Adaptive Variational Multiscale Methods

Axel Målqvist

axel.malqvist@it.uu.se

Division of Scientific Computing Uppsala University

Outline and Papers

Outline

- Model problem, elliptic linear pde
- Variational multiscale method, symmetric version
- Derivation of proposed method, examples
- A posteriori error estimation
- Adaptivity
- Application to oil reservoir problem
- Convection dominated problem
- Future work

Papers

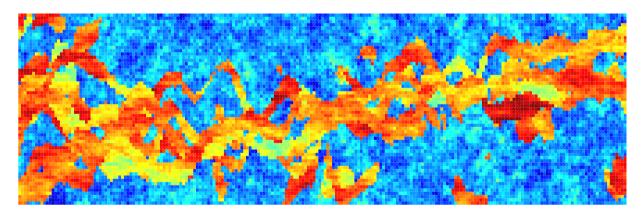
- M.G. Larson and A. Målqvist, Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Energy Norm Estimates for Elliptic Problems, CMAME 2007
- M.G. Larson and A. Målqvist, A Mixed Adaptive Variational Multiscale Method with Applications in Oil Reservoir Simulation M3AS 2009 (accepted)

Model Problem

Poisson equation: Find u such that

$$eglinear -
abla \cdot a
abla u = f \quad \text{in } \Omega,$$
 $u = 0 \quad \text{on } \partial \Omega,$

where $a(x) \ge a_0 > 0$ bounded, $f \in L^2(\Omega)$, and $\Omega \in \mathbf{R}^d$, d = 2, 3.

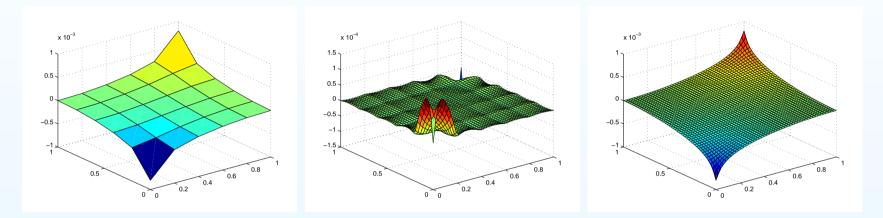


Weak form: Find $u \in \mathcal{V} = H_0^1(\Omega)$ such that

 $a(u,v) = (a\nabla u, \nabla v) = (f,v) = l(v)$ for all $v \in \mathcal{V}$.

Variational Multiscale Method: Hughes et. al. 95, 98

We split the space $\overline{\mathcal{V}_c \oplus \mathcal{V}_f} = \mathcal{V}$



- V_c is a finite dimensional approximation of V. (finite element space)
- \mathcal{V}_f can be chosen in different ways
 - Hierarchical basis
 - $\circ L^2(\Omega)$ -orthogonal to \mathcal{V}_c
 - Wavelet modified hierarchical basis

Symmetric Variational Multiscale Method

Starting from the model problem: find $u \in \mathcal{V}$ such that

a(u,v) = l(v) for all $v \in \mathcal{V}$

and setting

$$u = u_c + u_f \quad v = v_c + v_f$$

we get: find $u_c + u_f \in \mathcal{V}_c \oplus \mathcal{V}_f$ such that

 $a(u_c + u_f, v_c + v_f) = l(v_c + v_f)$ for all $v_c + v_f \in \mathcal{V}_c \oplus \mathcal{V}_f$

Note that $u_f \in \mathcal{V}_f$ satisfies the equation

$$a(u_f, v_f) = l(v_f) - a(u_c, v_f)$$
 for all $v_f \in \mathcal{V}_f$

Fine Scale Equations

Given the fine scale equation

$$a(u_f, v_f) = l(v_f) - a(u_c, v_f)$$
 for all $v_f \in \mathcal{V}_f$

we let $u_f = u_{f,l} + u_{f,c} \in \mathcal{V}_f$ with

$$a(u_{f,l}, v_f) = l(v_f)$$
 for all $v_f \in \mathcal{V}_f$
 $a(u_{f,c}, v_f) = -a(u_c, v_f)$ for all $v_f \in \mathcal{V}_f$

Let $\mathcal{T}: \mathcal{V}_c \to \mathcal{V}_f$ denote the solution operator $u_{f,c} = \mathcal{T}u_c$. We get

$$u = u_c + \mathcal{T}u_c + u_{f,l}$$
$$a(u_c + \mathcal{T}u_c + u_{f,l}, v_c + v_f) = l(v_c + v_f)$$

for all $v_c \in \mathcal{V}_c$ and $v_f \in \mathcal{V}_f$.

