# Iterative solution of spatial network models by subspace decomposition 

Axel Målqvist

# Morgan Görtz and Fredrik Hellman 

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg
Fraunhofer Chalmers Centre

$$
2022-10-25
$$

## Simulation of spatial network models at FCC



- We consider

$$
K u=f
$$

a simplified network model of an elliptic PDE ( $K$ is SPD)

- $K$ is ill-conditioned (geometry and material data variation), only direct solver works
- The goal is to develop an iterative solver ${ }^{1}$
${ }^{1}$ Görtz-Hellman-M., Iterative solution of spatial network models by subspace decomposition, arXiv:2207.07488


## Outline

(1) Graph Laplacian and model problem
(2) Network assumptions
(3) Convergence of a semi-iterative solver
( - Numerical examples
(6) Conclusions

## Graph Laplacian

- Let $\mathcal{G}=(\mathcal{N}, \mathcal{E})$ be a graph of nodes and edges, $x \in \Omega \subset \mathbb{R}^{d}$
- The graph Laplacian $L^{g}$ is $\mathrm{SP}\left(\right.$ semi-) $\mathrm{D}, L^{g} 1=0$
- Let $\hat{V}: \mathcal{N} \rightarrow \mathbb{R}$ be scalar functions on $\mathcal{N}$. For $v, w \in \hat{V}$

$$
\begin{aligned}
(v, w) & =\sum_{x} v(x) w(x) \\
\left(L^{g} v, v\right) & =\sum_{(x, y) \in \mathcal{E}}(v(x)-v(y))^{2} \\
L^{g} & =\sum_{x} L_{x}^{g} \\
\left(L_{x}^{g} v, v\right) & =\frac{1}{2} \sum_{y \sim x}(v(x)-v(y))^{2}
\end{aligned}
$$

## Example:



$$
L^{g}=\left(\begin{array}{cccc}
2 & -1 & -1 & 0 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 3 & -1 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

$x \sim y$ denotes that $x$ and $y$ are connected by an edge

## Weighted graph Laplacian

- A weighted graph Laplacian and diagonal mass matrix

$$
\begin{aligned}
&\left(L_{x} v, v\right)=\frac{1}{2} \sum_{y \sim x} \frac{(v(x)-v(y))^{2}}{|x-y|}, \quad L=\sum L_{x} \\
&\left(M_{x} v, v\right):=\frac{1}{2} v(x)^{2} \sum_{y \sim x}|x-y|, \quad M=\sum M_{x}
\end{aligned}
$$

- Consider the 1D mesh $0=x_{0}<x_{1}<\cdots<x_{n}=1$.

$$
(L v, v):=\sum_{i=1}^{n} \frac{\left(v\left(x_{i}\right)-v\left(x_{i-1}\right)\right)^{2}}{\left|x_{i}-x_{i-1}\right|}
$$

- $L$ is the P1-FEM stiffness matrix $(-\Delta)$ and $M$ is the lumped mass matrix


## Model problem

Find $u \in V:=\left\{v \in \hat{V}: v(x)=0\right.$ for $\left.x \in \Gamma_{D}\right\}$ :

$$
(K u, v)=(f, v), \quad v \in V .
$$

Assume: $(K \cdot, \cdot)$ is scalar product on $V$ and

$$
\alpha(L v, v) \leq(K v, v) \leq \beta(L v, v), \quad \forall v \in V .
$$

## Example:

$$
(K v, v)=\sum_{(x, y) \in \mathcal{E}} \gamma_{x y} \frac{(v(x)-v(y))^{2}}{|x-y|}, \quad \alpha \leq \gamma_{x y} \leq \beta
$$

- P1-FEM for 1D diffusion-reaction model on network with continuity and Kirchhoff flux constraint in junctions
- Structural model of a fibre network.


