Adaptive Variational Multiscale Methods for Convection-Diffusion Problems

Axel Målqvist and Mats G. Larson

axel@math.colostate.edu

Department of Mathematics, Colorado State University

Outline

- The Model Problem
- The Multiscale Method
- Implementation
- Error Representation Formula
- Adaptive Algorithm
- Numerical Examples
- Comments and Future Work

The model problem

۲

Model problem: Convection-Diffusion problem with multiscale features in b, $\epsilon > 0$,

$$-\epsilon \Delta u + \nabla \cdot (bu) = f \text{ in } \Omega,$$

 $u = 0 \text{ on } \Gamma.$

Weak form: Find $u \in V = H_0^1(\Omega)$ such that,

$$a(u,v) = l(v)$$
 for all $v \in H_0^1(\Omega)$,

where $a(v, w) = \int_{\Omega} \epsilon \nabla v \cdot \nabla w \, dx + \int_{\Omega} \nabla \cdot (bv) w \, dx$ and $l(v) = \int_{\Omega} fv \, dx$.

Example of a Solution

۲

Let $\epsilon = 0.01$, b = [rand, rand], and $f = I_{\{x+y < 0.05\}}$.

Figure 1: Mesh size: h = 1/96.

Our Goal

- We assume that we can form matrices and solve linear systems of equations on a coarse mesh with mesh parameter *H*.
- We introduce h_{min} < H as a reference mesh on which we would like to make our computations.
- By solving several "small" local problems and a coarse global problem we would like to get a good approximation of the reference solution.

The variational multiscale method

Find $u_c \in V_c$ and $u_f \in V_f$, $V_c \oplus V_f = V$ such that,

$$a(u_c + u_f, v_c + v_f) = l(v_c + v_f),$$

for all $v_c \in V_c$ and $v_f \in V_f$.

$$a(u_c, v_c) + a(u_f, v_c) = l(v_c) \quad \text{for all } v_c \in V_c,$$

$$a(u_f, v_f) = (R(u_c), v_f) \quad \text{for all } v_f \in V_f.$$

where we introduce the residual distribution $R: V \rightarrow V'$, (R(v), w) = l(w) - a(v, w), for all $v, w \in V$.

The variational multiscale method

۲

Figure 2: u_c , u_f , and $u_c + u_f$.

Approximation (Our version)

We derive the method in two steps.

• We decouple the fine scale equations by introducing a partition of unity $\sum_{i \in \mathcal{N}} \varphi_i = 1$,

$$a(u_{f,i}, v_f) = (\varphi_i R(u_c), v_f)$$
 for all $v_f \in V_f$.

• For each $i \in \mathcal{N}$ we discretize V_f and solve the resulting problem on a patch ω_i rather then Ω ,

$$a(U_{f,i}, v_f) = (\varphi_i R(U_c), v_f)$$
 for all $v_f \in V_f^h(\omega_i)$.

We use homogeneous Dirichlet bc.

One and two layer mesh stars. The coarse mesh size is *H* the fine mesh size *h* is independent between the patches and $H > h \ge h_{min}$.

Our method

The resulting method reads: find $U_c \in V_c$ and $U_f = \sum_{i \in \mathcal{N}} U_{f,i}$ where $U_{f,i} \in V_f^h(\omega_i)$ such that

$$a(U_c, v_c) + a(U_f, v_c) = l(v_c),$$

$$a(U_{f,i}, v_f) = (\varphi_i R(U_c), v_f),$$

for all $v_c \in V_c$, $v_f \in V_f^h(\omega_i)$, and $i \in \mathcal{N}$.

The patch is chosen such that $supp(\varphi_i) \subset \omega_i \subset \Omega$.

• •

The local solution $U_{f,i}$

The solution improves as the patch size increases.

Motivation of the method

Why do we expect the method to work?

- The right hand side of the fine scale equations has support on a coarse mesh star, φ_iR(U_c). The size of ε will affect the size of the patches.
- The fine scale solution $U_{f,i} \in V_f^h(\omega_i)$ which is a slice space.

This makes $U_{f,i}$ decay rapidly, which makes it possible to get a good approximation using small patches.

We have: find $U_{f,k} \in V_f^h(\omega_k)$ such that

$$a(U_{f,k}, v_f) = (f, v_f \varphi_k) - a(U_c, v_f \varphi_k)$$

for all $v_f \in V_f^h(\omega_k)$. Instead we solve: find $\chi_k^i, \eta_k \in V_f^h(\omega_k)$ such that

$$\begin{cases} a(\chi_k^i, v_f) = -a(\varphi_i, v_f \varphi_k) \\ a(\eta_k, v_f) = (f, v_f \varphi_k). \end{cases}$$

for all $v_f \in V_f^h(\omega_k)$ and $supp(\varphi_i) \cap supp(\varphi_k) \neq \emptyset$.

