Iterative solution of spatial network models by subspace decomposition

Axel Målqvist

Morgan Görtz and Fredrik Hellman

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg
Fraunhofer Chalmers Centre
2023-09-04

Motivation: simulation of paper/paperboard

- A simplified spatial network model: $K u=f$, where u is displacement and f is applied force
- K is ill-conditioned (geometry and material data variation), direct solver used by Fraunhofer
- The goal is to develop and analyze an iterative solver

Outline

(1) Notation and model problem
(2) Coarsening and multilevel solver
(3) Numerical examples
(a) Conclusions

Graph Laplacian and norms

- Let $\mathcal{G}=(\mathcal{N}, \mathcal{E})$ be a graph of nodes and edges, $x \in \Omega \subset \mathbb{R}^{d}$
- Let $\hat{V}: \mathcal{N} \rightarrow \mathbb{R}$ be scalar functions on \mathcal{N}. For $v, w \in \hat{V}$

$$
\begin{aligned}
(v, w) & =\sum_{x} v(x) w(x) \\
\left(L^{g} v, v\right) & =\sum_{(x, y) \in \mathcal{E}}(v(x)-v(y))^{2} \\
(L v, v) & =\sum_{(x, y) \in \mathcal{E}} \frac{(v(x)-v(y))^{2}}{|x-y|} \\
|v|_{L} & =(L v, v)^{1 / 2}
\end{aligned}
$$

Example:

$$
L^{g}=\left(\begin{array}{cccc}
2 & -1 & -1 & 0 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 3 & -1 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

Graph Laplacian and norms

- Let $\mathcal{G}=(\mathcal{N}, \mathcal{E})$ be a graph of nodes and edges, $x \in \Omega \subset \mathbb{R}^{d}$
- Let $\hat{V}: \mathcal{N} \rightarrow \mathbb{R}$ be scalar functions on \mathcal{N}. For $v, w \in \hat{V}$

$$
\begin{aligned}
(v, w) & =\sum_{x} v(x) w(x) \\
\left(L^{g} v, v\right) & =\sum_{(x, y) \in \mathcal{E}}(v(x)-v(y))^{2} \\
(L v, v) & =\sum_{(x, y) \in \mathcal{E}} \frac{(v(x)-v(y))^{2}}{|x-y|} \\
|v|_{L} & =(L v, v)^{1 / 2}
\end{aligned}
$$

Example:

$$
L^{g}=\left(\begin{array}{cccc}
2 & -1 & -1 & 0 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 3 & -1 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

- Let M be diagonal with $M_{x x}=\frac{1}{2} \sum_{y \sim x}|x-y|,|v|_{M}=(M v, v)^{1 / 2}$
- $|v|_{L}$ corresponds to the H^{1} semi-norm in P1-FEM and M to the lumped mass matrix (L^{2}-norm)

Model problem

Find $u \in V:=\left\{v \in \hat{V}: v(x)=0\right.$ for $\left.x \in \Gamma_{D}\right\}:$

$$
(K u, v)=(f, v), \quad v \in V .
$$

Assume: $(K \cdot, \cdot)$ is scalar product on V and

$$
\alpha|v|_{L}^{2} \leq(K v, v) \leq \beta \mid v v_{L}^{2}, \quad \forall v \in V .
$$

Model problem

Find $u \in V:=\left\{v \in \hat{V}: v(x)=0\right.$ for $\left.x \in \Gamma_{D}\right\}$:

$$
(K u, v)=(f, v), \quad v \in V .
$$

Assume: $(K \cdot, \cdot)$ is scalar product on V and

$$
\alpha|v|_{L}^{2} \leq(K v, v) \leq \beta \mid v v_{L}^{2}, \quad \forall v \in V .
$$

Example:

$$
(K v, v)=\sum_{(x, y) \in \mathcal{E}} \gamma_{x y} \frac{(v(x)-v(y))^{2}}{|x-y|}, \quad \alpha \leq \gamma_{x y} \leq \beta
$$

- 1D diffusion model on network with continuity and Kirchhoff flux constraint in junctions with P1-FEM

Outline

(1) Notation and model problem
(2) Coarsening and multilevel solver
(3) Numerical examples
(1) Conclusions

Geometric coarsening

- \mathcal{T}_{H} is a mesh of squares
- \hat{V}_{H} is Q1-FEM with basis $\left\{\varphi_{y}\right\}_{y}$
- $V_{H} \subset \hat{V}_{H}$ satisfy the boundary conditions
- Clément type interpolation operator

$$
\mathcal{I}_{H} v=\sum_{\text {free DoFs } y} \bar{v}_{U(y)} \varphi_{y} \in V_{H}
$$

Lemma (Stability and approximability of I_{H})

For all $v \in V$ and for $H>R_{0}$,

$$
H^{-1}\left|v-I_{H} v\right|_{M}+\left|I_{H} v\right|_{L} \leq C|v|_{L},
$$

where $C=C_{d} \mu \sqrt{\sigma}$.

