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The Model Problem

Poisson Equation on mixed form:










1
a
σ −∇u = 0 in Ω,

−∇ · σ = f in Ω,

n · σ = 0 on Γ.

Permeability a has multiscale features (SPE).
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Weak form

Find σ ∈ V = {v ∈ H(div; Ω) : n · v = 0 on Γ}
and u ∈W = L2(Ω)/R such that,

{

(1
a
σ,v) + (u,∇ · v) = 0,

−(∇ · σ, w) = (f, w),

for all v ∈ V and w ∈W .

Here (·, ·) denotes the L2(Ω) scalar product for
vector and scalar functions.
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Coarse and Fine Scales (VMS Hughes)

We introduce spaces V c ⊕ V f = V and
Wc ⊕Wf = W .

• V c is a finite dimensional approximation of
H(div; Ω). We use Raviart-Thomas basis
functions.

• Wc is an approximation of L2(Ω). We use
piecewise constants.

• The degrees of freedom in these spaces
should be possible to handle on a single
processor.
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Coarse and Fine Scales

Find σc ∈ V c, σf ∈ V f , uc ∈Wc, and uf ∈Wf

such that,
{

(1
a
(σc + σf),vc + vf) + (uc + uf ,∇ · (vc + vf)) = 0

−(∇ · (σc + σf), wc + wf) = (f, wc + wf)

for all vc ∈ V c, vf ∈ V f , wc ∈Wc, and wf ∈Wf .

We want to approximate the red terms by solving
decoupled local problems.
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Global Solutions
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Figure 1: σ and u on coarse and fine scale.
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Fine Scale Equations

If we let vc = 0 and wc = 0 we get the following
relation between the fine and coarse solutions:
find σf ∈ V f and uf ∈Wf such that,
{

(1
a
σf ,vf) + (uf ,∇ · vf) = −(1

a
σc,vf) − (uc,∇ · vf)

−(∇ · σf , wf) = (f, wf) + (∇ · σc, wf)

for all vf ∈ V f and wf ∈Wf .

This system can be simplified somewhat due to
the elements we use.
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Orthogonality

We use an hierarchical basis of Raviart-Thomas
basis functions on rectangular elements for the
flux and the piecewise constants for the pressure.

(wc,∇·vf) =
∑

K

(wc,∇·vf)K =
∑

K

wK
c

∫

∂K

n·vf dx = 0

where wK
c is the constant at coarse element K,

(wf ,∇·vc) =
∑

K

(wf ,∇·vc)K =
∑

K

∇·vK
c

∫

K

wf dx = 0
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Decouple Fine Scale Equations

Find σf ∈ V f and uf ∈Wf such that,
{

(1
a
σf ,vf) + (uf ,∇ · vf) = −(1

a
σc,vf) − (uc,∇ · vf)

−(∇ · σf , wf) = (f, wf) + (∇ · σc, wf)

for all vf ∈ V f and wf ∈Wf .
{

(1
a
σf,i,vf) + (uf,i,∇ · vf) = −(1

a
σi

cφi,vf)

−(∇ · σf,i, wf) = (fψi, wf)

Here σc =
∑

i σ
i
cφi and ψi = χsuppφ

i
/4.
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Two Auxiliary Problems

Find ξi ∈ V f and ζi ∈ Wf such that
{

(1
a
ξi,vf) + (ζi,∇ · vf) = −(1

a
φi,vf),

−(∇ · ξi, wf) = 0,

and: βi ∈ V f and ρi ∈Wf such that
{

(1
a
βi,vf) + (ρi,∇ · vf) = 0,

−(∇ · βi, wf) = (fψi, wf),

for all vf ∈ V f , and wf ∈Wf and i ∈ N .
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Modified Coarse Scale Equation

We use σc =
∑

j σ
j
cφj, σf =

∑

j σ
j
cξj + βj,

uc =
∑

k u
k
cϕk, uf =

∑

j σ
j
cζj + ρj, vc = φj,

wc = ϕk, vf = ξj, and wf = ζk in the original
formulation.
{

(1
a
(σc + σf),φi + ξi) + (uc,∇ · φi) + (uf ,∇ · ξj) = 0

−(∇ · σc, ϕk) − (∇ · σf , ζk) = (f, ϕk) + (f, ζk)

