Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation

Mats G. Larson and Axel Målqvist

mgl@math.chalmers.se and axel@math.chalmers.se

Department of Computational Mathematics Chalmers

The Model Problem

Poisson Equation.

۲

$$-\nabla \cdot a \nabla u = f$$
 in Ω , $u = 0$ on $\partial \Omega$.

where a > 0 bounded, and Ω is a domain in \mathbb{R}^d , d = 1, 2, 3.

Weak Form. Find $u \in H_0^1(\Omega)$ such that

 $a(u,v) = (a\nabla u, \nabla v) = (f,v)$ for all $v \in H_0^1(\Omega)$.

Multiscale Problems

Below are three examples of multiscale problems.

The first one represents difficulties in the domain (cracks, holes, ...) the second one oscillations in a and the third one oscillations in f.

Motivation

- Very important applications including materials, flow in porous media, ...
- The problems are very computationally challenging so error estimation and efficient algorithms are crucial.
- Attempts on using adaptive algorithms are not common in literature.

Variational Multiscale Method

We introduce two spaces \mathcal{V}_c and \mathcal{V}_f such that $\mathcal{V}_c \oplus \mathcal{V}_f = H_0^1(\Omega)$.

- \mathcal{V}_c is a finite dimensional approximation of $H_0^1(\Omega)$. (finite element space)
- V_f is can be chosen in different ways e.g.
 (i) Hierarchical basis.
 (ii) L²(Ω)-orthogonal to V_c.
 (iii) Wavelet modified hierarchical basis.

Variational Multiscale Method

Variational Multiscale Method

Find $u_c \in \mathcal{V}_c$ and $u_f \in \mathcal{V}_f$ such that

۲

$$\begin{aligned} a(u_c, v_c) + a(u_f, v_c) &= (f, v_c) \quad \text{for all } v_c \in \mathcal{V}_c, \\ a(u_f, v_f) &= (f, v_f) - a(u_c, v_f) \\ &:= (R(u_c), v_f) \quad \text{for all } v_f \in \mathcal{V}_f. \end{aligned}$$

Fine scale information is used to modify the coarse scale equation: Find $u_c \in \mathcal{V}_c$ such that

$$a(u_c, v_c) + a(\hat{A}_f^{-1}R(u_c), v_c) = (f, v_c) \quad \forall v_c \in \mathcal{V}_c.$$

Our Basic Idea

- Discretization of \mathcal{V}_f (analytical estimates are more common).
- Solve localized fine scale problems for each coarse node (or some coarse nodes) in parallel.
- Error estimation framework.
- Adaptive strategy for this setting.

Decouple Fine Scale Equations

Remember the fine scale equations:

$$a(u_f, v_f) = (R(u_c), v_f), \text{ for all } v_f \in \mathcal{V}_f.$$

Include a partition of unity,

۲

$$a(u_f, v_f) = (R(u_c), v_f) = \sum_{i=1}^n (R(u_c), \varphi_i v_f),$$

let $u_f = \sum_{i=1}^{n} u_{f,i}$ where $a(u_{f,i}, v_f) = (R(u_c), \varphi_i v_f)$.

Approximate Solution

Since φ_i has support on a star S_i^1 in node *i* we solve the fine scale equations approximately on ω_i with $U_{f,i} = 0$ on $\partial \omega_i$.

Find $U_c \in \mathcal{V}_c$ and $U_f = \sum_{i=1}^{n} U_{f,i}$ where $U_{f,i} \in \mathcal{V}_f^h(\omega_i)$ such that

 $a(U_c, v_c) + a(U_f, v_c) = (f, v_c) \text{ for all } v_c \in \mathcal{V}_c,$ $a(U_{f,i}, v_f) = (R(U_c), \varphi_i v_f) \text{ for all } v_f \in \mathcal{V}_f^h(\omega_i).$

Refinement and Layers

One and two layer stars.

Localized Fine Scale Solution

European Congress on Computational Methods in Applied Sciences and Engineering 27 july 2004 - p. 12

Energy Norm Estimate

$$\|\sqrt{a}\nabla e\| \leq \sum_{i\in\mathcal{C}} C_i \|H\mathcal{R}(U_c)\|_{\omega_i} + \sum_{i\in\mathcal{F}} C_i \left(\|\sqrt{H}\Sigma(U_{f,i})\|_{\partial\omega_i} + \|h\mathcal{R}_i(U_{f,i})\|_{\omega_i}\right)$$

- The first term is coarse mesh error.
- The second term is the normal derivative of the fine scale solutions on $\partial \omega_i$.
- The third term is fine scale error.

Adaptive Strategy

$$\|\sqrt{a}\nabla e\| \leq \sum_{i\in\mathcal{C}} C_i \|H\mathcal{R}(U_c)\|_{\omega_i} + \sum_{i\in\mathcal{F}} C_i \left(\|\sqrt{H}\Sigma(U_{f,i})\|_{\partial\omega_i} + \|h\mathcal{R}_i(U_{f,i})\|_{\omega_i}\right)$$

- We calculate these for each $i \in \{\text{coarse fine}\}$.
- Large values i ∈ coarse → more local problems.
- Large values $i \in fine \to more$ layers or smaller h.

We start with a unit square containing a crack.

We let the coefficient a = 1 and solve, $-\triangle u = f$ with u = 0 on the boundary including the crack.

We solve the problem by using the adaptive algorithm.

We plot the difference between our solution and a reference solution.

European Congress on Computational Methods in Applied Sciences and Engineering 27 july 2004 - p. 17

۲

In this example we study a discontinuous coefficient a in $-\nabla \cdot a\nabla u = f$. a = 1 (white) and a = 0.05 (blue).

European Congress on Computational Methods in Applied Sciences and Engineering 27 july 2004 - p. 19

The number of layers seems to depend on the fine scale structure rather that the domain size.

Outlook

- Extended numerical tests in both 2D and 3D.
- Mixed formulation.
- Other equations (convection-diffusion, ...).
- More scales.
- Comparing results with classical Homogenization theory.