## Outline

(1) Graph Laplacian and model problem
(2) Network assumptions
(3) Convergence of a semi-iterative solver
( - Numerical examples
(6) Conclusions

## Multilevel solver: coarse scale representation



- $\mathcal{T}_{H}$ is a mesh of squares
- $\hat{V}_{H}$ is Q1-FEM with basis $\left\{\varphi_{y}\right\}_{y}$
- $V_{H} \subset \hat{V}_{H}$ satisfy the boundary conditions
- Clément type interpolation operator

$$
I_{H} V=\sum_{\text {free DoFs } y} \frac{\left(M_{U(y)} 1, v\right)}{\left(M_{U(y)} 1,1\right)} \varphi_{y} \in V_{H}
$$

## Lemma (Stability and approximability of $I_{H}$ )

For all $v \in V$ and for $H>R_{0}$,

$$
H^{-1}\left|v-I_{H} v\right|_{M}+\left|I_{H} v\right|_{L} \leq C|v|_{L}
$$

where $|\cdot|_{M}^{2}=(M \cdot, \cdot),|\cdot|_{L}^{2}=(L \cdot, \cdot)$ and $C=C_{d \mu} \sqrt{\sigma}$.

## Network locality, homogeneity and connectivity

(1) All edges are shorter than $R_{0}>0$ (length scale)
(2) Let $B_{R}(x)$ be a box at $x$ of side length $2 R$, with $H \geq R_{0}$,


$$
1 \leq \frac{\max _{x}|1|_{M, B_{H}(x)}^{2}}{\min _{x}|1|_{M, B_{H}(x)}^{2}} \leq \sigma\left(R_{0}\right)
$$

(3) For all $x \in \Omega$ and $H>R_{0}$ there is a (uniform) $\mu\left(R_{0}\right)<\infty$ and $c_{x} \in \mathbb{R}$, such that the Poincaré-type inequality holds

$$
\left|v-c_{x}\right|_{M, B_{H}(x)} \leq \mu H|v|_{L, B_{H+R_{0}}(x)}, \quad \forall v \in \hat{V}
$$

## Poincaré constant

Let $\mathcal{G}^{\prime}=\left(\mathcal{N}^{\prime}, \mathcal{E}^{\prime}\right) \subset \mathcal{G}$ be connected and

- all nodes in $B_{H}(x)$ are included
- no nodes outside $B_{H+R_{0}}(x)$ are included
With $L^{\prime}, M^{\prime}$ defined on $\mathcal{G}^{\prime}$ we have


$$
\lambda_{1}=\inf \frac{\left(L^{\prime} z, z\right)}{\left(M^{\prime} z, z\right)}=\frac{\left(L^{\prime} 1,1\right)}{\left(M^{\prime} 1,1\right)}=0, \quad \lambda_{2}=\inf _{\left(M^{\prime} 1, z\right)=0} \frac{\left(L^{\prime} z, z\right)}{\left(M^{\prime} z, z\right)}>0
$$

With $c_{x}=\frac{\left(M^{\prime} 1, v\right)}{\left(M^{\prime} 1,1\right)}$ we have $\left(M^{\prime} 1, v-c_{x}\right)=0$ so

$$
\left|v-c_{x}\right|_{M, B_{H}(x)} \leq\left|v-c_{x}\right|_{M^{\prime}} \leq \lambda_{2}^{-1 / 2}\left|V-c_{x}\right|_{L^{\prime}} \leq \lambda_{2}^{-1 / 2}|v|_{L, B_{H+R_{0}}(x)}
$$

$\lambda_{2}$ : measure connectivity ${ }^{2} \sim \mathrm{CH}^{-2}$ if isoperimetric ${ }^{3} \mathrm{dim} d$.

[^0]
## Example: Connectivity $\lambda_{2}^{-1 / 2} \approx \mu R$

Finite length fibers $r=0.05$ and $|1|_{M}^{2}=1000, \Omega=[0,1]^{2}$


Table: $(\sigma, \mu)$ for different $R$

| $R^{-1}=4$ | $R^{-1}=8$ | $R^{-1}=16$ | $R^{-1}=32$ | $R^{-1}=64$ |
| :---: | :---: | :---: | :---: | :---: |
| $(1.04,0.49)$ | $(1.08,0.53)$ | $(1.27,0.57)$ | $(1.85,0.675)$ | $(3.42,1.53)$ |
| $(1.04,0.59)$ | $(1.08,0.61)$ | $(1.27,0.69)$ | $(1.87,0.83)$ | $(2.93,1.35)$ |
| $(1.04,0.53)$ | $(1.57,0.54)$ | $(2.13,0.58)$ | $(3.1,0.76)$ | $(6.86,1.45)$ |

