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Multiscale problems

We consider applications such as

> composite materials > flow in a porous medium

that require numerical solution of partial differential equations with
rough data (module of elasticity, conductivity, or permeability).

Major challenges: High contrast and thin structures.
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The finite element method

The Poisson equation: leta < A < g, f € L3(Q)
-V-AVu=f inQ u=0 ono.
On weak form: find u € V := H}(Q2) such that
a(u,v) := f(AVu)-Vvdx = f f-vdx forallveV.
Q Q

FE approximation: find u, € V}, C V such that

a(up, v) == f(AVuh)-Vvdx = f f-vdx forallve V.
Q Q

Error bound if u € H?(Q):
llu = unlll := A2V (U = up)ll2(@) ~ C(A")h.
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Multiscale methods

Objectives:
@ Find a subspace of V[i° C V,, for which u® € V|7°

a(up®,v) = fQ(AVu,T,S) -Vvdx = fo- vdx forall v e VJ®,

fulfills, with C independent of A’,
llun — uFlll < CH,

but with dim(V}}®) < dim(V).
@ Show that a basis for V/° can be constructed by local parallel
computations.

@ Reuse the coarse representation in applications.
@ Multiscale methods: VMS, MsFEM, HMM, GFEM, GMsFEM...
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Orthogonal decomposition

@ (coarse) FE mesh 7 with parameter H > h
@ P1-FE space V, :={ve V|VT e T,v|r € Py(T)}
@ 37 : V — V, some interpolation operator

Decomposition
V=VyeV with V' :=kernel3 ={veV|JIrv=0}

@ For each v € V, define finescale projection Qv € V' by

a(Qv,w) = a(v,w) forallwe V'

a-Orthogonal Decomposition
V=VrEeV with VIS :=(Vy-QVy)
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|deal multiscale representation

Given the space V/}° we construct a Galerkin approximation:

Ideal method
Find u}}® € VJ° such that

a(ug®,v) = (f,v), Yve V5.

We have that u — u®* = ur € V' since u]}® is the a-orthogonal
projection of u onto V7. Therefore

Cs
Nudl? = a(u, ur) = (f, uf) = (f, ur — Juy) < 1/2”Hf”L2(Q)|Huf|”-
For V7 to be useful we need a discrete local basis.
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Localization of multiscale basis

@ ¢, € Vi denotes the classical nodal basis function
@ Q¢, € V' denotes the finescale correction of ¢,

Generalized FE space
Vi® = span{¢x — Qax}

Example

¢x — Qpx € V[I® Py € Vy Qi eV
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Localization of multiscale basis

@ ¢, € Vi denotes the classical nodal basis function
@ Q¢, € V' denotes the finescale correction of ¢,

Generalized FE space
V,E[qi = span {¢x — Qxd«}

Example
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Py € Vy Qupx € VI
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Localization of multiscale basis

@ ¢, € Vi denotes the classical nodal basis function
@ Q¢, € V' denotes the finescale correction of ¢,

Generalized FE space
V" = span {g, — Qcndx)

Example

#x € Vy Qundx € V'
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Localization of multiscale basis

@ ¢, € Vi denotes the classical nodal basis function
@ Q¢, € V' denotes the finescale correction of ¢,

Generalized FE space

VITj(’h = span {¢x - Qk,h¢x}

Localized Orthogonal Decomposition
. ms,h ms,h
Find u " € Vy; " such that
a(u:,‘i’h, v)=(f,v), forallve Vl[”,j(‘h

A priori bound:
llun — uf il < CH

where k = Cy(8/a)log(H™") and C independent of A’.
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High contrast data (with Fredrik Hellman)

Poisson equation:
-V-AVu=f inQ u=0 ono.

A =1inQy (black), A = ain Q,, @ < 1, and f = x1/43/4-

@ High contrast data with channels leads to non-local behaviour.

@ The decay rate of the basis functions determines the accuracy
of LOD.

