On convergence of multiscale methods

Axel Målqvist

axel.malqvist@it.uu.se

Division of Scientific Computing Uppsala University Sweden

ICIAM, Vancouver, Canada, 18th July, 2011 - p. 1/20

Outline and Papers

Outline

- Motivating example
- Previous work
- Derivation of multiscale methods
- Convergence analysis
- Numerical examples
- Conclusions and future work

Papers

- M.G. Larson and A. Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems, CMAME 2007
- A. Målqvist, A priori error analysis of a multiscale method, submitted

Thanks

• M. G. Larson, Umeå University and G. Tsogtgerel, McGill University

Motivating example: Secondary oil recovery

Find pressure p and water concentration s such that:

 $-\nabla \cdot k\lambda(s)\nabla p = q, \quad \dot{s} - \nabla \cdot [f(s)\lambda(s)k\nabla p] = g, \quad \text{in } \Omega,$

where k is permeability, $\lambda(s)$ the total mobility, f fractional flow, and g, q sink and source terms.

Model problem

We consider the strong form:

 $-\nabla \cdot \alpha \nabla u = f$, in Ω , u = 0 on $\partial \Omega$.

The weak form reads: find $u \in \mathcal{V} := H_0^1(\Omega)$ such that,

$$\langle u, v \rangle := \int_{\Omega} \alpha \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx := l(v), \quad \text{for all } v \in \mathcal{V}.$$

We assume $f \in L^2(\Omega)$ and $0 < \alpha_0 \le \alpha \in L^{\infty}(\Omega)$.

Derivation of multiscale methods

We let \mathcal{T}_0 be a (coarse) mesh of Ω and \mathcal{T}_J be the mesh after J refinements. Let $\mathcal{V}_0 \subset \mathcal{V}_J \subset \mathcal{V}$ be corresponding FE spaces.

We let $\pi_0 : C(\Omega) \cap \mathcal{V} \to \mathcal{V}_0$ and $\mathcal{W}_J = \{w \in \mathcal{V}_J : \pi_0 w = 0\}$. Let $\{\chi_i\}$ be hierarchical basis for \mathcal{W}_J and $\{\phi_i\}$ a basis for \mathcal{V}_0 .

Reference solution $u_J \in \mathcal{V}_J$ fulfills $\langle u_J, w \rangle = l(w)$ for all $w \in \mathcal{V}_J$.

Orthogonal split of scales

We introduce an *a*-orthogonal map $I + T_J$ with $T_J : \mathcal{V}_0 \to \mathcal{W}_J$:

 $\langle v_0 + T_J v_0, w \rangle = 0$, for all $v_0 \in \mathcal{V}_0, w \in \mathcal{W}_J$.

The map T_J exists for each $v_0 \in \mathcal{V}_0$ and is unique (Lax-Milgram).

Let $u_0 = \pi_0 u_J$. Then there exists a $u_{l,J} = u_J - u_0 - T_J u_0 \in \mathcal{W}_J$ such that,

$$\langle u_{l,J}, w \rangle = l(w), \text{ for all } w \in \mathcal{W}_J.$$

If we now write $u_J = u_0 + T_J u_0 + u_{l,J}$ we get the coarse scale equation:

Find $u_0 \in \mathcal{V}_0$ s.t. $\langle u_0 + T_J u_0, v_0 \rangle = l(v_0) - \langle u_{l,J}, v_0 \rangle$, for all $v_0 \in \mathcal{V}_0$

$$\left(\langle u_0 + T_J u_0, v_0 + T_J v_0 \rangle = l(v_0 + T_J v_0) - \langle u_{l,J}, v_0 + T_J v_0 \rangle\right)$$

Three multiscale methods

VMS:

$$\langle u_0 + T_J^{\mathsf{vms}} u_0, v_0 \rangle = l(v_0) - \langle u_{l,J}^{\mathsf{vms}}, v_0 \rangle,$$

$$\langle v_0 + T_J^{\mathsf{vms}} v_0, v \rangle \approx 0,$$

$$\langle u_{l,J}^{\mathsf{vms}}, v \rangle \approx l(v),$$

MsFEM:
$$\langle u_0 + T_J^{\text{mfem}} u_0, v_0 + T_J^{\text{mfem}} v_0 \rangle = l(v_0 + T_J^{\text{mfem}} v_0),$$

 $\langle v_0 + T_J^{\text{mfem}} v_0, v \rangle \approx 0,$

Sym-AVMS: $\langle u_0 + T_J^k u_0, v_0 + T_J^k v_0 \rangle = l(v_0 + T_J^k v_0) - \langle u_{l,J}^k, v_0 + T_J^k v_0 \rangle,$ $\langle v_0 + T_J^k v_0, v \rangle \approx 0,$ $\langle u_{l,J}^k, v \rangle \approx l(v),$

for all $v_0 \in \mathcal{V}_0$ and $v \in \mathcal{W}_J$. Note that $\langle v_0 + T_J v_0, w_J \rangle = 0$.

