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Outline

• Model problem
• The method we use to compute stochastic

moments of (U,ψ). (such as E[·] and Var(·))
• Error analysis
• Adaptivity
• Numerical examples
• Conclusions and future work
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The model problem

Strong form: The Dirichlet Problem with multiple
right hand sides, Fj =

∑m
i=1A

j
ivi(x), vi ∈ L2(Ω),

Aj
i random numbers, j = 1, . . . , s, Fj are iid,

−△Uj = Fj in Ω,

Uj = 0 on Γ.

Weak form: Find Uj ∈ V = H1
0(Ω) such that,

(∇Uj,∇v) = (Fj, v) for all v ∈ V.
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The corresponding dual problem

Strong form: Let ψ ∈ L2(Ω),

−△φ = ψ in Ω,

φ = 0 on Γ.

Weak form: Find φ ∈ V such that,

(∇w,∇φ) = (w,ψ) for all w ∈ V.

Note that the dual problem is deterministic.
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Simple observation

Using Green’s identity we get,

(Uj, ψ) = (∇Uj,∇φ) = (Fj, φ) for j ∈ 1 . . . , s.

• We can derive the distribution for (Uj, ψ) by
just solving one PDE.

• This works as long as the differential operator
is linear and deterministic i.e. for a wide
range of problems.

• It also works for stochastic initial and
boundary condition.
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Discretization

Let Vh ⊂ V . We discretize both the primal and
the dual using the same space,

FEM (primal): Find Uh,j ∈ Vh such that,

(∇Uh,j,∇v) = (Fj, v) for all v ∈ Vh.

FEM (dual): Find φh ∈ Vh such that,

(∇w,∇φh) = (w,ψ) for all w ∈ Vh.
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Same trick again

Using Green’s identity we get,

(Uh,j, ψ) = (∇Uh,j,∇φh) = (Fj, φh) for j ∈ 1, . . . , s.

• We now have a computable approximation of
(Uj, ψ) namely (Fj, φh).

• We are interested in computing stochastic
moments of Xj = (Uj, ψ), m(X) cheaply.

• We need error control for both discretization
(h) and the number of samples we use to
compute the moments (n≪ s).
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Error estimation

Let Xj = (Uj, ψ) and Xh,j = (Fj, φh). Let m(X)
denote the exact stochastic moment and let
M(X) be an unbiased estimator computed using
n realizations of X i.e. E[M(X)] = m(X).
We divide the error into two parts,

m(X)−M(Xh) = (m(Xh)−M(Xh))+(m(X)−m(Xh))

• We call the first part Stochastic error (n).
• We call the second part Discretization error

(h).
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Stochastic errorm(Xh) −M(Xh)

Chebyshev inequality:
P (|Y − E[Y ]| ≥ δ) < Var(Y )/δ2 or by choosing
δ =

√

Var(Y )/ǫ,

P
(

|Y − E[Y ]| <
√

Var(Y )/ǫ
)

≥ 1 − ǫ.

We let Y = M(Xh) and use
E[Y ] = E[M(Xh)] = m(Xh) to get,

P
(

|m(Xh) −M(Xh)| <
√

Var(M(Xh))/ǫ
)

≥ 1−ǫ.
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Example 1:m(X) = E[X ]

If m(X) = E[X] then M(X) = X̄. We have,

P

(

|E[X] − X̄| <
√

Var(X̄h)/ǫ

)

≥ 1 − ǫ.

Var(X̄h) = Var

(

n
∑

i=1

Xh,j/n

)

= Var(Xh,j)/n.

Since Fj are iid Xj and Xh,j will also be iid.

P
(

|E[X] − X̄| < σ/
√
nǫ
)

≥ 1 − ǫ.
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Example 2:m(X) = Var (X)

M(X) = S2
n(X) =

∑n
j=1(Xj − X̄j)

2/(n− 1).
We need to estimate the variance of S2

n(Xh).

Var(S2
n(Xh)) = Var

(

n
∑

j=1

(Xh,j − X̄h,j)
2

)

/(n− 1)2.

We assume (Xh,j − X̄h,j)
2 to be almost indep.,

Var(S2
n(Xh)) ≈

n
∑

j=1

Var
(

(Xh,j − X̄h,j)
2
)

/(n− 1)2.
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Example 2: (cont)

Given {Xh,j}n
j=1 we can get a good

approximation of Var((Xh,j − X̄h,j)
2) using the

unbiased estimator on this particular sample, lets
call it s2

n((Xh − X̄h)
2) ≈ Var((Xh,j − X̄h,j)

2).

