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Outline and Papers

Outline
• Model problem, elliptic linear pde

• Variational multiscale method, symmetric version

• Derivation of proposed method, examples

• A posteriori error estimation

• Adaptivity

• Application to oil reservoir problem

• Convection dominated problem

• Future work

Papers
• M.G. Larson and A. Målqvist, Adaptive Variational Multiscale Methods Based on A

Posteriori Error Estimation: Energy Norm Estimates for Elliptic Problems, CMAME
2007

• M.G. Larson and A. Målqvist, A Mixed Adaptive Variational Multiscale Method with
Applications in Oil Reservoir Simulation M3AS 2009 (accepted)
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Model Problem

Poisson equation: Find u such that

−∇ · a∇u = f in Ω,

u = 0 on ∂Ω,

where a(x) ≥ a0 > 0 bounded, f ∈ L2(Ω), and Ω ∈ R
d, d = 2, 3.

Weak form: Find u ∈ V = H1
0 (Ω) such that

a(u, v) = (a∇u,∇v) = (f, v) = l(v) for all v ∈ V .
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Variational Multiscale Method: Hughes et. al. 95, 98

We split the space Vc ⊕ Vf = V
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• Vc is a finite dimensional approximation of V . (finite element
space)

• Vf can be chosen in different ways
◦ Hierarchical basis
◦ L2(Ω)-orthogonal to Vc

◦ Wavelet modified hierarchical basis
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Symmetric Variational Multiscale Method

Starting from the model problem: find u ∈ V such that

a(u, v) = l(v) for all v ∈ V

and setting

u = uc + uf v = vc + vf

we get: find uc + uf ∈ Vc ⊕ Vf such that

a(uc + uf , vc + vf ) = l(vc + vf) for all vc + vf ∈ Vc ⊕ Vf

Note that uf ∈ Vf satisfies the equation

a(uf , vf ) = l(vf ) − a(uc, vf ) for all vf ∈ Vf
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Fine Scale Equations

Given the fine scale equation

a(uf , vf ) = l(vf ) − a(uc, vf ) for all vf ∈ Vf

we let uf = uf,l + uf,c ∈ Vf with

a(uf,l, vf ) = l(vf ) for all vf ∈ Vf

a(uf,c, vf ) = −a(uc, vf ) for all vf ∈ Vf

Let T : Vc → Vf denote the solution operator uf,c = T uc. We get

u = uc + T uc + uf,l

a(uc + T uc + uf,l, vc + vf ) = l(vc + vf )

for all vc ∈ Vc and vf ∈ Vf .
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Coarse Scale Equations

Since uf,l is directly determined we get the following problem for
uc: find uc ∈ Vc such that

a(uc + T uc, vc + T vc) = l(vc + T vc) − a(uf,l, vc + T vc)

for all vc ∈ Vc.

• Here we chose vf = T vc to get a symmetric formulation

• Note that a((I + T )vc, vf ) = 0 and l(vf ) − a(uf,l, vf ) = 0

i.e. I + T decouples the problem. Any choice of vf ∈ Vf is
ok.

• In standard VMS vf = 0 in this step and thus when
approximating the local effects using numerical or analytical
tools the resulting method usually gives non-symmetric
matrix.
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Approximation of Fine Scale Solutions

• Let T̃ be a computable approximation of T
• Let Uf,l be a computable approximation of uf,l

We get the method: find Uc ∈ Vc such that

a(Uc + T̃ Uc, vc + T̃ vc) = l(vc + T̃ vc) − a(Uf,l, vc + T̃ vc)

for all vc ∈ Vc. On matrix form this leads to,

K̃Uc = b̃

Given Uc, Uf,l, and T̃ , Uf can be computed.

Compare with [Hou et. al. 97] or [Arbogast 04] where basis
functions are modified using local computations.