Coarse Scale Equations

Since $u_{f,l}$ is directly determined we get the following problem for u_c : find $u_c \in \mathcal{V}_c$ such that

 $a(u_c + \mathcal{T}u_c, v_c + \mathcal{T}v_c) = l(v_c + \mathcal{T}v_c) - a(u_{f,l}, v_c + \mathcal{T}v_c)$

for all $v_c \in \mathcal{V}_c$.

- Here we chose $v_f = T v_c$ to get a symmetric formulation
- Note that a((I + T)v_c, v_f) = 0 and l(v_f) a(u_{f,l}, v_f) = 0
 i.e. I + T decouples the problem. Any choice of v_f ∈ V_f is
 ok.
- In standard VMS $v_f = 0$ in this step and thus when approximating the local effects using numerical or analytical tools the resulting method usually gives non-symmetric matrix.

Approximation of Fine Scale Solutions

- Let $\tilde{\mathcal{T}}$ be a computable approximation of \mathcal{T}
- Let $U_{f,l}$ be a computable approximation of $u_{f,l}$

We get the method: find $U_c \in \mathcal{V}_c$ such that

$$a(U_c + \tilde{\mathcal{T}}U_c, v_c + \tilde{\mathcal{T}}v_c) = l(v_c + \tilde{\mathcal{T}}v_c) - a(U_{f,l}, v_c + \tilde{\mathcal{T}}v_c)$$

for all $v_c \in \mathcal{V}_c$. On matrix form this leads to,

$$\tilde{K}U_c = \tilde{b}$$

Given U_c , $U_{f,l}$, and $\tilde{\mathcal{T}}$, U_f can be computed.

Compare with [Hou et. al. 97] or [Arbogast 04] where basis functions are modified using local computations.

Construction of $\widetilde{\mathcal{T}}$

Recall that $u_c = \sum_i u_{c,i} N_{c,i}$ with $\{N_{c,i}\}$ as a basis in \mathcal{V}_c and let

$$a(\mathcal{T}N_{c,i}, v_f) = -a(N_{c,i}, v_f)$$
 for all $v_f \in \mathcal{V}_f$

By linearity

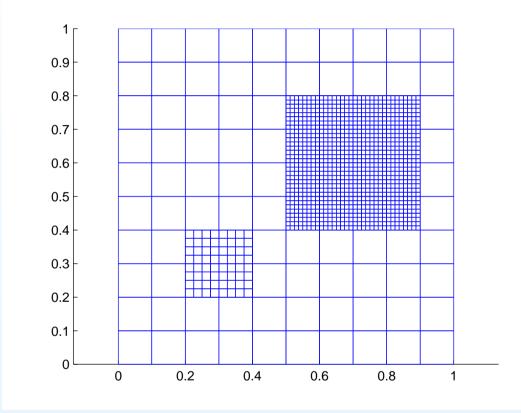
$$\mathcal{T}u_c = \sum_i u_{c,i} \mathcal{T}N_{c,i}$$

and thus we are led to computing $TN_{c,i}$ for each coarse basis function $N_{c,i}$.

We define $\tilde{\mathcal{T}}$ by solving these problems approximately by

- Restricting to a localized patch problem $supp(N_{c,i}) \subset \omega_i$
- Discretizing using a fine subgrid on ω_i

Refinement and Layers



We let H be coarse scale mesh size and h be fine scale mesh size. Further we let L denote the number of layers of coarse elements in the patch. Typically homogeneous Dirichlet boundary condition are used.

