Iterative solution of spatial network models by subspace decomposition

Axel Målqvist

Morgan Görtz and Fredrik Hellman

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg
Fraunhofer Chalmers Centre

2022-10-25

Simulation of spatial network models at FCC

We consider

$$Ku = f$$

a simplified network model of an elliptic PDE (K is SPD)

- K is ill-conditioned (geometry and material data variation), only direct solver works
- The goal is to develop an iterative solver¹

¹Görtz-Hellman-M., Iterative solution of spatial network models by subspace decomposition, arXiv:2207.07488

- Graph Laplacian and model problem
- Network assumptions
- Convergence of a semi-iterative solver
- Numerical examples
- Conclusions

Graph Laplacian

- Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a graph of nodes and edges, $x \in \Omega \subset \mathbb{R}^d$
- The graph Laplacian L^g is SP(semi-)D, $L^g 1 = 0$
- Let $\hat{V}: \mathcal{N} \to \mathbb{R}$ be scalar functions on \mathcal{N} . For $v, w \in \hat{V}$

$$(v, w) = \sum_{x} v(x)w(x)$$

$$(L^{g}v, v) = \sum_{(x,y)\in\mathcal{E}} (v(x) - v(y))^{2}$$

$$L^{g} = \sum_{x} L^{g}_{x}$$

$$(L^{g}_{x}v, v) = \frac{1}{2} \sum_{y \sim x} (v(x) - v(y))^{2}$$

 $x \sim y$ denotes that x and y are connected by an edge

Weighted graph Laplacian

A weighted graph Laplacian and diagonal mass matrix

$$(L_x v, v) = \frac{1}{2} \sum_{y \sim x} \frac{(v(x) - v(y))^2}{|x - y|}, \quad L = \sum L_x$$
 $(M_x v, v) := \frac{1}{2} v(x)^2 \sum_{v \sim x} |x - y|, \quad M = \sum M_x$

• Consider the 1D mesh $0 = x_0 < x_1 < \cdots < x_n = 1$.

$$(Lv, v) := \sum_{i=1}^{n} \frac{(v(x_i) - v(x_{i-1}))^2}{|x_i - x_{i-1}|}$$

• L is the P1-FEM stiffness matrix $(-\Delta)$ and M is the lumped mass matrix

Model problem

Find
$$u \in V := \{v \in \hat{V} : v(x) = 0 \text{ for } x \in \Gamma_D\}$$
:

$$(Ku, v) = (f, v), v \in V.$$

Assume: $(K \cdot, \cdot)$ is scalar product on V and

$$\alpha(Lv, v) \leq (Kv, v) \leq \beta(Lv, v), \quad \forall v \in V.$$

Example:

$$(Kv, v) = \sum_{(x,y)\in\mathcal{E}} \gamma_{xy} \frac{(v(x) - v(y))^2}{|x - y|}, \quad \alpha \leq \gamma_{xy} \leq \beta$$

- P1-FEM for 1D diffusion-reaction model on network with continuity and Kirchhoff flux constraint in junctions
- Structural model of a fibre network.

- Graph Laplacian and model problem
- Network assumptions
- Onvergence of a semi-iterative solver
- Numerical examples
- Conclusions

Multilevel solver: coarse scale representation

- \mathcal{T}_H is a mesh of squares
- \hat{V}_H is Q1-FEM with basis $\{\varphi_v\}_v$
- $V_H \subset \hat{V}_H$ satisfy the boundary conditions
- Clément type interpolation operator

$${I}_{H}v = \sum_{ ext{free DoFs } y} rac{\left(M_{U(y)}\mathsf{1},v
ight)}{\left(M_{U(y)}\mathsf{1},\mathsf{1}
ight)} arphi_{y} \in V_{H}$$

Lemma (Stability and approximability of I_H)

For all $v \in V$ and for $H > R_0$.

$$H^{-1}|v-\mathcal{I}_H v|_M+|\mathcal{I}_H v|_L\leq C|v|_L,$$

where
$$|\cdot|_M^2 = (M\cdot, \cdot), |\cdot|_I^2 = (L\cdot, \cdot)$$
 and $C = C_d \mu \sqrt{\sigma}$.

Network locality, homogeneity and connectivity

- All edges are shorter than $R_0 > 0$ (length scale)
- 2 Let $B_R(x)$ be a box at x of side length 2R, with $H \ge R_0$,

$$1 \leq \frac{\max_{x} |1|_{M,B_{H}(x)}^{2}}{\min_{x} |1|_{M,B_{H}(x)}^{2}} \leq \sigma(R_{0})$$

③ For all x ∈ Ω and $H > R_0$ there is a (uniform) $μ(R_0) < ∞$ and $c_x ∈ \mathbb{R}$, such that the Poincaré-type inequality holds

$$|v - c_x|_{M,B_H(x)} \le \mu H|v|_{L,B_{H+B_0}(x)}, \quad \forall v \in \hat{V}$$

Poincaré constant

Let $\mathcal{G}' = (\mathcal{N}', \mathcal{E}') \subset \mathcal{G}$ be connected and