ENUMATH 09, Uppsala, Sweden, 29 June 2009 – p. 8/27



Construction of T̃
Recall that uc =

∑

i uc,iNc,i with {Nc,i} as a basis in Vc and
let

a(T Nc,i, vf ) = −a(Nc,i, vf ) for all vf ∈ Vf

By linearity

T uc =
∑

i

uc,iT Nc,i

and thus we are led to computing T Nc,i for each coarse
basis function Nc,i.
We define T̃ by solving these problems approximately by

• Restricting to a localized patch problem supp(Nc,i) ⊂ ωi

• Discretizing using a fine subgrid on ωi

ENUMATH 09, Uppsala, Sweden, 29 June 2009 – p. 9/27



Refinement and Layers
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We let H be coarse scale mesh size and h be fine scale mesh
size. Further we let L denote the number of layers of coarse
elements in the patch. Typically homogeneous Dirichlet
boundary condition are used.
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Construction of Uf,l

Recall that uf,l ∈ Vf solves

a(uf,l, vf ) = l(vf) for all vf ∈ Vf

Using a partition of unity ϕi we can split the right hand side
as follows l(vf) =

∑

i l(ϕivf ) to get,

uf,l =
∑

i

uf,l,i

a(uf,l,i, vf ) = l(ϕivf )

Again we find an approximation by restricting to patches
and discretizing the subgrid.
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Parallel Structure

One local problem for each coarse dof, minimal communication.

Data a, f, Ω

K1, b1 K2, b2 K3, b3 K4, b4 . . .

(
∑

k Kk
)

Uc =
∑

k bk

U2

f

Data transfer

Local solves

Global solve

Postprocessing
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Simple Observation About Decay in Vf

Consider,
−∆u = ϕi in Ω, u = 0 on ∂Ω,

where ϕi has local support in center of Ω. The weak form reads:
find u ∈ W s.t., (∇u,∇v) = (ϕi, v) for all v ∈ W.
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Solution on 3 layers
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Solution using interpolation on 3 layers
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Solution using L2 orthogonality on 3 layers

To the left W = Vc ⊕ Vf , middle W = Vf using hierarchical split,
and right W = Vf using L2-orthogonal split.
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Simple Observation About Decay in Vf

Decay of flux integrated over the boundary.
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We see exponential decay with respect distance measured in
nof coarse elements. This effect gives rapid convergence as the
patch size increases.
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Application to a Mixed Problem

Poisson equation on mixed form:











1
aσ −∇u = 0 in Ω

−∇ · σ = f in Ω

n · σ = 0 on Γ

where the permeability a is constant, random, or taken from the
SPE data set (upperness in log-scale),
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Splitting Based on RT-elements

We use lowest order RT basis functions together with piecewise
constants.

• Let πc is the RT-interpolant onto Vc and Pc be the
L2-projection onto Wc

• We define σ = πcσ + (I − πc)σ and thus
σf = (I − πc)σ ∈ Vf σc = πcσ ∈ Vc.

• Further we define
u = Pcuc + (1 − Pc)u = uc + uf ∈ Wc ⊕Wf .

• Thus we are using an L2-orthogonal splitting in the scalar
variable.

Hierarchical split for lagrangian elements leads to nodal
exactness in the coarse solution while here we get exactness of
average values on coarse elements.
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Some Terms Disappear

Find σc ∈ Vc, σf ∈ Vf , uc ∈ Wc, and uf ∈ Wf such that,



















( 1
a(σc + σf ),vc + vf ) + (uc + uf ,∇ · (vc + vf )) = 0

−(∇ · (σc + σf ), wc + wf ) = (f,wc + wf )

( 1
aσf ,vf ) + (uf ,∇ · vf ) = −( 1

aσc,vf ) − (uc,∇ · vf )

−(∇ · σf , wf ) = (f,wf ) + (∇ · σc, wf )

for all vc ∈ Vc, vf ∈ Vf , wc ∈ Wc, and wf ∈ Wf .