## Example: Connectivity $\lambda_{2}^{-1 / 2} \approx \mu R$

Finite length fibers $r=0.05$ and $|1|_{M}^{2}=1000, \Omega=[0,1]^{2}$


## Outline

(1) Graph Laplacian and model problem
(2) Network assumptions
(3) Convergence of a semi-iterative solver

-     - Numerical examples
(3) Conclusions


## Subspace decomposition preconditioner ${ }^{4}$

Let $V_{0}=V_{H}$. and

$$
V_{j}=V\left(U\left(y_{j}\right)\right), \quad j=1, \ldots, m
$$

Define projections $P_{j}: V \rightarrow V_{j}$ by

$$
\left(K P_{j} v, v_{j}\right)=\left(K v, v_{j}\right), \quad \forall v_{j} \in V_{j} \subset V
$$



We add the projections to form

$$
P=P_{0}+P_{1}+\cdots+P_{m} .
$$

- $P=B K$ is used as a preconditioner: $B K u=B f$.
- We use the preconditioned conjugate gradient method.
- Involves direct solution of decoupled problems (semi-iterative).
${ }^{4}$ Kornhuber \& Yserentant, MMS, 2016


## Convergence analysis

## Lemma (Spectral bound of $P$ )

For $H>2 R_{0}$ it holds

$$
C_{1}^{-1}|v|_{K}^{2} \leq(K P v, v) \leq C_{2}|v|_{K}^{2}, \quad \forall v \in V,
$$

where $C_{1}=C_{d} \beta \alpha^{-1} \sigma \mu^{2}$ and $C_{2}=C_{d} \beta \alpha^{-1}$.
Interpolation bound is a crucial component of the proof.

## Theorem (Convergence of PCG)

With $\sqrt{\kappa}=\sqrt{C_{1} C_{2}}=C_{d} \beta \alpha^{-1} \mu \sqrt{\sigma}$ and $H>2 R_{0}$ it holds

$$
\left|u-u^{(\ell)}\right|_{\kappa} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{\ell}\left|u-u^{(0)}\right|_{\kappa} .
$$

## Outline

(1) Graph Laplacian and model problem
(2) Network assumptions
(3) Convergence of a semi-iterative solver
( - Numerical examples
(3) Conclusions

## Example: Convergence graph Laplacian

Consider $K u=M 1$ with homogeneous Dirichlet bc $|1|_{M}^{2}=1000$.


Grid $\gamma=1$ (left), rand $\gamma=1$ (center), rand $\gamma \in U([0.1,1])$ (right)


## Example: A fibre network model ${ }^{5}$


 N

- $2 \cdot 10^{4}$ fibres, biased angle ( $x$-axis), length $0.05,3 \cdot 10^{5}$ nodes, $\alpha=0.05, \beta=500$.
- Two forces in the model: edge extension and angular deviation.
- Find displacement $u$ : $K u=f$ (tensile, distributed load)
- Theory extends to vector valued setting (Korn, $K \sim L$ )
- DD with $H=1 / 4,1 / 8,1 / 16,1 / 32$.
${ }^{5}$ Kettil et. al. Numerical upscaling of discrete network models, BIT 2020


## Example: A fibre network model





| 0 |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



## Outline

(1) Graph Laplacian and model problem
(2) Network assumptions
(3) Convergence of a semi-iterative solver
( - Numerical examples
( Conclusions

## Conclusions



- The network should resemble a homogeneous material on coarse scales $H>H_{0}$
- Direct solver on fine scales (localized, in parallell)
- Poincaré type inequality plays a crucial role in the analysis
- Numerical PDE methods/analysis can be applied to spatial network models


[^0]:    ${ }^{2}$ Cheeger 1970, Fiedler 1973
    ${ }^{3}$ F. Chung, Spectral graph theory, AMS, 1997