- all nodes in $B_H(x)$ are included
- no nodes outside B_{H+R₀}(x) are included

With L', M' defined on G' we have

$$\lambda_1 = \inf \frac{(L'z,z)}{(M'z,z)} = \frac{(L'1,1)}{(M'1,1)} = 0, \quad \lambda_2 = \inf_{(M'1,z)=0} \frac{(L'z,z)}{(M'z,z)} > 0.$$

With
$$c_x = \frac{(M'1,v)}{(M'1,1)}$$
 we have $(M'1, v - c_x) = 0$ so

$$|v - c_x|_{M,B_H(x)} \le |v - c_x|_{M'} \le \lambda_2^{-1/2} |v - c_x|_{L'} \le \lambda_2^{-1/2} |v|_{L,B_{H+R_0}(x)}$$

 λ_2 : measure connectivity² ~ CH^{-2} if isoperimetric³ dim d.

²Cheeger 1970, Fiedler 1973

³F. Chung, Spectral graph theory, AMS, 1997

Example: Connectivity $\lambda_2^{-1/2} \approx \mu R$

Finite length fibers r = 0.05 and $|1|_{M}^{2} = 1000$, $\Omega = [0, 1]^{2}$

Table: (σ, μ) for different R

$R^{-1} = 4$	$R^{-1} = 8$	$R^{-1} = 16$	$R^{-1} = 32$	$R^{-1} = 64$
(1.04,0.49)	(1.08,0.53)	(1.27,0.57)	(1.85,0.675)	(3.42,1.53)
(1.04, 0.59)	(1.08,0.61)	(1.27,0.69)	(1.87,0.83)	(2.93,1.35)
(1.04, 0.53)	(1.57,0.54)	(2.13,0.58)	(3.1,0.76)	(6.86,1.45)

11/20

Example: Connectivity $\lambda_2^{-1/2} \approx \mu R$

Finite length fibers r = 0.05 and $|1|_M^2 = 1000$, $\Omega = [0, 1]^2$

- Graph Laplacian and model problem
- Network assumptions
- Convergence of a semi-iterative solver
- Numerical examples
- Conclusions

Subspace decomposition preconditioner⁴

Let $V_0 = V_H$. and

$$V_j = V(U(y_j)), \quad j = 1, \ldots, m.$$

Define projections $P_j: V \to V_j$ by

$$(\mathit{KP}_{j}\mathit{v},\mathit{v}_{j})=(\mathit{Kv},\mathit{v}_{j}), \quad \forall \mathit{v}_{j} \in \mathit{V}_{j} \subset \mathit{V}.$$

We add the projections to form

$$P=P_0+P_1+\cdots+P_m.$$

- P = BK is used as a preconditioner: BKu = Bf.
- We use the preconditioned conjugate gradient method.
- Involves direct solution of decoupled problems (semi-iterative).

⁴Kornhuber & Yserentant, MMS, 2016

Convergence analysis

Lemma (Spectral bound of *P*)

For $H > 2R_0$ it holds

$$C_1^{-1}|v|_K^2 \leq (KPv, v) \leq C_2|v|_K^2, \quad \forall v \in V,$$

where $C_1 = C_d \beta \alpha^{-1} \sigma \mu^2$ and $C_2 = C_d \beta \alpha^{-1}$.

Interpolation bound is a crucial component of the proof.

Theorem (Convergence of PCG)

With
$$\sqrt{\kappa} = \sqrt{C_1 C_2} = C_d \beta \alpha^{-1} \mu \sqrt{\sigma}$$
 and $H > 2R_0$ it holds

$$|u-u^{(\ell)}|_{K} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{\ell} |u-u^{(0)}|_{K}.$$

- Graph Laplacian and model problem
- Network assumptions
- Convergence of a semi-iterative solver
- Numerical examples
- Conclusions

Example: Convergence graph Laplacian

Consider Ku = M1 with homogeneous Dirichlet bc $|1|_M^2 = 1000$.

Grid $\gamma = 1$ (left), rand $\gamma = 1$ (center), rand $\gamma \in U([0.1, 1])$ (right)

Example: A fibre network model⁵

- 2 · 10⁴ fibres, biased angle (*x*-axis), length 0.05, 3 · 10⁵ nodes, $\alpha = 0.05, \beta = 500$.
- Two forces in the model: edge extension and angular deviation.
- Find displacement u: Ku = f (tensile, distributed load)
- Theory extends to vector valued setting (Korn, K ∼ L)
- DD with H = 1/4, 1/8, 1/16, 1/32.

⁵Kettil et. al. Numerical upscaling of discrete network models, BIT 2020

Example: A fibre network model

- Graph Laplacian and model problem
- Network assumptions
- Convergence of a semi-iterative solver
- Numerical examples
- Conclusions

Conclusions

- The network should resemble a homogeneous material on coarse scales $H > H_0$
- Direct solver on fine scales (localized, in parallell)
- Poincaré type inequality plays a crucial role in the analysis
- Numerical PDE methods/analysis can be applied to spatial network models