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Motivation

Elliptic and parabolic problems on mixed form:

uw—V-o0=/f,
alo—Vu=0,

Arising e.g. in porous media flow problems, nearly elliptic
pressure coupled to nearly hyperbolic saturation equation.
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Challenges

Comments:
® mass conservation is important

* a good approximation of the flux o (rather than pressure) is
needed, since It is passed to the saturation equation

* Reliable solutions are difficult to compute because of the
multiscale coefficients

* Data is typically very localized in space
Conclusions:
* Mixed finite elements seems appropriate, e.g. RTN

* Adaptivity will be important because of the size of the
problems and the localized features

* A posteriori bound for the error in the flux (L? norm) is
therefore needed
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Previous work

Elliptic:
* Braess-Verfurth, Alonso, Carstensen 96-97, two spatial

dimensions and bound in mesh dependent norms and
H (div, ©2) norm of the flux

* Lovadina and Stenberg 2006, three dimensions and bound
in L?-norm of the flux

* Vohralik 2007, with local efficiency

Parabolic:

* Nochetto, Makridakis, Lakkis, Karakatsani, Akrivis, ...
2003—, elliptic reconstruction

* Cascon et. al. 2006, bound for the divergence of the flux in
a weak norm is derived

* Ern-Vohralik 2010, framework for a posteriori estimation
Including mixed methods
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Model problem: elliptic

Given a computational domain © € R? and functions a > 0 and
f (with zero mean), we seek ¢ and u such that,

2

%O‘-VUZO In ),
—V-.-o=f Inq,
v-o=0 onl,

_/\

Weak form: find
o € Ho(div,Q) = {w € H(div,Q):v-w=00nT} and u € L*(Q)
with zero mean such that,

(20,v) + (u,V-v) =0 forallve Hy(div,),
(=V-o,w) = (f,w) forallwe L*(Q),

where (-, -) is the L?(Q) scalar product.
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Finite element approximation

We let K be a discretization of 2 with hx = diam(K) for all
K € K and use k order Raviart-Thomas elements together with
the space of piecewise polynomials of degree &,

RT} C H()(diV, Q),
Pr C L*(9).

The finite element method reads: find X € R7, and U € Py
such that,

(1%,0) + (U, V-v)=0 forallve RTy,
(=V-X,w) = (f,w) forallw e Py.

The goal is to bound the error in the flux ||a='/2(c — X)||12(q) in
terms of computable quantities.
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Two technical results

In the proof two technical results are used:

Lemma: It holds,
lv - wlif-120x) S Wl La) + RV - wllZ2 (k)

for all w € H(div, K') with constant independent of hx. Prove the
result on a reference element followed by scaling argument.

Lemma: It holds,

inf Z 1@ — UHH1/2 oK) Z hx 1H HL2 OK)

Hl
ve Kek

for all @ such that Q| is polynomial. Here the jump denoted by
-] is the difference in function value over a face in the mesh.
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A posteriori error analysis

Forany Q € @y Pi(K), with I > 0 it holds,

la=2(0 = )220
D Bk + V- Slla ) + 1 = aVQITa () + b Q) 1720169
Kek

* Choosing ) = U gives a suboptimal bound (e.g. £ = 0 gives
VU|g = 0).

* A continuous () would eliminate the third term but may not
give an optimal bound.

* A discontinuous () can be chosen to eliminate the second
term (under appropriate assumptions on a) but may not
necessarily lead to an optimal bound.
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Postprocessing

There have been several works on post-processing of the
pressure variable in order to get optimal bounds.

In Lovadina and Stenberg’s paper Energy norm a posteriori
error estimates for mixed finite element methods from 2006 the
following construction is proven to give optimal bounds:

Definition: Let U* € @ < Pr+1(K) such that the projection on
each element K, P.U*|x is equal to U|x and,

(VU*,Vo)g = (a7 '8, Vu)g  forallv € (I — Py)Pry1(K).

la™2(0 = D)|I2q

S KN + V- El ey +I1Z = aVU a0 + b I U 1200

Kek |
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Comments

* We reproduce the Lovadina-Stenberg result as a corollary
* Valid for RTN and BDM elements
* Extended to the stabilized method of Masud-Hughes 2002

* |In Lovadina-Stenberg the method (using the postprocessed

U*) Is proven to be of optimal order for RTN and BDM
elements
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Model problem: parabolic

Given a computational domain © € R? and functions a > 0
(independent of time for simplicity), ug, and f with zero mean,
we seek ¢ and u such that,

( u—V-o=f inQ, t>0,
alo—Vu=0 inQ, t>0,
v-o=0 onl, t>0,
u=1ug INQ, t=0,

\

for 0 <t < T. The corresponding weak form reads: for each
t >0, find o(t) € Ho(div,Q), u(t) € L?(2) with mean zero such
that,

(a™to,v) + (u,V-v) =0 forallve Hy(div,Q),
(4, w) — (V-o,w) = (f,w) forallwe L*(Q),
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Discretization in space and time

We let K be a discretization of €} and again consider the k£ order
Raviart-Thomas space together with piecewise polynomials of
degree k,

RT C H()(diV, Q),
Pr C L2(Q).
In time we discretize a finite interval |0, 7' by letting

0=ty <t <--- <ty =T with corresponding time steps
Tn =tp —th—1forn=1,... N.

We let v = t_i—"‘lvn—kt?;—_tv”_l,forn: 1,...,N.