•

This means that: $\sum_{i \in \mathcal{N}} U_c^i \chi_k^i + \eta_k$ solves:

$$a(\sum_{i\in\mathcal{N}}U_c^i\chi_k^i+\eta_k,v_f)=(f,v_f\varphi_k)-a(U_c,v_f\varphi_k),$$

so
$$U_{f,k} = \sum_{i \in \mathcal{N}} U_c^i \chi_k^i + \eta_k$$
 and

$$U_f = \sum_{k \in \mathcal{N}} \sum_{i \in \mathcal{N}} U_c^i \chi_k^i + \eta_k = \sum_{i \in \mathcal{N}} U_c^i \chi^i + \eta,$$

• • •

where $\chi^i = \sum_{k \in \mathcal{N}} \chi^i_k$ and $\eta = \sum_{k \in \mathcal{N}} \eta_k$.

We include this in the coarse scale equations: Find $U_c = \sum_{i \in \mathcal{N}} U_c^i \varphi_i$ such that,

$$(f,\varphi_j) = a(U_c,\varphi_j) + a(U_f,\varphi_j)$$
$$= a(\sum_{i\in\mathcal{N}} U_c^i\varphi_i,\varphi_j) + a(\sum_{i\in\mathcal{N}} U_c^i\chi^i + \eta,\varphi_j),$$

for all $j \in \mathcal{N}$ or

 $\sum U_c^i a(\varphi_i + \chi^i, \varphi_j) = (f, \varphi_j) - a(\eta, \varphi_j).$ $i \in \mathcal{N}$

• • • •

This can now be written on matrix form as,

$$(A+T)U_c = b - d$$

where,

$$\begin{cases} A^{ij} = a(\varphi_i, \varphi_j), \\ T_{ij} = a(\chi^i, \varphi_j), \\ b_j = (f, \varphi_j), \\ d_i = a(\eta, \varphi_j). \end{cases}$$

Implementing the method comes down to calculating T and d locally, $T = \sum_{k \in \mathcal{N}} T^k$ and $d = \sum_{k \in \mathcal{N}} d^k$.

$$T_{ij}^k = a(\chi_k^i, \varphi_j),$$

and

۲

$$d_j^k = a(\eta_k, \varphi_j).$$

These can be computed on the patches without knowing U_c .

•

Duality Based Error Analysis

Dual Problem Find $\phi \in V$ such that

$$a(w,\phi) = (w,\psi)$$
 for all $w \in V$.

Error Representation Formula

$$(e, \psi) = a(e, \phi)$$

= $l(\phi) - a(U, \phi)$
= $\sum_{i \in \mathcal{N}} l(\varphi_i \phi) - a(U_c, \varphi_i \phi) - a(U_{f,i}, \phi).$

Quadrature Error

The oscillating coefficient *b* will most likely not be computed using exact quadrature. We introduce,

$$a_h(v,w) = (\epsilon \nabla v, \nabla w) + (\nabla \cdot (b_h v), w),$$

where b_h is a piecewise polynomial on the space $V_f^h(\omega_i)$ approximating *b*. We note,

$$a(v,w) - a_h(v,w) = (\nabla \cdot ((b-b_h)v), w).$$

By this approach the quadrature error will decrease with the fine scale mesh size.

Error Representation Formula

We continue the calculation using coarse and fine scale Galerkin Orthogonality,

$$(e, \psi) = l(\phi_f) - a_h(U, \phi_f) + a_h(U, \phi) - a(U, \phi)$$

= $\sum_i l(\varphi_i(\phi_f - \pi_{f,i}^0 \phi_f)) - a_h(U_c, \varphi_i(\phi_f - \pi_{f,i}^0 \phi_f))$
 $- a(U_{f,i}, \phi_f - \pi_{f,i}^0 \phi_f) + (\nabla \cdot ((b - b_h)U), \phi),$

Where $\pi_{f,i}^0$ is the interpolant onto $V_f^h(\omega_i)$ i.e. zero on $\partial \omega_i$. We also introduce $\pi_{f,i}$ as the nodal interpolant on the mesh associated with $V_f^h(\omega_i)$.

