ = 0.01, b = [rand, rand], and f = I{x+y<0.05}.
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Figure 1: Mesh size: h = 1/96.
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Our Goal

• We assume that we can form matrices and
solve linear systems of equations on a coarse
mesh with mesh parameter H.

• We introduce hmin < H as a reference mesh
on which we would like to make our
computations.

• By solving several "small" local problems and
a coarse global problem we would like to get a
good approximation of the reference solution.
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The variational multiscale method

Find uc ∈ Vc and uf ∈ Vf , Vc ⊕ Vf = V such that,

a(uc + uf , vc + vf) = l(vc + vf),

for all vc ∈ Vc and vf ∈ Vf .

a(uc, vc) + a(uf , vc) = l(vc) for all vc ∈ Vc,

a(uf , vf ) = (R(uc), vf ) for all vf ∈ Vf .

where we introduce the residual distribution
R : V → V ′, (R(v), w) = l(w) − a(v, w), for all
v, w ∈ V .
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The variational multiscale method
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Figure 2: uc, uf , and uc + uf .
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Approximation (Our version)

We derive the method in two steps.
• We decouple the fine scale equations by

introducing a partition of unity
∑

i∈N ϕi = 1,

a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf .

• For each i ∈ N we discretize Vf and solve the
resulting problem on a patch ωi rather then Ω,

a(Uf,i, vf ) = (ϕiR(Uc), vf ) for all vf ∈ V h
f (ωi).

We use homogeneous Dirichlet bc.
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The patch ωi
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One and two layer mesh stars. The coarse mesh
size is H the fine mesh size h is independent
between the patches and H > h ≥ hmin.
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Our method

The resulting method reads: find Uc ∈ Vc and
Uf =

∑

i∈N Uf,i where Uf,i ∈ V h
f (ωi) such that

a(Uc, vc) + a(Uf , vc) = l(vc),

a(Uf,i, vf) = (ϕiR(Uc), vf ),

for all vc ∈ Vc, vf ∈ V h
f (ωi), and i ∈ N .

The patch is chosen such that
supp(ϕi) ⊂ ωi ⊂ Ω.
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The local solution Uf,i
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The solution improves as the patch size
increases.

CAM seminar 5 January 2006 – p. 11



Motivation of the method

Why do we expect the method to work?
• The right hand side of the fine scale

equations has support on a coarse mesh star,
ϕiR(Uc). The size of ǫ will affect the size of
the patches.

• The fine scale solution Uf,i ∈ V h
f (ωi) which is

a slice space.

This makes Uf,i decay rapidly, which makes it
possible to get a good approximation using small
patches.
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Implementation

We have: find Uf,k ∈ V h
f (ωk) such that

a(Uf,k, vf) = (f, vfϕk) − a(Uc, vfϕk)

for all vf ∈ V h
f (ωk). Instead we solve: find

χi
k, ηk ∈ V h

f (ωk) such that
{

a(χi
k, vf) = −a(ϕi, vfϕk)

a(ηk, vf) = (f, vfϕk).

for all vf ∈ V h
f (ωk) and supp(ϕi) ∩ supp(ϕk) 6= ∅.

CAM seminar 5 January 2006 – p. 13



Implementation

This means that:
∑

i∈N U
i
cχ

i
k + ηk solves:

a(
∑

i∈N

U i
cχ

i
k + ηk, vf) = (f, vfϕk) − a(Uc, vfϕk),

so Uf,k =
∑

i∈N U
i
cχ

i
k + ηk and

Uf =
∑

k∈N

∑

i∈N

U i
cχ

i
k + ηk =

∑

i∈N

U i
cχ

i + η,

where χi =
∑

k∈N χ
i
k and η =

∑

k∈N ηk.
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Implementation

We include this in the coarse scale equations:
Find Uc =

∑

i∈N U
i
cϕi such that,

(f, ϕj) =a(Uc, ϕj) + a(Uf , ϕj)

= a(
∑

i∈N

U i
cϕi, ϕj) + a(

∑

i∈N

U i
cχ

i + η, ϕj),

for all j ∈ N or
∑

i∈N

U i
ca(ϕi + χi, ϕj) = (f, ϕj) − a(η, ϕj).
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Implementation

This can now be written on matrix form as,

(A+ T )Uc = b− d

where,


















Aij = a(ϕi, ϕj),

Tij = a(χi, ϕj),

bj = (f, ϕj),

di = a(η, ϕj).
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Implementation

Implementing the method comes down to
calculating T and d locally, T =

∑

k∈N T
k and

d =
∑

k∈N d
k.

T k
ij = a(χi

k, ϕj),

and
dk

j = a(ηk, ϕj).

These can be computed on the patches without
knowing Uc.
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Duality Based Error Analysis

Dual Problem Find φ ∈ V such that

a(w, φ) = (w,ψ) for all w ∈ V.

Error Representation Formula

(e, ψ) = a(e, φ)

= l(φ) − a(U, φ)

=
∑

i∈N

l(ϕiφ) − a(Uc, ϕiφ) − a(Uf,i, φ).
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Quadrature Error

The oscillating coefficient b will most likely not be
computed using exact quadrature. We introduce,

ah(v, w) = (ǫ∇v,∇w) + (∇ · (bhv), w),

where bh is a piecewise polynomial on the space
V h

f (ωi) approximating b. We note,

a(v, w) − ah(v, w) = (∇ · ((b− bh)v), w).