We use the Backward Euler method in time and let

n n—1
n __ UV —U _
at/v I Tn 7 n_ 170007N-
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Finite element approximation

With this notation the numerical method reads: find vy € P, and
op € RTforn=1,...,N, such that,

(a”to),v) = (Vug,v), forallve RTy,
(uy, w) = (ug,w), forallw € Py,
and,

(a"top,v) + (up, V-v) =0, forallve RTy,
(Opup,w) — (V-op,w) = (f*,w), forallw e Py.

Again we wish to control the flux in L?(Q2) norm,
fOT la=1/2 (0 — E)H%z(m dt, in terms of computable quantities,
using the result we have for the corresponding elliptic problem.
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Elliptic reconstruction

Let w™,n"™ be the elliptic reconstruction of o7, v} defined by: find
w™,n"™ with [, n™ dz = 0 such that

([ V.w'=-V-o} inQ,
{ a W —-Vn"=0 inQ,
v-w'=0 onl.

\

The problem is well posed in Hy(div, Q) x L?(Q) since
fQV-UZd:U: fru-agds:O.

The elliptic reconstruction is defined in such a way that {o7’, u} }

are precisely the finite element approximation of {w",n™}, using
RT . and P elements.
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Bound for the elliptic reconstruction

Lemma: Let {w", 7"} be the elliptic reconstruction of {o}’, u} }.
Then

la='/?(w" — o}, HL2 Z pic(oh,up™),
Kek,
Hﬁzn(n _uh >HL2 )5 Z h%(ap%((ﬁ O-haam n*)v m:()ala
KeK,

forn=1,...,N. Where

p%(?),’d]) — HCL_lv — va%Q(K) -+ h[_(lu[UJ]H%Q(aK))

and 1/2 < a < 1 is the regularity parameter of the corresponding
elliptic problem (o« = 1 on convex domain with a, f smooth
enough).
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Error analysis

We split the error using the elliptic reconstruction:

e=u—uj=(u—1n)+(n—uj) = e +es,

EI(O—w)+(w—0h):81+82.

Second part:

la=1 el 120) < lla™ (W™ = o)l L2y + la™ 2 (W™ = 37 ll2(@)

1/2 1/2
5(2 p%a;:,uz’*)) +(z p%<<azl,uzl’*>> |

KeK, Kex,

fort € (t,—1,tn] Wheren =1,..., N. Thus

T
Lw%Md%Yiwww”

n=1 KeK,
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Error analysis

We split the error using the elliptic reconstruction:

e=u—uy=(u—n)+{n—uy) =e +ey

EZ(O'—CU)—I—(CU—O'}L):El—I—gg.

First part:
(€1,v) = (V- e1,v) = (f,v) = (,0) + (V- w,v)
= (" v) = (g, v) + (V- o3, )
+(f = f%0) = (7 = dg,v) + (V- (w —03),0),

If we let v = e; we get an energy norm bound for the error in the
first component.

We will now bound the error in 1 using the error in the bound for
the reconstruction errors n — u; and w — oy,
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Error analysis cont.

For term | we get,

1 .
eIy + [ o™ a1l

1 n . % n n
5\’u0—770’\%2(9)—2/ (Up, =V -op — [T e1)dt

N o, N o,
£ [T rena =Y [ G- e
n=1"Ytn-1 n=1"tn-1
N t,
— Z/ (w—o0p,Vey)dt
n=1 bn—1

We get classical residual terms and elliptic reconstruction terms.
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Error analysis cont.

Using the Lemma, Cauchy-Schwarz inequality, Galerkin
orthogonality, and interpolation estimates, we get

_F 2{: h%?p%'oﬁvuh )
Kex,

T
/0 la=Y 21 |22 0 dt S [l

+Y > mhk|Oay™ =V - op — ik

n=1 KeK,

2 2 n,*
+‘§;\ j;: Tnhégpkfé%O%}é%uh )
n=1 KeK,

N N
+ 3 000 e + S / 1 = )20 dt
n=1 n=1"Y*‘*n—-1
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A posteriori error bound

The final bound reads:

/ la=Y2(0 — o3 2agen dt S o — w2 Zay + 3 B30 (00 ud")

KeK,

N
—|—S: S: Tnh%{H@tuZ’*—V-a{f—f”H%z(K)

n=1 K€k,
N

+> > Tpk(oh,up™) +Y > Tahilpk (Oror. Beuy”)
n=1 K€K, n=1KeK,

N N t.
3 00 ey + Y / 1 = £ 2yt
n=1 n=1"Y‘'n—1
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Remarks

The error bound presented consists of seven terms.

* Two terms measuring the effect of the discrepancy between
Initial condition and its approximation

* the following three terms measures the error committed by
the spatial discretization

* term six measures the effect of time discretization

* term seven measures the effect of approximating the right
hand side f in discrete points in time.

The bound is of a similar form as the bound presented by Lakkis
and Makridakis 2006, where backward Euler was used for the
heat equation on standard form.
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Improvements and future work

We have presented a posteriori bounds in energy norm for
elliptic and parabolic model problems on mixed form.

* The coefficient ¢ can easily be made time dependent at the
cost of an additional data error in the estimate.

* We have only considered a static mesh. A natural extension
would be to allow different meshes at different time
Intervals. Coarsening will become crucial.

* Higher order approximation in time.
* Include convection.
* Numerical tests of the adaptive algorithm.

* Multiscale basis functions and extending the analysis to the
setting.
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