Construction of $U_{f,l}$

Recall that $u_{f,l} \in \mathcal{V}_f$ solves

$$a(u_{f,l}, v_f) = l(v_f)$$
 for all $v_f \in \mathcal{V}_f$

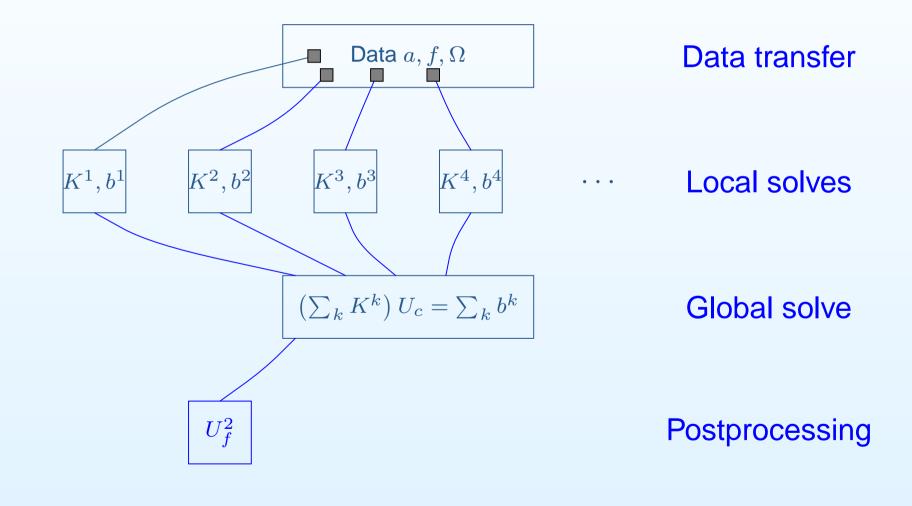
Using a partition of unity φ_i we can split the right hand side as follows $l(v_f) = \sum_i l(\varphi_i v_f)$ to get,

$$u_{f,l} = \sum_{i} u_{f,l,i}$$
$$u(u_{f,l,i}, v_f) = l(\varphi_i v_f)$$

Again we find an approximation by restricting to patches and discretizing the subgrid.

Parallel Structure

One local problem for each coarse dof, minimal communication.

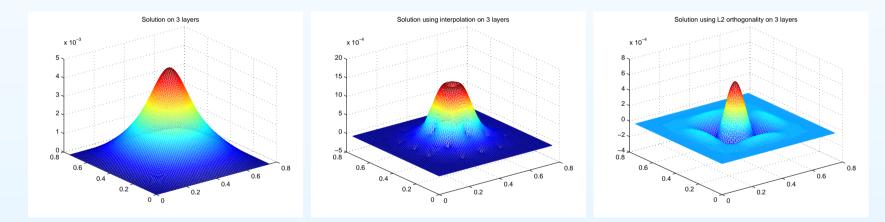


Simple Observation About Decay in \mathcal{V}_{f}

Consider,

$$-\Delta u = \varphi_i \quad \text{in } \Omega, \quad u = 0 \text{ on } \partial \Omega,$$

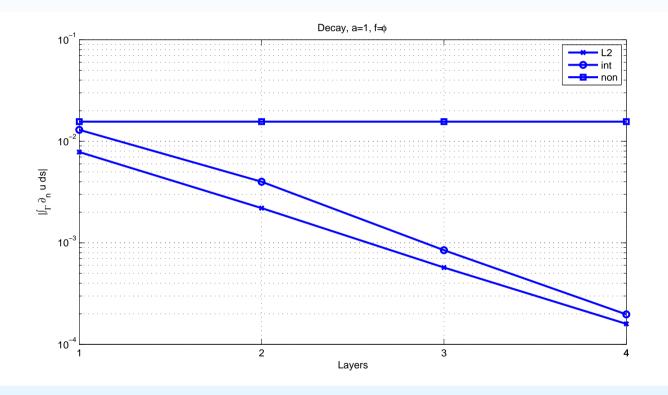
where φ_i has local support in center of Ω . The weak form reads: find $u \in \mathcal{W}$ s.t., $(\nabla u, \nabla v) = (\varphi_i, v)$ for all $v \in \mathcal{W}$.



To the left $\mathcal{W} = \mathcal{V}_c \oplus \mathcal{V}_f$, middle $\mathcal{W} = \mathcal{V}_f$ using hierarchical split, and right $\mathcal{W} = \mathcal{V}_f$ using L^2 -orthogonal split.

Simple Observation About Decay in \mathcal{V}_f

Decay of flux integrated over the boundary.

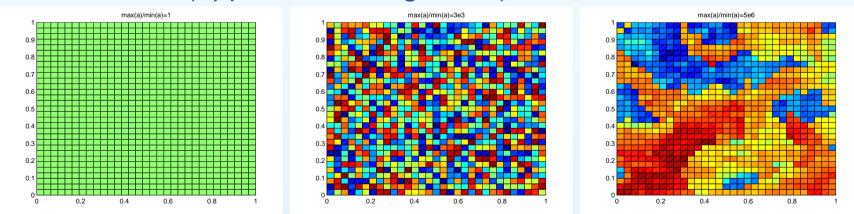


We see exponential decay with respect distance measured in nof coarse elements. This effect gives rapid convergence as the patch size increases. Application to a Mixed Problem

Poisson equation on mixed form:

$$\begin{aligned} \frac{1}{a}\boldsymbol{\sigma} - \nabla u &= 0 \quad \text{in } \Omega \\ -\nabla \cdot \boldsymbol{\sigma} &= f \quad \text{in } \Omega \\ n \cdot \boldsymbol{\sigma} &= 0 \quad \text{on } \Gamma \end{aligned}$$

where the permeability *a* is constant, random, or taken from the SPE data set (upperness in log-scale),



Splitting Based on RT-elements

We use lowest order RT basis functions together with piecewise constants.