Approximation of T_J and $u_{l,J}$ in Sym-AVMS

We localize the fine scale equations. Let $\mathcal{V}_0 = \operatorname{span}(\{\phi_i\})$ and, $\langle \phi_i + T_J \phi_i, v \rangle = 0$, for all $w \in \mathcal{W}_J$, $\langle u_{l,J,i}, v \rangle = l(\phi_i v)$, for all $w \in \mathcal{W}_J$,

We introduce a patch ω_i^k around $\operatorname{supp}(\phi_i)$:

Now let $\mathcal{W}_J(\omega_i^k) = \{v \in \mathcal{W}_J : \operatorname{supp}(v) \subset \omega_i^k\}.$

Sym-AVMS

Let
$$T_J^k \phi_i \in \mathcal{W}_J(\omega_i^k)$$
 and $u_{l,J}^k \in \mathcal{W}_J(\omega_i^k)$ be given by,
 $\langle \phi_i + T_J^k \phi_i, v \rangle = 0$, for all $w \in \mathcal{W}_J(\omega_i^k)$,
 $\langle u_{l,J,i}^k, v \rangle = l(\phi_i v)$, for all $w \in \mathcal{W}_J(\omega_i^k)$.

The method reads: Find $u_0^k \in \mathcal{V}_0$ such that

 $\langle u_0^k + T_J^k u_0^k, v_0 + T_J^k v_0 \rangle = l(v_0 + T_J^k v_0) - \langle u_{l,J}^k, v_0 + T_J^k v_0 \rangle, \ \forall v_0 \in \mathcal{V}_0.$

Observation about decay in \mathcal{W} (Fourier)

Consider the Poisson equation,

 $-\Delta u = \phi_i \quad \text{in } \Omega, \quad u = 0 \text{ on } \partial \Omega,$

where ϕ_i has local support in Ω . The weak form reads: find $u \in \mathcal{Z}$ such that, $\langle u, v \rangle = (\phi_i, v)$ for all $v \in \mathcal{Z}$.

To the left $\mathcal{Z} = \mathcal{V}$ (log decay) and right $\mathcal{Z} = \mathcal{W}$ (exp decay).

Constraints are realized using Lagrangian multipliers.

Convergence analysis: basis functions $T_J \phi_i$

We sketch the convergence proof below. We start with the decay of $T_J \phi_i$.

Let $\{\chi_j\}_{j\in\mathcal{M}_J}$ be a hierarchical basis for \mathcal{W}_J . Let $\hat{A} = \langle \chi_l, \chi_j \rangle$, $l, j \in \mathcal{M}_J$. Further let $T_J \phi_i = \sum_{j\in\mathcal{M}_J} \alpha_j \chi_j$. We use CG with $\hat{\alpha}_0 = 0$ and right hand side $b_j = -\langle \phi_i, \chi_j \rangle$. We have,

$$|\alpha - \hat{\alpha}^m|_{\hat{A}} \le 2\left(\frac{\sqrt{\kappa(\hat{A})} - 1}{\sqrt{\kappa(\hat{A})} + 1}\right)^m |\alpha|_{\hat{A}} := 2\rho^m |\alpha|_{\hat{A}}, \text{ where } |v|_A^2 = v^T A v.$$

Note that $\sqrt{\kappa(\hat{A})} \sim J$ in 2D and $\sqrt{\kappa(\hat{A})} \sim 2^{J}$ in 3D.

Convergence analysis: local solutions $T_J \phi_i$

We have $T_J \phi_i = \sum_{j \in \mathcal{M}_J} \alpha_j \chi_j$, with corresponding vector α , where \mathcal{M}_J is the set non-coarse nodes on level J.

Since b_j has support on a coarse 1-ring and the HB only spreads information within ω_i^k in 2k iterations we have,

$$|\alpha_{\Omega\setminus\omega^k}|^2 = \sum_{j\in\mathcal{M}_{\mathcal{J}}(\Omega\setminus\omega_i^k)} |\alpha_j|^2 = \sum_{j\in\mathcal{M}_{\mathcal{J}}(\Omega\setminus\omega_i^k)} |\alpha_j - \hat{\alpha}_j^{2k}|^2 \le |\alpha - \hat{\alpha}^{2k}|^2,$$

where $\alpha_{\Omega \setminus \omega^k}$ only contains the node values outside ω_i^k .

Furthermore $|\alpha_{\Omega\setminus\omega^k}|_{\hat{A}}^2 \leq C|\alpha - \hat{\alpha}^{2k}|_{\hat{A}}^2 \leq C\rho^{4k}|\alpha|_{\hat{A}}^2$ which means that the coefficients in α decays away from node i and more precisely $||T_J\phi_i||_{\Omega\setminus\omega_i^k} \leq C\rho^{2k}||T_J\phi_i||$, with $||v||_{\omega}^2 = \langle v,v\rangle_{\omega}$. Convergence analysis: local solutions $T_J^k \phi_i \to T_J \phi_i$

Now let
$$T_J^k \phi_i = \sum_{j \in \mathcal{M}_J(\omega_i^k)} \alpha_j^k \chi_j$$
.

We have $\langle T_J \phi_i - T_J^k \phi_i, w \rangle = 0$ for all $w \in \mathcal{W}_J(\omega_i^k)$.