By this approach the quadrature error will
decrease with the fine scale mesh size.
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Error Representation Formula

We continue the calculation using coarse and
fine scale Galerkin Orthogonality,

(e, ψ) = l(φf) − ah(U, φf) + ah(U, φ) − a(U, φ)

=
∑

i

l(ϕi(φf − π0
f,iφf)) − ah(Uc, ϕi(φf − π0

f,iφf))

− a(Uf,i, φf − π0
f,iφf) + (∇ · ((b− bh)U), φ),

Where π0
f,i is the interpolant onto V h

f (ωi) i.e. zero
on ∂ωi. We also introduce πf,i as the nodal
interpolant on the mesh associated with V h

f (ωi).
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Error Representation Formula

We end up with three terms,

(e, ψ) =
∑

i

l(ϕi(φf − πf,iφf)) − ah(Uc, ϕi(φf − πf,iφf))

− a(Uf,i, φf − πf,iφf)

+
∑

i

(∇ · ((b− bh)Uc), ϕiφ) + (∇ · ((b− bh)Uf,i), φ)

+
∑

i

l(ϕi(πf,iφf − π0
f,iφf)) − ah(Uc, ϕi(πf,iφf − π0

f,iφf))

− ah(Uf,i, πf,iφf − π0
f,iφf).
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Solving the Dual Problem

Remember the dual problem: find φ ∈ V such
that,

a(w, φ) = (w,ψ), for all w ∈ V, i.e.

(ǫ∇φ,∇w) − (b · ∇φ,w) = (ψ,w), for all w ∈ V.
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Numerical Approximation of φ.

The computational effort for computing Φ
depends on what aim we have with our
computation. If we seek:

• A good approximation of the error (e, ψ) we
can e.g. compute Φ on the reference mesh
hmin or use AVMS with one more refinement
then for the primal.

• A good indicator for adaptivity we can e.g.
compute Φ using the same method as for the
primal or just using h = H/2 for all local
problems.

CAM seminar 5 January 2006 – p. 23



Adaptive Algorithm

(e, ψ) =
∑

i∈N

Di(U,Φf−πf,iΦf)+Qi(U,Φ)+Pi(U,Φf).

1. Start with given ri and Li where hi = H/2ri.

2. Calculate U and Φ.

3. Calculate Di, Qi, and Pi.

4. Stop if they are small enough, else order the
indicators by size and let ri := 2ri for large
values in Di +Qi and let Li = Li + 1 for large
values in Pi, return to 2.
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Resolution of Φ.

(e, ψ) =
∑

i∈N

Di(U,Φf−πf,iΦf)+Qi(U,Φ)+Pi(U,Φf).

1. To get a non-zero contribution from Di we
need better approximation of Φ then U .

2. To get a good approximation of Qi it appears
that we need quite little from Φ.

3. To get a good approximation of Pi we need Φ
to be computed in a richer space then Vc.
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Numerical Examples

We let ǫ = 0.01, f = I{x+y<0.05}, and b = [bx, bx] as
in Figure.
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Figure 3: b varies between 1 and 0.01, around 50

periods in the domain.
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Numerical Examples

We let h = 1/96, H = 1/24, and study how the
relative error (e, 1)/(u, 1) (reference calculated
using hmin = 1/96) depends on the number of
layers in the patches.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−3

10
−2

10
−1

10
0

10
1

Layers

R
el

iti
ve

 e
rr

or
 in

 o
ut

pu
t q

ua
nt

ity

CAM seminar 5 January 2006 – p. 27



Numerical Examples

Now we use the adaptive algorithm with a
refinement level of 40%. We solve the Dual
problem with the same method as the primal.
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Figure 4: Refinements and Patchsizes.
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Numerical Examples

We plot the relative error (e, 1)/(u, 1) (compared
to reference solution) after each iteration.
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Figure 5: We see rapid convergence in the quan-

tity of interest.
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Numerical Examples

Again we use the adaptive algorithm with a
refinement level of 40%. We solve the Dual
problem with different methods.
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Numerical Examples

We let ǫ = 0.01, f = I{x+y<0.05}, and
b = [rand, rand].
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Numerical Examples

We let ψ = 1 and use a refinement level of 40%.
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Figure 6: Refinements and Patchsizes.
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Numerical Examples

Again we plot the relative error compared to a
reference solution in the quantity of interest.
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Improvements and Comments

• Patches shaped adaptively to suite Uf,i.
• A split between Vc and Vf that in a better way

captures mean values of the coarse solution
and perhaps depends on b.

• A poorly computed dual solution often gives a
bad approximation of the error but serves as
a good indicator for adaptivity.

• Letting quadrature error replace discretization
error in the algorithm has a weak theoretical
foundation but it works in some cases.
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Future work

• Prove a priori error estimates for the
multiscale method.

• Extend the multiscale method to non-linear
equations.

• Use more then two scales and consider more
extreme scale separation.

• Make an evaluation of how the method
performs compared to other methods.
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