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The model problem

Strong form:  The Dirichlet Problem with multiple
right hand sides, F; = >, Alv;(x), v; € L*(9),

A7 random numbers, j =1,...,s, F; are iid,
—AU]' — Fj N Q,
Ui=0 onl.

Weak form:  Find U; € V = H;(92) such that,
(VU;,Vv) = (F;,v) forallvelV.




The corresponding dual problem

Strong form:  Let ¢ € L*(Q),

—Ap =1 1n(,
»=0 onl.

Weak form:  FInd ¢ € V such that,
(Vw, Vo) = (w,y) forallw e V.

Note that the dual problem is deterministic.




Simple observation

Using Green’s identity we get,
(U, ) = (VU;, Vo) = (Fj,9) forjel... s
- We can derive the distribution for (U;, ) by

just solving one PDE.

» This works as long as the differential operator
IS linear and deterministic i.e. for a wide
range of problems.

It also works for stochastic initial and
boundary condition.




Let V;, C V. We discretize both the primal and
the dual using the same space,

FEM (primal):  FInd U}, ; € V}, such that,

(VU ;, V) = (Fj,v) forallve V.

FEM (dual): FInd ¢;, € V}, such that,

(Vw,Vop) = (w,y) forallw e V.




Same trick again

Using Green’s identity we get,

(Unj,¥) = (VUL;, Vo) = (Fj,¢p) forjel, ... s.

- We now have a computable approximation of
(Uj, ) namely (F;, ¢p,).

- We are Iinterested in computing stochastic
moments of X, = (U;, ), m(X) cheaply.

» We need error control for both discretization
(h) and the number of samples we use to
compute the moments (n < s).




Error estimation

Let Xj = (Uj,w) and Xh,j = (Fj7¢h)' Let m(X)
denote the exact stochastic moment and let

M (X) be an unbiased estimator computed using
n realizations of X i.e. E[M(X)] = m(X).

We divide the error into two parts,

m(X)—M(Xy) = (m(Xp)—M(Xp))+(m(X)—m(X}))

» We call the first part Stochastic error (n).
» We call the second part Discretization error

().
I




Stochastic errorm(X;,) — M (X})

Chebyshev inequality:
P(|Y — E]Y]| > ) < Var(Y) /6 or by choosing
0 = \/Var(Y)/

P(\Y E[Y]| < y/Var(Y /e)>1—6

We let Y = M (X};) and use
E[Y] = E[M(X},)] = m(X},) to get,

P(\m(Xh) < Nar(M(X})) /e)_ e
e




Example 1: m(X) = F|X]

If m(X) = F[X] then M(X) = X. We have,

P (\E[X] —- X| < \/Var(Xh)/e> >1—e.

Var(X,) = Var (i Xh,j/n) = Var(X}, ;) /n.

Since F; are iid X; and X, ; will also be iid.

P(|EX]—X|<o/vne) >1—ce




Example 2: m(X) = Var (X)

M(X) = SH(X) =327 1(X; = X5)?/(n— 1),
We need to estimate the variance of S2(X},).

V&I’(S%(Xh)) = Var (i(Xh’j — thj)Z) /(n — 1)2.

j=1

We assume (X}, ; — X}, ;)* to be almost indep.,

Var(S; (X)) ~ Y Var (X, — Xu;)?) /(n — 1)

J=1




Example 2: (cont)

Given { X, ;}7_; we can get a good

approximation of Var((X}, ; — X}, ;)?) using the
unbiased estimator on this particular sample, lets
call it 8%((Xh — Xh)z) > Var((thj — Xh’j)z).

Var(S;(Xy)) = ns,((Xy — X3)?)/(n — 1),

SO

P (\Var(Xh) S2(X)] \/Cg/ne) > 1 —¢,

where (5 Is computable.




Discretization error m(X) — m(X},)

Remember that,
m(X) —m(Xp) =m((F,¢)) —m((F, ¢n)).

