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Partial differential equations (PDEs)
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Mathematical model of physical processes
1 Complex movement of leaves in the wind. (Navier-Stokes)
2 Temperature distribution in this room. (Heat equation)
3 Someone leaning at a desk. (Linear elasticity)
4 The molecules floating around us. (Schrödinger)
5 Electromagnetic field allows surfing the web. (Maxwell)
6 Several coupled physical processes. (Systems of PDEs)

Solving PDEs is crucial in industry, academia, environment, ...



Parabolic partial differential equations
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The heat equation:

u̇ −∆u = f , x ∈ Ω, u(0) = u0.
1 Heat equation, u is temperature and f heat source.
2 Smoothing property, infinite speed of propagation, as opposed

to waves (audio).
3 If f = f(u) the equation is semilinear, leads to different

behaviour.
4 Allen-Cahn f(u) = u − u3, phase separation in alloys.



Numerical techniques for solving PDEs
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The heat equation:

u̇ −∆u = f(u), in Ω, u(0) = u0.
1 We discretize the domain Ω into finite elements.
2 We discretize in time u̇ ≈ un+1−un

k .

un+1 − un

k
−∆hun+1 = Phf(un+1),

where u0 = Phu0, and Ph is some map into the FE space.



Numerical techniques for solving PDEs
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If we were to compute the temperature in a large room of size
16m × 16m × 4m, the algebraic system of equations

un+1 − un

k
−∆hun+1 = Phf(un+1),

has a huge number of unknowns.
1 Grid on centimeter-scale: size∆h ≈ 109 × 109.
2 A (non)linear system of 109 unknowns need to be solved in

every time step.
3 This procedure need to be repeated perhaps 103 times.
4 This is extremely time consuming (costly) or impossible on

many computers.
5 Only development of faster computers is not enough,

numerical analysis is needed!



Splitting
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We consider a semilinear heat equation (Allen-Cahn),

u̇ −∆u = f(u), t ∈ (0,T ]

In each time step we wish to,
first solve a pure diffusion problem, u̇ = ∆u,
then a pure reaction problem, u̇ = f(u).



Splitting
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We discretize in time 0 = t0 < t1 < · · · < tn < · · · < tN = T .
Given us

n−1 ≈ u(tn−1), on (tn−1, tn), we solve{
u̇d = ∆ud

ud
n−1 = us

n−1

{
u̇r = f(ur)
ur

n−1 = ud
n

us
n = ur

n ≈ u(tn).

We thereby make a physical split of the equation. This procedure is
called exponential splitting or Lie-Trotter splitting (for operators in
the 1950s).



Splitting
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The diffusion equation is the standard heat equation for which
very efficient methods exists.
Another advantage is that the reaction equation do not contain
spatial derivatives and can be solved cheaply.
We can allow different time steps for different subproblems.
However, the accuracy of the splitting must be controlled.



More advanced splitting techniques
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In general we consider an equation,

u̇ = Au + F(u),

where A = ∆ in the previous example.
If we let the solution operators to v̇ = Av and ẇ = Fw be denoted
ekA and ekF where k is the time step size. The Lie-Trotter splitting
scheme can be written

us
n = ekFekAus

n−1

A second order (more accurate) splitting scheme is the Strang
splitting,

us
n = e

1
2 kAekFe

1
2 kAus

n−1,

which means half a time step diffusion, a full time step reaction, and
half a time step diffusion.



Error analysis
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The error consists of two parts: discretization in space (h) and
discretization and splitting in time (k ).
High order methods need high smoothness in the solution.
The different error sources are not independent.
Understanding of error is (besides development of the method)
the most important task in numerical analysis.



Multiphysics example
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We consider temperature (θ), electric potential (φ), and
displacement (u) in a micro-electro-mechanical system,

θ̇ −∆θ = κ(θ)|∇φ|2 − ∇ · u̇
−∇ · κ(θ)∇φ = 0

ü − ∇ · (ε(u) − αθI) = f.

We apply a voltage to the contacts which induces Joule heating
giving rise to thermal stresses that bends the device.



Multiphysics example
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We split the system in each time step into:
a heat equation,
an elliptic equation for the electric potential,
an elastic wave equation.


Dtθn −∆θn = κ(θn−1)|∇φn−1|

2 − ∇ · Dtun−1

−∇ · κ(θn)∇φn = 0
D2

t un − ∇ · (ε(un) − αθnI) = f.



Multiphysics example
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Splitting techniques are very natural and necessary.
The error analysis is complicated, not just splitting errors but
discretization in time and space, error in data transfer between
solvers (possibly different grids, methods), . . .
Errors may trigger numerical instability which destroys
convergence.
Already existence and uniqueness of solution and regularity of
solutions is difficult.
This situation is typical in real applications.



Erik’s contribution
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This is an important field of research with direct applications in
many areas of science.

A theoretical framework for analyzing the error due to splitting
for semilinear evolution problems (Paper I).
An analysis of the combined effect of splitting and spatial error
for linear parabolic problems (Paper II).
An analysis of combining physical and spatial splitting (domain
decomposition) (Paper III).
Real applications where splitting reduces the computational
cost (Papers IV and V ).


