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Motivation: simulation of paper/paperboard
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A simplified spatial network model: Ku = f , where u is
displacement and f is applied force
K is ill-conditioned (geometry and material data variation),
direct solver used by Fraunhofer
The goal is to develop and analyze an iterative solver
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Graph Laplacian and norms
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Let G = (N ,E) be a graph of nodes and edges, x ∈ Ω ⊂ Rd

Let V̂ : N → R be scalar functions on N . For v ,w ∈ V̂

(v ,w) =
∑

x

v(x)w(x)

(Lgv , v) =
∑

(x,y)∈E

(v(x) − v(y))2

(Lv , v) =
∑

(x,y)∈E

(v(x) − v(y))2

|x − y |

|v |L = (Lv , v)1/2

Example:

1

3

4

2

Lg =


2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1


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
Let M be diagonal with Mxx = 1

2

∑
y∼x |x − y |, |v |M = (Mv , v)1/2

|v |L corresponds to the H1 semi-norm in P1-FEM and M to the
lumped mass matrix (L2-norm)



Model problem
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Find u ∈ V := {v ∈ V̂ : v(x) = 0 for x ∈ ΓD}:

(Ku, v) = (f , v), v ∈ V .

Assume: (K ·, ·) is scalar product on V and

α|v |2L ≤ (Kv , v) ≤ β|v |2L , ∀v ∈ V .



Model problem

Målqvist (Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Fraunhofer Chalmers Centre)Iterative solution of spatial network models 2023-09-04 5 / 17

Find u ∈ V := {v ∈ V̂ : v(x) = 0 for x ∈ ΓD}:

(Ku, v) = (f , v), v ∈ V .

Assume: (K ·, ·) is scalar product on V and

α|v |2L ≤ (Kv , v) ≤ β|v |2L , ∀v ∈ V .

Example:

(Kv , v) =
∑

(x,y)∈E

γxy
(v(x) − v(y))2

|x − y |
, α ≤ γxy ≤ β

1D diffusion model on network with continuity and Kirchhoff
flux constraint in junctions with P1-FEM
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Geometric coarsening
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TH is a mesh of squares
V̂H is Q1-FEM with basis {φy}y

VH ⊂ V̂H satisfy the boundary conditions
Clément type interpolation operator

IHv =
∑

free DoFs y

v̄U(y)φy ∈ VH

Lemma (Stability and approximability of IH)
For all v ∈ V and for H > R0,

H−1|v − IHv |M + |IHv |L ≤ C |v |L ,

where C = Cdµ
√
σ.



Network homogeneity and connectivity
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Let BH(x) be a box at x of side length 2H, with H ≥ R0.
1 Limited mass variation

1 ≤
maxx |1|2M,BH(x)

minx |1|2M,BH(x)

≤ σ(R0)

2 The Poincaré-type inequality

|v − v̄ |M,BH ≤ µ(R0)H|v |L ,BH+R0
, ∀v ∈ V̂

Algebraic connectivity:a

L ′ϕ = λM′ϕ, λ1 = 0, λ2 = (µH)−2.

aCheeger 1970, Fiedler 1973,
Chung, Spectral graph theory, AMS, 1997



Example: Connectivity λ−1/2
2 ≈ µH
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Finite length fibers r = 0.05 and |1|2M = 1000, Ω = [0, 1]2

H varies from 2−2 to 2−6. Here R0 ∼ 2−6.



Subspace decomposition preconditioner1

1Kornhuber & Yserentant, MMS, 2016
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Let V0 = VH and

Vj = V(U(yj)), j = 1, . . . ,m.

Define projections Pj : V → Vj by

(KPjv , vj) = (Kv , vj), ∀vj ∈ Vj ⊂ V .

We add the projections to form

P = P0 + P1 + · · ·+ Pm.

BKu = Bf , with preconditioner P = BK
Preconditioned conjugate gradient method.
Semi-iterative: direct method on decoupled problems



Convergence analysis
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Lemma (Spectral bound of P)
For H > 2R0 it holds

C−1
1 |v |

2
K ≤ (KPv , v) ≤ C2|v |2K , ∀v ∈ V ,

where C1 = Cdβα
−1σµ2 and C2 = Cd .

Interpolation bound is a crucial component of the proof.

Theorem (Convergence of PCG)
With κ = C1C2 and H > 2R0 it holds

|u − u(ℓ)|K ≤ 2
( √
κ − 1
√
κ + 1

)ℓ
|u − u(0)|K .
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Example: Convergence graph Laplacian

Målqvist (Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Fraunhofer Chalmers Centre)Iterative solution of spatial network models 2023-09-04 13 / 17

Ku = M1, (Kv , v) =
∑

x∼y γxy
((v(x)−v(y))2

|x−y | , u|∂Ω = 0 , |1|2M = 1000.

Grid γ = 1 (left), rand γ = 1 (center), rand γ ∈ U([0.1, 1]) (right)



Example: A fibre network model2

2Görtz et. al. Network models for predicting structural properties of paper,
Nordic Pulp and Paper 2022
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2 · 104 fibres, biased angle (x-axis), length 0.05, 3 · 105 nodes.
Two forces in the model: edge extension and angular deviation.
Find displacement u: Ku = f (tensile, distributed load)
DD with H = 1/4, 1/8, 1/16, 1/32.



Example: A fibre network model
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Conclusions
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Efficient preconditioner when network resembles a
homogeneous material on coarse scales H > 2R0

Direct solver on fine scales (localized, in parallell)
Poincaré type inequality plays a crucial role in the analysis
Algebraic coarsening algorithms are useful (cardboard)

Görtz-Hellman-M., Iterative solution of spatial network models by subspace
decomposition, Math. Comp. 2023 (online)


