Iterative solution of spatial network models by subspace decomposition

Axel Målqvist

Morgan Görtz and Fredrik Hellman

Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Fraunhofer Chalmers Centre

Motivation: simulation of paper/paperboard

- A simplified spatial network model: *Ku* = *f*, where *u* is displacement and *f* is applied force
- *K* is ill-conditioned (geometry and material data variation), direct solver used by Fraunhofer
- The goal is to develop and analyze an iterative solver

Notation and model problem

- Ocarsening and multilevel solver
- Numerical examples

Conclusions

Graph Laplacian and norms

Let G = (N, E) be a graph of nodes and edges, x ∈ Ω ⊂ ℝ^d
Let V : N → ℝ be scalar functions on N. For v, w ∈ V

Graph Laplacian and norms

Let G = (N, E) be a graph of nodes and edges, x ∈ Ω ⊂ ℝ^d
Let Ŷ : N → ℝ be scalar functions on N. For v, w ∈ Ŷ

- Let *M* be diagonal with $M_{xx} = \frac{1}{2} \sum_{y \sim x} |x y|, |v|_M = (Mv, v)^{1/2}$
- |v|_L corresponds to the H¹ semi-norm in P1-FEM and M to the lumped mass matrix (L²-norm)

Model problem

Find
$$u \in V := \{v \in \hat{V} : v(x) = 0 \text{ for } x \in \Gamma_D\}$$
:

$$(Ku, v) = (f, v), v \in V.$$

Assume: $(K \cdot, \cdot)$ is scalar product on V and

 $\alpha |\mathbf{v}|_{L}^{2} \leq (K\mathbf{v}, \mathbf{v}) \leq \beta |\mathbf{v}|_{L}^{2}, \quad \forall \mathbf{v} \in \mathbf{V}.$

Model problem

Find
$$u \in V := \{v \in \hat{V} : v(x) = 0 \text{ for } x \in \Gamma_D\}$$
:

$$(Ku, v) = (f, v), v \in V.$$

Assume: $(K \cdot, \cdot)$ is scalar product on V and

$$\alpha |\mathbf{v}|_{L}^{2} \leq (K\mathbf{v}, \mathbf{v}) \leq \beta |\mathbf{v}|_{L}^{2}, \quad \forall \mathbf{v} \in \mathbf{V}.$$

Example:

٩

$$(Kv, v) = \sum_{(x,y)\in\mathcal{E}} \gamma_{xy} \frac{(v(x) - v(y))^2}{|x - y|}, \quad \alpha \leq \gamma_{xy} \leq \beta$$

 1D diffusion model on network with continuity and Kirchhoff flux constraint in junctions with P1-FEM

5/17

Notation and model problem

Coarsening and multilevel solver

Numerical examples

Conclusions

Geometric coarsening

- \mathcal{T}_H is a mesh of squares
- \hat{V}_H is Q1-FEM with basis $\{\varphi_y\}_y$
- $V_H \subset \hat{V}_H$ satisfy the boundary conditions
- Clément type interpolation operator

$$\mathcal{I}_{H} \mathbf{v} = \sum_{\text{free DoFs } \mathbf{y}} \bar{\mathbf{v}}_{U(\mathbf{y})} \varphi_{\mathbf{y}} \in V_{H}$$

Lemma (Stability and approximability of I_H)

For all $v \in V$ and for $H > R_0$,

$$H^{-1}|\mathbf{v}-\mathcal{I}_H\mathbf{v}|_M+|\mathcal{I}_H\mathbf{v}|_L\leq C|\mathbf{v}|_L,$$

where $C = C_{d\mu} \sqrt{\sigma}$.

Network homogeneity and connectivity

- Let $B_H(x)$ be a box at x of side length 2H, with $H \ge R_0$.
 - Limited mass variation

$$1 \leq \frac{\max_{x} |1|_{M,B_{H}(x)}^{2}}{\min_{x} |1|_{M,B_{H}(x)}^{2}} \leq \sigma(R_{0})$$

The Poincaré-type inequality

$$|v - \bar{v}|_{M,B_H} \leq \mu(R_0)H|v|_{L,B_{H+R_0}}, \quad \forall v \in \hat{V}$$

Algebraic connectivity:^{*a*} $L'\phi = \lambda M'\phi, \lambda_1 = 0, \lambda_2 = (\mu H)^{-2}.$

^aCheeger 1970, Fiedler 1973, Chung, Spectral graph theory, AMS, 1997

Example: Connectivity $\lambda_2^{-1/2} \approx \mu H$

Finite length fibers r = 0.05 and $|1|_{M}^{2} = 1000$, $\Omega = [0, 1]^{2}$

H varies from 2^{-2} to 2^{-6} . Here $R_0 \sim 2^{-6}$.

Subspace decomposition preconditioner¹

Let $V_0 = V_H$ and

$$V_j = V(U(y_j)), \quad j = 1, \ldots, m.$$

Define projections $P_j: V \to V_j$ by

$$(KP_jv, v_j) = (Kv, v_j), \quad \forall v_j \in V_j \subset V.$$

We add the projections to form

$$P=P_0+P_1+\cdots+P_m.$$

- BKu = Bf, with preconditioner P = BK
- Preconditioned conjugate gradient method.
- Semi-iterative: direct method on decoupled problems

¹Kornhuber & Yserentant, MMS, 2016

Lemma (Spectral bound of P)

For $H > 2R_0$ it holds

$$C_1^{-1}|v|_K^2 \leq (KPv, v) \leq C_2|v|_K^2, \quad \forall v \in V,$$

where $C_1 = C_d \beta \alpha^{-1} \sigma \mu^2$ and $C_2 = C_d$.

Interpolation bound is a crucial component of the proof.

Theorem (Convergence of PCG)

With $\kappa = C_1 C_2$ and $H > 2R_0$ it holds

$$|u-u^{(\ell)}|_{\mathcal{K}} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{\ell}|u-u^{(0)}|_{\mathcal{K}}.$$

- Notation and model problem
- Ocarsening and multilevel solver
- Numerical examples
- Conclusions

Example: Convergence graph Laplacian

$$Ku = M1, (Kv, v) = \sum_{x \sim y} \gamma_{xy} \frac{((v(x) - v(y)))^2}{|x - y|}, \ u|_{\partial\Omega} = 0, \ |1|_M^2 = 1000.$$

Grid $\gamma = 1$ (left), rand $\gamma = 1$ (center), rand $\gamma \in U([0.1, 1])$ (right)

Example: A fibre network model²

- $2 \cdot 10^4$ fibres, biased angle (*x*-axis), length 0.05, $3 \cdot 10^5$ nodes.
- Two forces in the model: edge extension and angular deviation.
- Find displacement u: Ku = f (tensile, distributed load)
- DD with H = 1/4, 1/8, 1/16, 1/32.

²Görtz et. al. Network models for predicting structural properties of paper, Nordic Pulp and Paper 2022

Example: A fibre network model

- Notation and model problem
- Ocarsening and multilevel solver
- Numerical examples

Conclusions

- Efficient preconditioner when network resembles a homogeneous material on coarse scales H > 2R₀
- Direct solver on fine scales (localized, in parallell)
- Poincaré type inequality plays a crucial role in the analysis
- Algebraic coarsening algorithms are useful (cardboard)

Görtz-Hellman-M., *Iterative solution of spatial network models by subspace decomposition*, Math. Comp. 2023 (online)