Now let $w = \sum_{j \in \mathcal{M}_J(\omega_i^k)} (\alpha_j - \alpha_j^k) \chi_k \in \mathcal{W}_J(\omega_i^k)$, with corresponding vectors α_{ω^k} and α^k . We get,

$$\begin{aligned} |\alpha - \alpha^{k}|_{\hat{A}}^{2} &= (\alpha - \alpha_{\omega_{k}})^{T} \hat{A} (\alpha - \alpha^{k}) \\ &= \alpha_{\Omega \setminus \omega^{k}}^{T} \hat{A} (\alpha - \alpha^{k}) \\ &\leq |\alpha_{\Omega \setminus \omega^{k}}|_{\hat{A}} |\alpha - \alpha^{k}|_{\hat{A}}, \end{aligned}$$

But now $|\alpha - \alpha^k|_{\hat{A}} \leq C \rho^{2k} |\alpha|_{\hat{A}}$ or,

 $|||T_J \phi_i - T_J^k \phi_i||| \le C \rho^{2k} |||T_J \phi_i||| \quad \text{and} \quad |||u_{l,J,i} - u_{l,J,i}^k||| \le C \rho^{2k} |||u_{l,J,i}|||.$

Convergence analysis: system

 $\mathcal{V}_{0,J} = \operatorname{span}(\{\phi_i + T_J\phi_i\})$ (blue) $\mathcal{V}_{0,J}^k = \operatorname{span}(\{\phi_i + T_J^k\phi_i\})$ (red).

We compute u_0 (black) and u_0^k (green) as projections: **Theorem 1** Let u_J be the reference solution and u_J^k the *Sym-AVMS approximation. Then,*

$$|||u_J - u_J^k||| \le C \left(||u_J||_{L^{\infty}(\Omega)} / h_0 + ||f||_{L^2(\Omega)} \right) \rho^{2k},$$

where
$$\rho = \frac{\sqrt{\kappa(\hat{A})}-1}{\sqrt{\kappa(\hat{A})}+1}$$
 and $\sqrt{\kappa(\hat{A})} \sim J$ in 2D and $\sqrt{\kappa(\hat{A})} \sim 2^J$ in 3D.

Numerical examples

$$\begin{split} &\alpha_1(x,y) = 1, \\ &\alpha_2(x,y) = 1 + 0.5 \cdot \sin(8x) \sin(8y), \\ &\alpha_3(x,y) = 0.1 + 0.9 * \text{rand}, \quad (x,y) \in \tau, \text{ for all } \tau \in \mathcal{T}_1, \\ &\alpha_4(x,y) = a_{\mathsf{GSLIB}}(i,j), \text{ for } \frac{i-1}{120} \leq x < \frac{i}{120}, \frac{j-1}{120} \leq y < \frac{j}{120}, \\ &\alpha_5(x,y) = a_{\mathsf{SPE}}(i,j), \text{ for } \frac{i-1}{120} \leq x < \frac{i}{120}, \frac{j-1}{120} \leq y < \frac{j}{120}, \end{split}$$

We let $f = \chi_{inj} - \chi_{prod}$, with $supp(\chi_{inj}) = [0, 1/60] \times [0, 1/60]$, and $supp(\chi_{prod}) = [1 - 1/60, 1] \times [1 - 1/60, 1]$.

Convergence of local solution $T_J^k \phi_i$

We let i = 435, J = 3, and $h_0 = 1/30$, using rectangular mesh.

Relative error in energy norm (left). We get exponential convergence in k.

Corresponding error using 2k cg iterations (right) \Rightarrow slower convergence for high condition numbers.

Preconditioner that works in the argument?

Convergence of global solution

Again J = 3 and $h_0 = 1/30$. We plot the error $u_J - u_J^k$ in energy norm (relative).

How does the error depend on h_0 ?

Remember

$$||u_J - u_J^k||| \le C \left(||u_J||_{L^{\infty}(\Omega)} / h_0 + ||f||_{L^2(\Omega)} \right) \rho^{2k},$$

We let J = 2 and k = 3.

The bound is probably not sharp in terms of h_0 .

Summary of this paper

- 1. We prove an *a priori* error bound and thereby convergence as $k \to \infty$ for Sym-AVMS, for fix h_0 and J.
- 2. The bound reveals that for fix h_0 and J we get *exponential decay* in the number of layers k.
- 3. Numerics experiments confirms this and furthermore reveals that a very small value $k \sim 2$ is needed for 2D examples in practise.
- 4. There are still improvements needed in the analysis in the case when $\frac{\max_x \alpha(x)}{\min_x \alpha(x)}$ is large and in the dependency on h_0 . Preconditioner and/or wavelet basis might resolve this.

Other recent results and future directions

We have also studied

- multiscale methods for convection dominated stationary and hyperbolic problems
- a posteriori error estimation for Poisson equation, CG, DG, RT
- adaptive algorithms for local mesh/patch size refinement

Future projects include

- improving the convergence result
- adaptive algorithm for hyperbolic problems
- convergence of adaptive algorithms
- solving the coupled system using RT and DG
- multiscale in time
- implement AMVS on parallel machines, 3D