Error Representation Formula

We end up with three terms,

$$\begin{aligned} (e,\psi) &= \sum_{i} l(\varphi_{i}(\phi_{f} - \pi_{f,i}\phi_{f})) - a_{h}(U_{c},\varphi_{i}(\phi_{f} - \pi_{f,i}\phi_{f})) \\ &- a(U_{f,i},\phi_{f} - \pi_{f,i}\phi_{f}) \\ &+ \sum_{i} (\nabla \cdot ((b - b_{h})U_{c}),\varphi_{i}\phi) + (\nabla \cdot ((b - b_{h})U_{f,i}),\phi) \\ &+ \sum_{i} l(\varphi_{i}(\pi_{f,i}\phi_{f} - \pi_{f,i}^{0}\phi_{f})) - a_{h}(U_{c},\varphi_{i}(\pi_{f,i}\phi_{f} - \pi_{f,i}^{0}\phi_{f})) \\ &- a_{h}(U_{f,i},\pi_{f,i}\phi_{f} - \pi_{f,i}^{0}\phi_{f}). \end{aligned}$$

Solving the Dual Problem

Remember the dual problem: find $\phi \in V$ such that,

$$a(w,\phi) = (w,\psi),$$
 for all $w \in V$, i.e.
 $(\epsilon \nabla \phi, \nabla w) - (b \cdot \nabla \phi, w) = (\psi, w),$ for all $w \in V$.

Numerical Approximation of ϕ .

The computational effort for computing Φ depends on what aim we have with our computation. If we seek:

- A good approximation of the error (e, ψ) we can e.g. compute Φ on the reference mesh h_{min} or use AVMS with one more refinement then for the primal.

Adaptive Algorithm

$$(e,\psi) = \sum_{i\in\mathcal{N}} D_i(U,\Phi_f - \pi_{f,i}\Phi_f) + Q_i(U,\Phi) + P_i(U,\Phi_f).$$

- 1. Start with given r_i and L_i where $h_i = H/2^{r_i}$.
- **2.** Calculate U and Φ .
- 3. Calculate D_i , Q_i , and P_i .
- 4. Stop if they are small enough, else order the indicators by size and let $r_i := 2r_i$ for large values in $D_i + Q_i$ and let $L_i = L_i + 1$ for large values in P_i , return to 2.

Resolution of Φ **.**

$$(e,\psi) = \sum_{i\in\mathcal{N}} D_i(U,\Phi_f - \pi_{f,i}\Phi_f) + Q_i(U,\Phi) + P_i(U,\Phi_f).$$

- 1. To get a non-zero contribution from D_i we need better approximation of Φ then U.
- 2. To get a good approximation of Q_i it appears that we need quite little from Φ .
- 3. To get a good approximation of P_i we need Φ to be computed in a richer space then V_c .

We let $\epsilon = 0.01$, $f = I_{\{x+y<0.05\}}$, and b = [bx, bx] as in Figure.

Figure 3: *b* varies between 1 and 0.01, around 50 periods in the domain.

We let h = 1/96, H = 1/24, and study how the relative error (e, 1)/(u, 1) (reference calculated using $h_{min} = 1/96$) depends on the number of layers in the patches.

Now we use the adaptive algorithm with a refinement level of 40%. We solve the Dual problem with the same method as the primal.

Figure 4: Refinements and Patchsizes.

۲

We plot the relative error (e, 1)/(u, 1) (compared to reference solution) after each iteration.

Figure 5: We see rapid convergence in the quantity of interest.

Again we use the adaptive algorithm with a refinement level of 40%. We solve the Dual problem with different methods.

۲

We let $\epsilon = 0.01$, $f = I_{\{x+y<0.05\}}$, and b = [rand, rand].

CAM seminar 5 January 2006 - p. 31

We let $\psi = 1$ and use a refinement level of 40%.

Figure 6: Refinements and Patchsizes.

Again we plot the relative error compared to a reference solution in the quantity of interest.

Improvements and Comments

- Patches shaped adaptively to suite $U_{f,i}$.
- A split between V_c and V_f that in a better way captures mean values of the coarse solution and perhaps depends on b.
- A poorly computed dual solution often gives a bad approximation of the error but serves as a good indicator for adaptivity.
- Letting quadrature error replace discretization error in the algorithm has a weak theoretical foundation but it works in *some* cases.

Future work

- Prove a priori error estimates for the multiscale method.
- Extend the multiscale method to non-linear equations.
- Use more then two scales and consider more extreme scale separation.
- Make an evaluation of how the method performs compared to other methods.