Var(S2
n(Xh)) ≈ ns2

n((Xh − X̄h)
2)/(n− 1)2,

so

P
(

|Var(Xh) − S2
n(Xh)| <

√

C2/nǫ
)

≥ 1 − ǫ,

where C2 is computable.
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Discretization error m(X) −m(Xh)

Remember that,

m(X) −m(Xh) = m((F, φ)) −m((F, φh)).

Since φ is not known and we only have access to
M we need to modify this. Let φγh, 0 < γ < 1, be
an improved version of φh. Then,

m(X) −m(Xh) = M((F, φγ,h)) −M((F, φh))

+M((F, φ)) −M((F, φγh))

+m((F, φ)) −m((F, φh)) −M((F, φ)) +M((F, φh))
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Example 1:m(X) = E[X ]

In this case m is linear which means that,

m(X) −m(Xh) = E[X −Xh] = E[(F, φ− φh)]

= (F̄ , φ− φh) + (E[F ] − F̄ , φ− φh)

= (F̄ , φγh − φh) + (F̄ , φ− φγh) + (E[F ] − F̄ , φ− φh).

However is this case we have another option.

We could construct a dual problem to take care
of the (F̄ , φ− φh)-term.
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Dual problem for the dual

Let χ ∈ V solve,

−△χ = F̄ in Ω,

χ = 0 on Γ.

We get the following error representation formula,

(φ− φh, F̄ ) = (∇(φ− φh),∇χ)

= (ψ, χ) − (∇φh,∇χ)

= (R(φh), χ− πhχ).

CAM seminar 31 May 2006 – p. 15



Example 1: (cont)

The discretization part of the error when
m(X) = E[X] consists of two terms,

E[X]−E[Xh] = (R(φh), χ−πhχ)+(E[F ]−F̄ , φ−φh).

We can proceed with an interpolation estimate if
we assume enough regularity in χ,

|E[X]−E[Xh]| ≤ C‖h2R(φh)‖+|(E[F ]−F̄ , φ−φh)|.

We can now combine this estimate with the
estimate of the stochastic error contribution.
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Example 1: Total error estimate

We want to estimate E[X] − X̄h. If we combine
the two results we get: the probability that,

|E[(U,ψ)]−(Ūh, ψ)| ≤
√

Var((F, φh))/(nǫ)

+ C‖h2R(φh)‖ + |(E[F ] − F̄ , φ− φh)|.

holds is greater then 1 − ǫ.

|E[(U,ψ)] − (Ūh, ψ)| ≤ C1/
√
nǫ+ C2h

2, n ∼ h−4.
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In general

For an arbitrary moment m we will have to
compute φγh and an approximation to
Var(M(Xh)) in order to get an the following
approximate bound:

|m(X) −M(Xh)| ≤
√

Var(M(Xh))/ǫ

+ |M((F, φγh)) −M((F, φh))|,

holds approximately with probability 1 − ǫ.

The higher order terms are neglected here.
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Same method for related problems 1

Different linear deterministic operator:

LUj = Fj in Ω,

Uj = 0 on Γ.

L∗φ = ψ in Ω,

φ = 0 on Γ.

(Uj, φ) = (Uj, L
∗φ) = (LUj, φ) = (Fj, φ).
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Same method for related problems 2

Stochastic initial condition:

U̇j −△Uj = 0 in Ω, t > 0,

Uj = 0 on Γ, t > 0,

Uj = Fj for t = 0.

−φ̇−△φ = 0 in Ω, t < T,

φ = 0 on Γ, t < T,

φ = ψ for t = T.

CAM seminar 31 May 2006 – p. 20



Same method for related problems 2

Again we can use that the dual problem is
deterministic to get a simple formula to compute
the distribution of a linear functional of the
solution.

(Uj(T ), ψ) = (Fj, φ(0)).

This can also be combined with a different
deterministic operator.

We can also have a stochastic boundary
condition.
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Same method for related problems 3

Stochastic boundary condition:

−△Uj = 0 in Ω,

−∂nUj = kUj + Fj on Γ,

−△φ = ψ in Ω,

−∂nφ = kφ on Γ.

(Uj, ψ) = −〈Fj, φ〉.
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Numerical examples: m(X)=E[X]

Stochastic boundary cond., Fj = −sin(πy) + δ
[5]
j
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Figure 1: Quasi uniform mesh with meshsize h ≈
0.05, δ = 0.6, k = 0 on Neumann part.
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Test of convergence (h)

Error computed using reference solution,
nref = 5e5 and href = 0.01. We let ǫ = 0.05.
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log10(h)

Approximate error in E[X
h
], n=31623, ε=0.05, δ=0.3, the slope is 1.78.

Figure 2: For each h compute ≈ 160 real. of the

error using n ≈ 3e4 and pick the 95% worst value.
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Test of convergence (n)

Error computed using reference solution,
nref = 5e5 and href = 0.01. We let ǫ = 0.05.
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h
], h=0.021, ε=0.05, δ=0.3, the slope is −0.49.