- Let π_c is the RT-interpolant onto \mathcal{V}_c and P_c be the L^2 -projection onto W_c
- We define $\boldsymbol{\sigma} = \pi_c \boldsymbol{\sigma} + (I \pi_c) \boldsymbol{\sigma}$ and thus $\boldsymbol{\sigma}_f = (I \pi_c) \boldsymbol{\sigma} \in \mathcal{V}_f \quad \boldsymbol{\sigma}_c = \pi_c \boldsymbol{\sigma} \in \mathcal{V}_c.$
- Further we define $u = P_c u_c + (1 - P_c)u = u_c + u_f \in \mathcal{W}_c \oplus \mathcal{W}_f.$
- Thus we are using an L^2 -orthogonal splitting in the scalar variable.

Hierarchical split for lagrangian elements leads to nodal exactness in the coarse solution while here we get exactness of average values on coarse elements.

Some Terms Disappear

Find $\sigma_c \in \mathcal{V}_c$, $\sigma_f \in \mathcal{V}_f$, $u_c \in \mathcal{W}_c$, and $u_f \in \mathcal{W}_f$ such that,

$$\begin{cases} \left(\frac{1}{a}(\boldsymbol{\sigma}_{c}+\boldsymbol{\sigma}_{f}),\boldsymbol{v}_{c}+\boldsymbol{v}_{f}\right)+\left(u_{c}+u_{f},\nabla\cdot\left(\boldsymbol{v}_{c}+\boldsymbol{v}_{f}\right)\right)=0\\ -\left(\nabla\cdot\left(\boldsymbol{\sigma}_{c}+\boldsymbol{\sigma}_{f}\right),w_{c}+w_{f}\right)=\left(f,w_{c}+w_{f}\right)\\ \left(\frac{1}{a}\boldsymbol{\sigma}_{f},\boldsymbol{v}_{f}\right)+\left(u_{f},\nabla\cdot\boldsymbol{v}_{f}\right)=-\left(\frac{1}{a}\boldsymbol{\sigma}_{c},\boldsymbol{v}_{f}\right)-\left(u_{c},\nabla\cdot\boldsymbol{v}_{f}\right)\\ -\left(\nabla\cdot\boldsymbol{\sigma}_{f},w_{f}\right)=\left(f,w_{f}\right)+\left(\nabla\cdot\boldsymbol{\sigma}_{c},w_{f}\right)\end{cases}$$

for all $v_c \in \mathcal{V}_c$, $v_f \in \mathcal{V}_f$, $w_c \in \mathcal{W}_c$, and $w_f \in \mathcal{W}_f$.

Since for coarse elements *K*

$$(w_f, \nabla \cdot \boldsymbol{v}_c) = \sum_K \nabla \cdot \boldsymbol{v}_c \int_K w_f \, dx = 0,$$

 $(w_c, \nabla \cdot \boldsymbol{v}_f) = \sum_K w_c \int_K \nabla \cdot \boldsymbol{v}_f \, dx = \sum_K w_c \int_{\partial K} \boldsymbol{n} \cdot \boldsymbol{v}_f \, ds = 0.$