Network homogeneity and connectivity

Let $B_{H}(x)$ be a box at x of side length $2 H$, with $H \geq R_{0}$.
(1) Limited mass variation

$$
1 \leq \frac{\max _{x}|1|_{M, B_{H}(x)}^{2}}{\min _{x}|1|_{M, B_{H}(x)}^{2}} \leq \sigma\left(R_{0}\right)
$$

(2) The Poincaré-type inequality

$$
|v-\bar{v}|_{M, B_{H}} \leq \mu\left(R_{0}\right) H|v|_{L, B_{H+R_{0}}}, \quad \forall v \in \hat{V}
$$

Algebraic connectivity: ${ }^{2}$
$L^{\prime} \phi=\lambda M^{\prime} \phi, \lambda_{1}=0, \lambda_{2}=(\mu H)^{-2}$.
${ }^{\text {a }}$ Cheeger 1970, Fiedler 1973,
Chung, Spectral graph theory, AMS, 1997

Example: Connectivity $\lambda_{2}^{-1 / 2} \approx \mu \mathrm{H}$

Finite length fibers $r=0.05$ and $|1|_{M}^{2}=1000, \Omega=[0,1]^{2}$

H varies from 2^{-2} to 2^{-6}. Here $R_{0} \sim 2^{-6}$.

Subspace decomposition preconditioner ${ }^{1}$

Let $V_{0}=V_{H}$ and

$$
V_{j}=V\left(U\left(y_{j}\right)\right), \quad j=1, \ldots, m .
$$

Define projections $P_{j}: V \rightarrow V_{j}$ by

$$
\left(K P_{j} v, v_{j}\right)=\left(K v, v_{j}\right), \quad \forall v_{j} \in V_{j} \subset V .
$$

We add the projections to form

$$
P=P_{0}+P_{1}+\cdots+P_{m}
$$

- $B K u=B f$, with preconditioner $P=B K$
- Preconditioned conjugate gradient method.
- Semi-iterative: direct method on decoupled problems

Convergence analysis

Lemma (Spectral bound of P)

For $\mathrm{H}>2 R_{0}$ it holds

$$
C_{1}^{-1}|v|_{K}^{2} \leq(K P v, v) \leq C_{2}|v|_{K}^{2}, \quad \forall v \in V,
$$

where $C_{1}=C_{d} \beta \alpha^{-1} \sigma \mu^{2}$ and $C_{2}=C_{d}$.
Interpolation bound is a crucial component of the proof.

Theorem (Convergence of PCG)

With $\kappa=C_{1} C_{2}$ and $H>2 R_{0}$ it holds

$$
\left|u-u^{(\ell)}\right|_{K} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{\ell}\left|u-u^{(0)}\right|_{\kappa}
$$

Outline

(1) Notation and model problem
(2) Coarsening and multilevel solver
(0) Numerical examples
(1) Conclusions

Example: Convergence graph Laplacian

$K u=M 1,(K v, v)=\sum_{x-y} \gamma_{x y} \frac{\left((v(x)-v(y))^{2}\right.}{|x-y|},\left.u\right|_{\partial \Omega}=0,|1|_{M}^{2}=1000$.

Grid $\gamma=1$ (left), rand $\gamma=1$ (center), rand $\gamma \in U([0.1,1])$ (right)

Example: A fibre network model²

- $2 \cdot 10^{4}$ fibres, biased angle (x-axis), length $0.05,3 \cdot 10^{5}$ nodes.
- Two forces in the model: edge extension and angular deviation.
- Find displacement u : $K u=f$ (tensile, distributed load)
- DD with $H=1 / 4,1 / 8,1 / 16,1 / 32$.

[^0]
Example: A fibre network model

Outline

(1) Notation and model problem
(2) Coarsening and multilevel solver
(- Numerical examples
(0) Conclusions

Conclusions

- Efficient preconditioner when network resembles a homogeneous material on coarse scales $H>2 R_{0}$
- Direct solver on fine scales (localized, in parallell)
- Poincaré type inequality plays a crucial role in the analysis
- Algebraic coarsening algorithms are useful (cardboard)

Görtz-Hellman-M., Iterative solution of spatial network models by subspace decomposition, Math. Comp. 2023 (online)

[^0]: ${ }^{2}$ Görtz et. al. Network models for predicting structural properties of paper, Nordic Pulp and Paper 2022