Since ¢ Is not known and we only have access to
M we need to modify this. Let ¢, 0 < v < 1, be
an improved version of ¢,. Then,

m(X) — m(Xy) = M((F, ¢y.)) — M((F, én))
+M((F,¢)) = M((F, ¢1))
+m((F,¢)) —m((F,¢n)) — M((F,¢)) + M((F, ¢n))




Example 1: m(X) = F|X]

In this case m Is linear which means that,
m(X) —m(X;) = B\ X — X,| = E|(F, ¢ — ¢p)]
— (F7¢’yh_¢h)+(F7¢_¢7h)+(E[F] _F7¢_¢h)

However Is this case we have another option.

We could construct a dual problem to take care
of the (F', ¢ — ¢p)-term.




Dual problem for the dual

Let x € V solve,

—Axy=F In{),
=0 onl.

We get the following error representation formula,

(¢ — n, F) = (V(¢ — ¢n), V)
= (¥, x) = (Vén, Vx)
= (R(on), X — mnX).




Example 1: (cont)

The discretization part of the error when
m(X) = E|X] consists of two terms,

EX]-E[Xy] = (R(¢n), x—mnx)+H(E[F]—F, ¢—dn).

We can proceed with an interpolation estimate if
we assume enough regularity in vy,

[E[X]-E[X3]| < C|W°R(on)|+(E[F]-F, ¢—¢n)].

We can now combine this estimate with the
estimate of the stochastic error contribution.




Example 1: Total error estimate

We want to estimate E[X] — X,. If we combine
the two results we get: the probabillity that,

B[(U,4)]=(On, ¥)| < V/Var((F. éy))/ (ne)
+ Cl[R*R(¢n) || + [(B[F] — F, ¢ — )],

holds is greater then 1 — e.

E[(U, )] = (U, ¥)| < C1/vne+Coh®, n~h™




In general

For an arbitrary moment m we will have to
compute ¢, and an approximation to
Var(M (X})) in order to get an the following
approximate bound:

m(X) — M(X;,)| < v/Var(M(Xy,))/e
+ [M(F, ¢yn)) — M((F, ¢n))l;

holds approximately with probability 1 — e.

The higher order terms are neglected here.




Same method for related problems 1

Different linear deterministic operator:

LUj:Fj N Q,
Uj:O onl.

Lo =1 1nQ,
»=0 onl.

(Uj7¢) — (UjaL*¢) — (LUJ’7¢) — (Fj7¢)°




Same method for related problems 2

Stochastic initial condition:
U:—AU; =0 inQ, t>0,
Ui=0 onl, ¢>0,
Ui=F; fort=0.

—d—Np=0 inQ, t<T
=0 onlI', t<T,
o= fort=T.




Same method for related problems 2

Again we can use that the dual problem is
deterministic to get a simple formula to compute
the distribution of a linear functional of the
solution.

(U;(T),¥) = (Fj, $(0)).

This can also be combined with a different
deterministic operator.

We can also have a stochastic boundary
condition.




Same method for related problems 3

Stochastic boundary condition:

—AU]' =0 In Q,
—-0,U; = kU; +F; onlT,

—Ap =1 1n,
—0,0 = ko onl.

(Uj, ) = —(F}, 9).




Numerical examples: m(X)=E[X]

Stochastic boundary cond., F; = —sin(my) + 5}5]
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Figure 1: Quasi uniform mesh with meshsize h ~
0.05, 0 = 0.6, £k = 0 on Neumann part.




Test of convergencek)

Error computed using reference solution,
nrer = 0eb and h..r = 0.01. We let e = 0.05.

IIIIIIII

Figure 2: For each A~ compute ~ 160 real. of the
error using n ~ 3e4 and pick the 95% worst value.
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Test of convergencer)

Error computed using reference solution,
nrer = 0eb and h..r = 0.01. We let e = 0.05.

IIIIIIII

Figure 3: For each n compute ~ 5e5/n real. of
the error using h ~ 0.02 and pick the 95% worst.




Test of convergence in bothh and n

Figure 4: The 1— ¢ probability bound of |EX}, .| —
X, | for different choices of 1 and n.