Since for coarse elements K

(wf ,∇ · vc) =
∑

K

∇ · vc

∫

K
wf dx = 0,

(wc,∇ · vf ) =
∑

K

wc

∫

K
∇ · vf dx =

∑

K

wc

∫

∂K
n · vf ds = 0.
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Approximate Fine Scales

{

( 1
aσf ,vf ) + (uf ,∇ · vf ) = −( 1

aσc,vf )

−(∇ · σf , wf ) = (f,wf )

• We apply the abstract framework
• Divide the fine scale problem into contributions from the

coarse scale part σc and right hand side f

• Let σc =
∑

i σc,iφi where φi are the Raviart-Thomas basis
functions. Solve the local problem driven by the basis
functions (one problem for each basis function)

• Localize by restricting the problem to a patch and using
homogeneous Neumann conditions

• Discretize using a suitable subgrid
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Example of Local Solutions ξi = T φi

{

( 1
aξi,vf ) + (βi,∇ · vf ) = −( 1

aφi,vf )

−(∇ · ξi, wf ) = 0.
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We use 3 layer patches and plot absolute value of the flux |ξi|.
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Example of Convergence

• Reference mesh has 32 × 32 elements
• The coarse mesh has 8 × 8 elements.
• We let f = 1 lower left corner and f = −1 in upper right,

otherwise f = 0.
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Error compared to reference solution.
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A Posteriori Error Estimate (mixed version, Neumann)

The following energy norm bound holds

‖σ − Σ‖2
a = ‖ 1√

a
(σ − Σ)‖2 ≤ Ca

∑

i

(

R2
ωi

+R2
∂ωi

)

where

R2
ωi

= ‖1

a
(Σi

cφi + Σf,i) −∇U∗
f,i‖2

ωi
+ ‖h

a
(fψi + ∇ · (Σi

cφi + Σf,i))‖2
ωi

+
∑

K∈ωi

‖h−1/2[U∗
f,i]‖2

∂K

R2
∂ωi

= ‖h−1/2U∗
f,i‖2

∂ωi\Γ

U∗ is a post processed version (Lovadina and Stenberg 06)
of U , Ca ∼ ‖√a‖L∞(ωi).
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Adaptive Strategy

We have the error bound

‖σ − Σ‖2
a ≤ Ca

∑

i

(

R2
ωi

+ R2
∂ωi

)

1. Let h = H/2 and L = 1 for all i.

2. Compute the solution {U,Σ}.

3. Calculate residuals for each coarse RT basis functions.

4. Mark large entries.

5. For marked entries R2
ωi

let h := h/2.

6. For marked entries R2
∂ωi

let L := L + 1.

7. Return to 1 or stop if estimators are small enough.
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Adaptivity with Permeability from SPE Data Set

Layer 1 and 50 in the SPE comparative sol. proj. (log scale).

Plot of the sol. (pressure), q = 1 upper right q = −1 lower left.
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Refinements and layers SPE50

We use 55 × 15 coarse elements and a reference mesh with
440 × 120 elements.
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We start the adaptive algorithm with one refinement and one
layer in all local problems. After three iterations in the algorithm
marking 30%.
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Convergence of Adaptive Algorithm

We compare error in energy norm with reference solution.
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• Critical areas are found
• A majority of the patches uses one layer and one

refinement.
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Convection Dominated Problem

−ǫ△u + ∇ · (bu) = f in Ω, u = 0 on ∂Ω,

where ǫ = 0.01, f = 1 lower left corner, b = [bx, bx], bx oscillates
between 0.01 and 1, 48 periods. Let H = 1/24, h = H/4 and
study relative error of mean compared to reference solution.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−3

10
−2

10
−1

10
0

10
1

Layers

R
el

iti
ve

 e
rr

or
 in

 o
ut

pu
t q

ua
nt

ity

Hierarchical split with continuous linear finite elements.
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Summary and Future Work

The AVMS provides:
• Systematic technique for construction of a computable

approximation of the fine scale part of the solution using
decoupled localized subgrid problems.

• A posteriori error estimation framework (also for goal
functionals)

• Adaptive algorithms for automatic tuning of critical
discretization parameters

Future work:
• Scale up numerics, parallel code, 3D.
• A priori error analysis, capture decay.
• Multiscale approach to the coupled transport-pressure

equation. (Time dependent problems Nordbotten 09)
• Tests on more realistic data, compare with other methods.
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