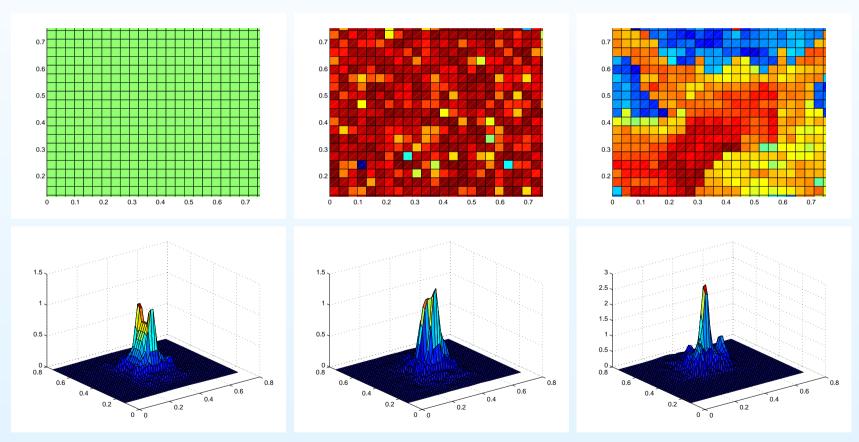
Approximate Fine Scales

$$\begin{pmatrix} (\frac{1}{a}\boldsymbol{\sigma}_f, \boldsymbol{v}_f) + (u_f, \nabla \cdot \boldsymbol{v}_f) = -(\frac{1}{a}\boldsymbol{\sigma}_c, \boldsymbol{v}_f) \\ -(\nabla \cdot \boldsymbol{\sigma}_f, w_f) = (f, w_f) \end{pmatrix}$$

- We apply the abstract framework
- Divide the fine scale problem into contributions from the coarse scale part σ_c and right hand side f
- Let $\sigma_c = \sum_i \sigma_{c,i} \phi_i$ where ϕ_i are the Raviart-Thomas basis functions. Solve the local problem driven by the basis functions (one problem for each basis function)
- Localize by restricting the problem to a patch and using homogeneous Neumann conditions
- Discretize using a suitable subgrid

Example of Local Solutions $\boldsymbol{\xi}_i = \mathcal{T} \boldsymbol{\phi}_i$

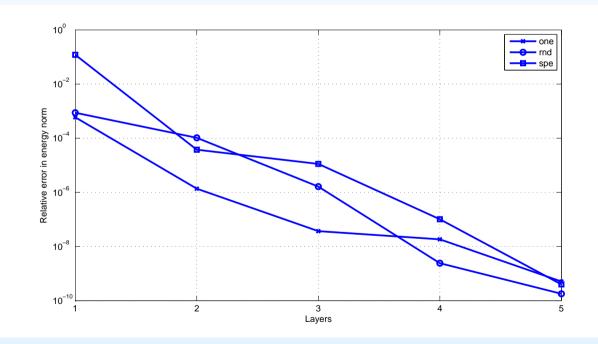
$$\begin{array}{l} (\frac{1}{a}\boldsymbol{\xi}_i, \boldsymbol{v}_f) + (\beta_i, \nabla \cdot \boldsymbol{v}_f) = -(\frac{1}{a}\boldsymbol{\phi}_i, \boldsymbol{v}_f) \\ -(\nabla \cdot \boldsymbol{\xi}_i, w_f) = 0. \end{array}$$



We use 3 layer patches and plot absolute value of the flux $|\xi_i|$.

Example of Convergence

- Reference mesh has 32×32 elements
- The coarse mesh has 8×8 elements.
- We let f = 1 lower left corner and f = -1 in upper right, otherwise f = 0.



Error compared to reference solution.

A Posteriori Error Estimate (mixed version, Neumann)

The following energy norm bound holds

$$\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_a^2 = \|\frac{1}{\sqrt{a}}(\boldsymbol{\sigma} - \boldsymbol{\Sigma})\|^2 \le C_a \sum_i \left(R_{\omega_i}^2 + R_{\partial\omega_i}^2\right)$$

where

$$R_{\omega_{i}}^{2} = \|\frac{1}{a} (\Sigma_{c}^{i} \phi_{i} + \Sigma_{f,i}) - \nabla U_{f,i}^{*}\|_{\omega_{i}}^{2} + \|\frac{h}{a} (f\psi_{i} + \nabla \cdot (\Sigma_{c}^{i} \phi_{i} + \Sigma_{f,i}))\|_{\omega_{i}}^{2} \\ + \sum_{K \in \omega_{i}} \|h^{-1/2} [U_{f,i}^{*}]\|_{\partial K}^{2} \\ R_{\partial \omega_{i}}^{2} = \|h^{-1/2} U_{f,i}^{*}\|_{\partial \omega_{i} \setminus \Gamma}^{2}$$

 U^* is a post processed version (Lovadina and Stenberg 06) of U, $C_a \sim \|\sqrt{a}\|_{L^{\infty}(\omega_i)}$.