Test of convergence in bothh and n

Figure 5. Contour plot with steepest decent paths
iIndicating the dependence between h and n when
trying to minimize the error.
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The error bound (no reference)

We let n = 31623 and vary h between
0.05 < h < 0.168.

IIIIIIII

Figure 6: We note that the 1 — ¢ bound of | X — X,
approximately depends on hZ2.




The error bound (no reference)

Let h = 0.021 and compute the bound of the
stochastic contribution of the error.

||||||||

Figure 7: We note that the 1 — ¢ bound of | X — X}
approximately depends on 1/+/n.




Adaptivity In A~ andn

1. Choose ¢, TOL,r > 1, h = hyg, and n = ng.
2. Compute the solutions X, ;, 1 < j < n.
3. Compute S = o //ne.
4. Compute D =
(¥, x=mX) = (Von, V(Xx—mnx)) — (kon, X —Tnx)-
5. 1t D+ .5 <TOL stop.
6. If D >rSthenleth:=h/randn:=n. If

S <rDthenleth:=handn :=r-n.
Otherwise h := h/rand n:=n-r.




Adaptivity In A~ andn

Lete = 0.05, 7 = 1.5, TOL =5-1072, (rel. error
less then 0.1%), hy; = 0.2, and ng = 40.

10
log10(h)

Figure 8: We see clearly how the algorithm en-
forces n ~ h™*.
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Bound vs. true error (reference)

Error comp. to ref. solution and error bound after
each iterations in the adaptive algorithm.

Figure 9: Neglecting the higher order term does

not cause ani trouble in this example.




Numerical examples: m(X)=Var(X)

We start with the h-dependence.

imate error in Var()ﬁj), n=31623, £¢=0.05, =0.3, the slope is 2.42
T

||||||||

Figure 10: We note that the 1 —¢ probability bound
of |.S S%(X},)| depends roughly on h?4.

nmf( 'ref)




Convergence for Var (n)

The n-dependence.

||||||||

Figure 11: We note that the 1 — ¢ bound of
1S2(X,.,) — Si (X},)| appr. depends on 1//n.

Nyref




Test of convergence im and n

Next we study the surface we get from varying
both » and n.

Figure 12: The 1 — ¢ probability bound of
1S2(X,.,) — S2(Xy)| versus h and n.




Error bound, h-part no reference

The h-dependent part, M (X.,,) — M (Xp).

d for Var()%). n=31623, €=0.05, 6=0.3, the slope is 2.33

||||||||

Figure 13: The 1—¢ probability bound of |Var(X)—
S (Xn)|.




Error bound, n-part no reference

The n-dependency Is again easier to capture.

d for Var()%), h=0.021, €=0.05, 3=0.3, the slope is —0.51

ooooo (n)

Figure 14. We note that the 1 — ¢ bound of
[Var(X) — S?(X})| depends on 1/,/n.




Error bound varying both A andn

We plot the surface of the bound we get by
varying h and n.

Figure 15: The error bound of |Var(X) — S%(X},)|.




Efficiency

Efficiency of the estimate.

Figure 16: The error compared to the reference
solution divided by the error bound.




Adaptive algorithm

Lete = 0.05, r = 1.5, TOL = 1077, (rel. error
< 02%), hst = 02, and Ngt — 103

IIIIIIII

Figure 17: We see how the algorithm gives us
roughly n ~ h=44,




Error bound vs. "true" error

We compare the error bound with the error
compared to a reference solution.

Figure 18: The solid line is error compared to a
ref. sol. and the dashed line is the error bound.

CAM seminar 31 May 2006 — p. ¢



Conclusion and future work

» Cheap method for computing arbitrary
stochastic moments of linear functionals of
solution to a wide class of linear PDE'’s.

+ Error analysis that takes both the traditional
discretization error and stochastic error into
account.

* Numerical results that agrees with theory.

» At the moment we work on stochastic
diffusion coefficient in the Poisson equation.
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