@ The choice of interpolant I7v = ),y V., @« affects the decay.
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Numerical example: High contrast

High contrast data Three examples: H

Weleta = 1071,..

10°
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,107® and plot |||u, — um3”||| vs. k, with 357,
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Scott-Zhang type interpolation

Nodal variables:
Let x € N be nodes of 7 and o, C QQ associated domains. We
define a L?(o)-dual basis y, € Vj fulfilling,

¢’x¢y - 6xy-
Let the nodal variable N ( f YV and,

J7v = Z Ny (V)

XeN

@ o, does not need to be full elements T or vertex patches U (x).

@ The stability of |[Ny(v)| < Iz (o)lIVIlL2(o,) dEPENS ON the size
and shape of oy and its distance to x.
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Geometry dependent interpolation

@ The interpolant 37v = ',y V.-, ¢x defines V; and V]J°.
@ We need to force correctors to be small in the channels!

Q If x € Q, let oy = wy, vertex patch
Q If x € Qq let oy C wy N 4, connected
© We need sufficiently many nodes in Q4 (separation ~ H)

Then we can prove decay independent of a.
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Numerical example: High contrast

High contrast data Three examples: H = 274, h = 2719,
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We let @ = 107",...,107¢ and plot [[lu, — uf}3"lll vs. k with 37,
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Interface model (ongoing with Siyang Wang)

Thin structures (so far) need to be resolved.

>t
€

As € — 0 we have convergence (with rate) to an interface problem.
-V-AVu=f, inQ
u=0, onodQ2
[uj=0, onTl
=Vr-AVru=fr—[n-AVu], onT.
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Weak form and LOD

On weak form we have: find u € V = H}(2) n H'(I") such that

a(u,v) :—fAVu-Vvdx+fArVru-Vrvds—ffvdx+ffrvds,
Q r Q r

forall ve V = H}(Q) n H'(). We note that a(-, -) is a scalar
product on V.

Localized Orthogonal Decomposition
Given an interpolant 34 : V — Vy we can formulate the LOD
method: find u}}® € V/J° such that

a(uﬂs,v):ffvderffrvds, forallv e VJ°.
Q r
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Edge based Scott-Zhang interpolation

Fulfills convergence result we need

1/2
IV = 37Vllizy + IV = 37 vilezry < CH(IVIE gy + IVIE ) -

Decay follows if we take averages on the interface.

The figure shows domain of integration and edge based versus
element based interpolation.

@ Fine scale discretization: A simple finite element method for
elliptic bulk problems with embedded surfaces Burman et.al.
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Numerical example

Let Ar = 1 and A be random between 0.1 and 1 (left and right) and
between 0.5 and 1 (middle), f =1, fr = 5.

Data varies on 27" and h = 27°, k = log(H™").

o7 26 25 o4 23

Error in energy norm vs H.
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Applications of LOD

Stationary/eigenvalue problems

@ Gross-Pitaevskii, (Henning-M.-Peterseim), 2014.

@ Helmholtz, (Ohlberger-Verfirth, Gallistl-Peterseim), 2015-2017.
@ Reduced basis, (Abdulle-Henning), 2015.
°

Linear and quadratic eigenvalue problems, (M.-Peterseim),
2015-2016.

@ Elasticity, (Henning-Persson), 2016.

@ Fractional Laplacians, (Brown et.al.), 2018.

@ Stochastic diffusion, (Gallistl-Peterseim), 2018.
Time-dependent problems

@ Heat equation and thermoelasticity, (M. & Persson),
2017-2018.

@ Wave equation, (Abdulle & Henning), 2017.
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Comments and conclusion

@ Multiscale methods are useful when solving many similar
problems.

@ Thin high conductivity channels are challenging and important.

@ Global fine scale connections are equally problematic for
iterative methods (Multigrid, DD).

@ We treat this by splitting the space with carefully chosen
interpolants.

@ LOD works well for problems with interfaces using edge based
interpolation.

@ Future work include interior interfaces and wave propagation in
fractured porous media.
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