Adaptive Strategy

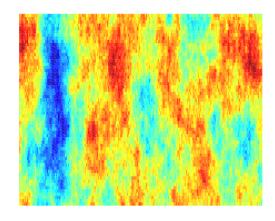
We have the error bound

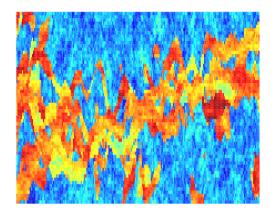
$$\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_a^2 \le C_a \sum_i \left(R_{\omega_i}^2 + R_{\partial \omega_i}^2\right)$$

- 1. Let h = H/2 and L = 1 for all i.
- 2. Compute the solution $\{U, \Sigma\}$.
- 3. Calculate residuals for each coarse RT basis functions.
- 4. Mark large entries.
- 5. For marked entries $R_{\omega_i}^2$ let h := h/2.
- 6. For marked entries $R^2_{\partial \omega_i}$ let L := L + 1.
- 7. Return to 1 or stop if estimators are small enough.

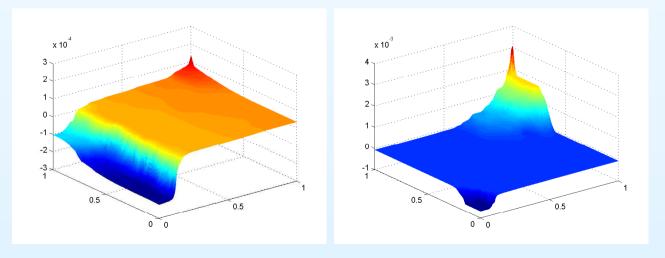
Adaptivity with Permeability from SPE Data Set

Layer 1 and 50 in the SPE comparative sol. proj. (log scale).



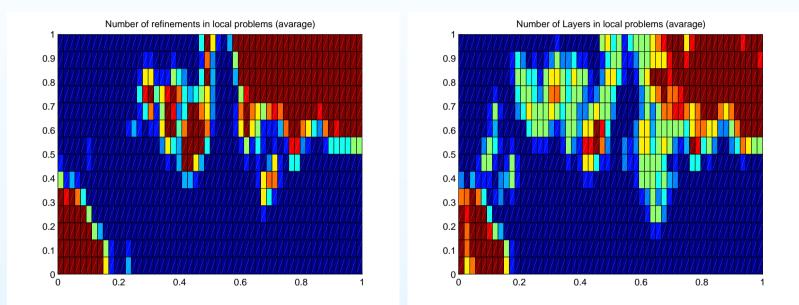


Plot of the sol. (pressure), q = 1 upper right q = -1 lower left.



Refinements and layers SPE50

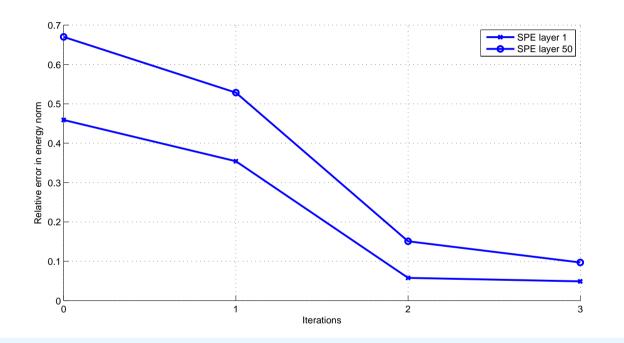
We use 55×15 coarse elements and a reference mesh with 440×120 elements.



We start the adaptive algorithm with one refinement and one layer in all local problems. After three iterations in the algorithm marking 30%.

Convergence of Adaptive Algorithm

We compare error in energy norm with reference solution.



- Critical areas are found
- A majority of the patches uses one layer and one refinement.

$$-\epsilon \bigtriangleup u + \nabla \cdot (bu) = f$$
 in Ω , $u = 0$ on $\partial \Omega$,

where $\epsilon = 0.01$, f = 1 lower left corner, $b = [b_x, b_x]$, b_x oscillates between 0.01 and 1, 48 periods. Let H = 1/24, h = H/4 and study relative error of mean compared to reference solution.



Hierarchical split with continuous linear finite elements.

ENUMATH 09, Uppsala, Sweden, 29 June 2009 - p. 26/27

Summary and Future Work

The AVMS provides:

- Systematic technique for construction of a computable approximation of the fine scale part of the solution using decoupled localized subgrid problems.
- A posteriori error estimation framework (also for goal functionals)
- Adaptive algorithms for automatic tuning of critical discretization parameters

Future work:

- Scale up numerics, parallel code, 3D.
- A priori error analysis, capture decay.
- Multiscale approach to the coupled transport-pressure equation. (Time dependent problems Nordbotten 09)
- Tests on more realistic data, compare with other methods.