The other term vanish due to the orthogonality.
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The Method on Matrix Form

[

A B

−B
T

O

] [

Σ

U

]

=

[

d

b

]

,

where
Aij = (1

a
φj + ξj,φi + ξi),

Bik = (ϕk,∇ · φi),

di = −(1
a
β,φi + ξi),

bk = (f, ϕk),

We need to compute approximations to ξi and βi

numerically in smaller spaces then V f .
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Local Solutions
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Figure 2: The local solutions σf,i = σi
cξi + βi and

uf,i = σi
cζi+ρi. Remember that rhs is zero outside

the support of φi.
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Introducing the Patch

The equations are solved in a slice space where
solutions decay rapidly,

∫

E
n · σf,i dx = 0 and

∫

K
uf,i dx = 0.
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The patch ωi typically consists of coarse
elements but could have any geometry.
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Solving Local Neumann Problems

Find ξh
i ∈ V h(ωi) and ζh

i ∈Wh(ωi) such that
{

(1
a
ξh

i ,vf) + (ζh
i ,∇ · vf) = −(1

a
φi,vf),

−(∇ · ξh
i , wf) = 0,

and: find βh
i ∈ V h(ωi) and ρh

i ∈ Wh(ωi) such that
{

(1
a
βh

i ,vf) + (ρh
i ,∇ · vf) = 0,

−(∇ · βh
i , wf) = (fψi, wf),

for all vf ∈ V h(ωi), and wf ∈Wh(ωi) and i ∈ N .
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Example of Local Solutions
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Figure 3: 1, 2, and 3 layer patches. Above Uf,i

below Σf,i.
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Numerical Examples

In the figure we see the bottom layer of the
Upper Ness formation (SPE).
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We let f = 1 in the lower left corner and f = −1
in the upper right corner. max a/min a = 8.8e6.
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Numerical Example
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Figure 4: To the left we see the flux and to the

right the pressure. We use 220 × 60 elements for

the reference solution.
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Numerical Example
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Figure 5: 55 × 15 coarse elements and h = H/4.

Do we really need to solve local problems with
high resolution everywhere?

Computational Methods in Water Resources XVI, Copenhagen, Denmark, 22 june 2006 – p. 19



Energy Norm Estimate‖v‖2
a = (1

av,v)

Next we present an estimate of the error.

‖σ − Σ‖2
a ≤

∑

i

Ca‖
1

a
(Σi

cφi + Σf,i) −∇U ∗
f,i‖2

ωi

+
∑

i

Ca‖
h

a
(fψi + ∇ · (Σi

cφi + Σf,i))‖2
ωi
.

+
∑

i

Ca‖
1

2
√
h
U ∗

f,i‖2
∂ωi\Γ

U ∗ is a post proc. version of U , Ca ∼ ‖√a‖L∞(ωi).
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Adaptive Strategy

• Calculate Σ.
• Calculate the error indicators on each patch,

Xi(h) = ‖1

a
(Σi

cφi +Σf,i)−∇U ∗
f,i‖2

ωi
→ Refine h

Yi(h) = ‖h
a
(fψi+∇·(Σi

cφi+Σf,i))‖2
ωi
→ Refine h

Zi(L) = ‖ 1

2
√
h
U ∗

f,i‖2
∂ωi\Γ → Increase L
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Back to the Numerical Example

• We start with one layer patches with one
refinement in all local problems.

• We calculate the error estimators.
• Then we increase 25% of the patches with

one layer and refine the mesh on 25%
according to the estimators.

• We repeat this process one more time.
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Number of Layers and Refinements
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Black circle is one, blue is two and red is three
layers/refinements.
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Relative Error in Energy Norm

Galerkin 105.6% and one iteration 15.8%.
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Two iterations 10.1% and three iterations 7.6%.
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Conclusions

• The error indicators finds critical areas.
• More computational effort in these areas

decreases the global error quickly.
• To get an equally good approximation without

adaptivity we need to use three refinements
on two layer patches.

• In the example above we still have 70% of the
patches using one layer and one refinement.
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Outlook

• Implementation in 3D. More extensive
numerical tests.

• More scales. Should be fairly straight forward.
• Multiscale approach for the transport

problem.
• Randomly perturbed coefficient a taking error

in measurements into account.
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