Figure 3: For each n compute ≈ 5e5/n real. of

the error using h ≈ 0.02 and pick the 95% worst.
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Test of convergence in bothh and n
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Figure 4: The 1−ǫ probability bound of |E[Xhref
]−

X̄h| for different choices of h and n.
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Test of convergence in bothh and n

Bound for expected value

log10(h)

lo
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Figure 5: Contour plot with steepest decent paths

indicating the dependence between h and n when

trying to minimize the error.
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The error bound (no reference)

We let n = 31623 and vary h between
0.05 ≤ h ≤ 0.168.
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h
], n=31623, ε=0.05, δ=0.3, the slope is 1.99.

Figure 6: We note that the 1− ǫ bound of |X̄− X̄h|
approximately depends on h2.
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The error bound (no reference)

Let h = 0.021 and compute the bound of the
stochastic contribution of the error.
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], h=0.021, ε=0.05, δ=0.3, the slope is −0.51.

Figure 7: We note that the 1− ǫ bound of |X̄− X̄h|
approximately depends on 1/

√
n.
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Adaptivity in h and n

1. Choose ǫ, TOL, r > 1, h = hst, and n = nst.

2. Compute the solutions Xh,j, 1 ≤ j ≤ n.

3. Compute S = σ/
√
nǫ.

4. Compute D =
(ψ, χ−πhχ)−(∇φh,∇(χ−πhχ))−〈kφh, χ−πhχ〉.

5. If D + S < TOL stop.

6. If D > rS then let h := h/r and n := n. If
S < rD then let h := h and n := r · n.
Otherwise h := h/r and n := n · r.
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Adaptivity in h and n

Let ǫ = 0.05, r = 1.5, TOL = 5 · 10−5, (rel. error
less then 0.1%), hst = 0.2, and nst = 40.
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Values of h and n given by the adaptive algorithm, slope −3.93

Figure 8: We see clearly how the algorithm en-

forces n ∼ h−4.
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Bound vs. true error (reference)

Error comp. to ref. solution and error bound after
each iterations in the adaptive algorithm.
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True error and error bound for the adaptive algorithm 

 

 
True error
Bound

Figure 9: Neglecting the higher order term does

not cause any trouble in this example.
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Numerical examples: m(X)=Var(X)

We start with the h-dependence.
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), n=31623, ε=0.05, δ=0.3, the slope is 2.42.

Figure 10: We note that the 1−ǫ probability bound

of |S2
nref

(Xhref
)−S2

n(Xh)| depends roughly on h2.4.
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Convergence for Var (n)

The n-dependence.
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Figure 11: We note that the 1 − ǫ bound of

|S2
n(Xhref

) − S2
nref

(Xh)| appr. depends on 1/
√
n.
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Test of convergence inh and n

Next we study the surface we get from varying
both h and n.
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Figure 12: The 1 − ǫ probability bound of

|S2
n(Xhref

) − S2
n(Xh)| versus h and n.
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Error bound, h-part no reference

The h-dependent part, M(Xγh) −M(Xh).
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), n=31623, ε=0.05, δ=0.3, the slope is 2.33.

Figure 13: The 1−ǫ probability bound of |Var(X)−
S2

n(Xh)|.
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Error bound, n-part no reference

The n-dependency is again easier to capture.
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Figure 14: We note that the 1 − ǫ bound of

|Var(X) − S2
n(Xh)| depends on 1/

√
n.
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Error bound varying both h and n

We plot the surface of the bound we get by
varying h and n.
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Figure 15: The error bound of |Var(X) − S2
n(Xh)|.

CAM seminar 31 May 2006 – p. 38



Efficiency

Efficiency of the estimate.
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Figure 16: The error compared to the reference

solution divided by the error bound.
CAM seminar 31 May 2006 – p. 39



Adaptive algorithm

Let ǫ = 0.05, r = 1.5, TOL = 10−7, (rel. error
< 0.2%), hst = 0.2, and nst = 103.
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Values of h and n given by the adaptive algorithm, slope −4.44

Figure 17: We see how the algorithm gives us

roughly n ∼ h−4.4.
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Error bound vs. "true" error

We compare the error bound with the error
compared to a reference solution.
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Figure 18: The solid line is error compared to a

ref. sol. and the dashed line is the error bound.
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Conclusion and future work

• Cheap method for computing arbitrary
stochastic moments of linear functionals of
solution to a wide class of linear PDE’s.

• Error analysis that takes both the traditional
discretization error and stochastic error into
account.

• Numerical results that agrees with theory.
• At the moment we work on stochastic

diffusion coefficient in the Poisson equation.
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