Generalized Finite Element Methods

Axel Målqvist¹ Daniel Peterseim and Fredrik Hellman

16th European Finite Element Fair

University of Heidelberg

2018-06-08

¹Chalmers University of Technology and University of Gothenburg

Målqvist

Generalized Finite Element Methods

Elliptic model problem

The Poisson equation

$$-\nabla \cdot (\mathbf{A} \nabla u) = f$$
 in Ω $u = 0$ on $\partial \Omega$

with data $0 < \alpha \leq A \leq \beta < \infty$ and $f \in L^2(\Omega)$.

Elliptic model problem

FEM: $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (A \nabla u_h) \cdot \nabla v \, dx = \int_{\Omega} f \cdot v \, dx$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

Numerical error (piecewise linear continuous FE approximation)

• For solution $u \in H^2(\Omega)$ we have for ϵ -periodic $A = A(x/\epsilon)$

$$|||u-u_h||| := ||A^{1/2}\nabla(u-u_h)||_{L^2(\Omega)} \sim C(\alpha,\beta)\frac{h}{\epsilon},$$

Can we do better?

Decomposition of scales

- (coarse) P1-FE space $V_H \subset V$ so H > h
- $\mathfrak{I}_H: V \to V_H$ some FE interpolation operator

Decomposition

$$V = V_H \oplus V^f$$
 with $V^f := \text{kernel } \mathfrak{I}_H = \{v \in V \mid \mathfrak{I}_H v = 0\}$

Decomposition of scales

- (coarse) P1-FE space $V_H \subset V$ so H > h
- $\mathfrak{I}_H: V \to V_H$ some FE interpolation operator

Decomposition

$$V = V_H \oplus V^f$$
 with $V^f := \text{kernel } \mathfrak{I}_H = \{v \in V \mid \mathfrak{I}_H v = 0\}$

Let $\mathcal{R}_H : V \to V_H$ (Ritz projection) and $\mathcal{R}^f : V \to V^f$ fulfill

$$a(\mathcal{R}_H u, v) = a(u, v) \quad \forall v \in V_H, \ a(\mathcal{R}^f u, v) = a(u, v) \quad \forall v \in V^f.$$

 $a(V_H, V^f) \neq 0$ but $a(V - \mathcal{R}^f V, V^f) = a(V_H - \mathcal{R}^f V_H, V^f) = 0$

Decomposition of scales

- (coarse) P1-FE space $V_H \subset V$ so H > h
- $\mathfrak{I}_H: V \to V_H$ some FE interpolation operator

a-Orthogonal Decomposition

$$V = V_H^{ms} \oplus V^{f}$$
 with $V_H^{ms} := (V_H - \mathcal{R}^f V_H)$

Let $\mathcal{R}_{H}^{ms}: V \to V_{H}^{ms}$ (multiscale projection) and $\mathcal{R}^{f}: V \to V^{f}$ fulfill

$$a(\mathcal{R}_{H}^{ms}u,v) = a(u,v) \quad \forall v \in V_{H}^{ms}, \ a(\mathcal{R}^{f}u,v) = a(u,v) \quad \forall v \in V^{f}.$$

 $a(V_H^{\mathrm{ms}}, V^{\mathrm{f}}) = 0$: $u = \mathcal{R}_H^{\mathrm{ms}}u + \mathcal{R}^{\mathrm{f}}u$ and therefore $\mathfrak{I}_H(u - \mathcal{R}_H^{\mathrm{ms}}u) = 0$.

- $\phi_x \in V_H$ denotes classical nodal basis function
- $\mathcal{R}^{f}\phi_{x} \in V^{f}$ denotes the finescale correction of ϕ_{x}

Generalized FE space

$$V_{H}^{ extsf{ms}} = extsf{span} \left\{ \phi_{x} - \mathcal{R}^{ extsf{f}} \phi_{x}
ight\}$$

Example

- $\phi_x \in V_H$ denotes classical nodal basis function
- $\mathcal{R}^{f}\phi_{x} \in V^{f}$ denotes the finescale correction of ϕ_{x}

Generalized FE space

$$V_{H}^{\mathsf{ms}} = \mathsf{span}\left\{\phi_{x} - \mathcal{R}^{\mathsf{f}}\phi_{x}
ight\}$$

Example

Generalized Finite Element Methods

- $\phi_x \in V_H$ denotes classical nodal basis function
- $\mathcal{R}^{f}\phi_{x} \in V^{f}$ denotes the finescale correction of ϕ_{x}

Generalized FE space

$$\mathcal{W}_{H,k}^{\mathsf{ms}} = \mathsf{span}\left\{\phi_x - \mathcal{R}_k^{\mathsf{f}}\phi_x
ight\}$$

Example

- $\phi_x \in V_H$ denotes classical nodal basis function
- $\mathcal{R}^{f}\phi_{x} \in V^{f}$ denotes the finescale correction of ϕ_{x}

Generalized FE space

$$\mathcal{V}_{H,k}^{ ext{ms},h} = ext{span} \left\{ \phi_x - \mathcal{R}_{k,h}^f \phi_x
ight\}$$

Example

- $\phi_x \in V_H$ denotes classical nodal basis function
- $\mathcal{R}^{f}\phi_{x} \in V^{f}$ denotes the finescale correction of ϕ_{x}

Generalized FE space

$$\mathcal{V}_{H,k}^{ ext{ms},h} = ext{span} \left\{ \phi_x - \mathcal{R}_{k,h}^{ ext{f}} \phi_x
ight\}$$

Localized Orthogonal Decomposition

Find
$$u_{H,k}^{\text{ms},h} \in V_{H,k}^{\text{ms},h}$$
 such that $a(u_{H,k}^{\text{ms},h},v) = (f,v)$, for all $v \in V_{H,k}^{\text{ms},h}$

A priori bound:

$$|||u_h - u_{H,k}^{\mathsf{ms},h}||| \le C(\alpha,\beta)H$$

where $k = C_1(\beta/\alpha) \log(H^{-1})$ and C independent of A'.

The high contrast problem

Three examples, black A = 1 white $A = \alpha$: $H = 2^{-4}$, $h = 2^{-10}$.

Let $\alpha = 10^{-1}, ..., 10^{-6}$ and plot $|||u_h - u_{H,k}^{ms,h}|||$ vs. k, with $\mathfrak{I}_{H}^{\omega}$,

Geometry dependent interpolation

- The interpolant $\Im_H v = \sum_{x \in N} \bar{v}_{\sigma_x} \phi_x$ defines V_f and V_H^{ms} .
- We need to force correctors to be small in the channels!

- If $x \in \Omega_{\alpha}$ let $\sigma_x = \omega_x$, vertex patch
- **2** If $x \in \Omega_1$ let $\sigma_x \subset \omega_x \cap \Omega_1$, connected
- We need sufficiently many nodes in Ω_1 (separation ~ H)

Numerical example: High contrast

High contrast data Three examples: $H = 2^{-4}$, $h = 2^{-10}$,

- Orthogonal subspaces treats rapidly varying data².
- High contrast channels is challenging, geometry depended interpolation is a way forward³.

Thank you for your attention!

²M. & Peterseim, Localization of elliptic multiscale prob., Math. Comp. 2014 ³Hellman & M., Contrast independent localization of multiscale problems, SIAM MMS 2017. (Related work done by Peterseim Scheich) 2016)