## A New Mixed Multiscale Method for Oil Reservoir Simulation

Mats G. Larson and Axel Målqvist

mgl@math.chalmers.se and axel@math.chalmers.se

**Department of Mathematics, Umeå University and Chalmers** 

## **The Model Problem**

Poisson Equation on mixed form:

$$\begin{cases} \frac{1}{a}\boldsymbol{\sigma} - \nabla u = 0 & \text{in } \Omega, \\ -\nabla \cdot \boldsymbol{\sigma} = f & \text{in } \Omega, \\ n \cdot \boldsymbol{\sigma} = 0 & \text{on } \Gamma. \end{cases}$$

where a > 0 bounded,  $\Omega$  is a domain in  $\mathbb{R}^d$ , d = 1, 2, 3, with boundary  $\Gamma$ , and f is a given function.



Elliptic problems of this kind needs to be solved in oil reservoir simulation.



Figure 1: 2D slice of permeability (a) in oil reservoir (log scale)  $\max a / \min a = 1.8e4$ .

## Why Multiscale Method?

• If we for the moment assume a to be periodic  $a = a(x/\epsilon)$  we have (Hou),

$$\left\|\frac{1}{\sqrt{a}}(\boldsymbol{\sigma}-\boldsymbol{\Sigma})\right\| \leq C\frac{h}{\epsilon}.$$

- h > \epsilon will give unreliable results even with exact quadrature.
- h < \epsilon will be to computationally expensive to solve on a single mesh.
- Parallelized local problems must be solved.

## Weak form

Find  $\sigma \in V = \{ v \in H(\operatorname{div}; \Omega) : n \cdot v = 0 \text{ on } \Gamma \}$ and  $u \in W = L^2(\Omega)/\mathbb{R}$  such that,

$$\begin{cases} \left(\frac{1}{a}\boldsymbol{\sigma},\boldsymbol{v}\right) + \left(u,\nabla\cdot\boldsymbol{v}\right) = 0,\\ -(\nabla\cdot\boldsymbol{\sigma},w) = (f,w), \end{cases}$$

for all  $\boldsymbol{v} \in \boldsymbol{V}$  and  $w \in W$ .

Here  $(\cdot, \cdot)$  denotes the  $L^2(\Omega)$  scalar product for vector and scalar functions.

We introduce spaces  $V_c \oplus V_f = V$  and  $W_c \oplus W_f = W$  (Hughes).

- V<sub>c</sub> is a finite dimensional approximation of H(div; Ω). (finite element space e.g. Raviart-Thomas)
- $W_c$  is an approximation of  $L^2(\Omega)$ . (e.g. piecewise constants).
- The degrees of freedom in these spaces should be possible to handle on a single computer.

Find  $\sigma_c \in V_c$ ,  $\sigma_f \in V_f$ ,  $u_c \in W_c$ , and  $u_f \in W_f$  such that,

$$\begin{cases} \left(\frac{1}{a}\boldsymbol{\sigma}_{c},\boldsymbol{v}_{c}\right)+\left(\frac{1}{a}\boldsymbol{\sigma}_{f},\boldsymbol{v}_{c}\right)+\left(u_{c},\nabla\cdot\boldsymbol{v}_{c}\right)+\left(u_{f},\nabla\cdot\boldsymbol{v}_{c}\right)=0\\ -\left(\nabla\cdot\boldsymbol{\sigma}_{c},w_{c}\right)-\left(\nabla\cdot\boldsymbol{\sigma}_{f},w_{c}\right)=\left(f,w_{c}\right)\\ \left(\frac{1}{a}\boldsymbol{\sigma}_{f},\boldsymbol{v}_{f}\right)+\left(u_{f},\nabla\cdot\boldsymbol{v}_{f}\right)=-\left(\frac{1}{a}\boldsymbol{\sigma}_{c},\boldsymbol{v}_{f}\right)-\left(u_{c},\nabla\cdot\boldsymbol{v}_{f}\right)\\ -\left(\nabla\cdot\boldsymbol{\sigma}_{f},w_{f}\right)=\left(f,w_{f}\right)+\left(\nabla\cdot\boldsymbol{\sigma}_{c},w_{f}\right)\end{cases}\end{cases}$$

for all  $\boldsymbol{v}_c \in \boldsymbol{V}_c$ ,  $\boldsymbol{v}_f \in \boldsymbol{V}_f$ ,  $w_c \in W_c$ , and  $w_f \in W_f$ .



Figure 2:  $\sigma$  and u on coarse and fine scale.

# Orthogonality

We use an hierarchical basis of Raviart-Thomas element for the flux and the piecewise constants for the pressure.

$$(w_c, \nabla \cdot \boldsymbol{v}_f) = \sum_K (w_c, \nabla \cdot \boldsymbol{v}_f)_K = \sum_K w_c^K \int_{\partial K} \boldsymbol{n} \cdot \boldsymbol{v}_f \, dx = 0$$

where  $w_c^K$  is the constant at coarse element K,

$$(w_f, \nabla \cdot \boldsymbol{v}_c) = \sum_K (w_f, \nabla \cdot \boldsymbol{v}_c)_K = \sum_K \nabla \cdot \boldsymbol{v}_c^K \int_K w_f \, dx = 0$$

۲

Find  $\sigma_c \in V_c$ ,  $\sigma_f \in V_f$ ,  $u_c \in W_c$ , and  $u_f \in W_f$  such that,

$$\begin{cases} \left(\frac{1}{a}\boldsymbol{\sigma}_{c},\boldsymbol{v}_{c}\right)+\left(\frac{1}{a}\boldsymbol{\sigma}_{f},\boldsymbol{v}_{c}\right)+\left(u_{c},\nabla\cdot\boldsymbol{v}_{c}\right)+\left(u_{f},\nabla\cdot\boldsymbol{v}_{c}\right)=0\\ -\left(\nabla\cdot\boldsymbol{\sigma}_{c},w_{c}\right)-\left(\nabla\cdot\boldsymbol{\sigma}_{f},w_{c}\right)=\left(f,w_{c}\right)\\ \left(\frac{1}{a}\boldsymbol{\sigma}_{f},\boldsymbol{v}_{f}\right)+\left(u_{f},\nabla\cdot\boldsymbol{v}_{f}\right)=-\left(\frac{1}{a}\boldsymbol{\sigma}_{c},\boldsymbol{v}_{f}\right)-\left(u_{c},\nabla\cdot\boldsymbol{v}_{f}\right)\\ -\left(\nabla\cdot\boldsymbol{\sigma}_{f},w_{f}\right)=\left(f,w_{f}\right)+\left(\nabla\cdot\boldsymbol{\sigma}_{c},w_{f}\right)\end{cases}\end{cases}$$

for all  $\boldsymbol{v}_c \in \boldsymbol{V}_c$ ,  $\boldsymbol{v}_f \in \boldsymbol{V}_f$ ,  $w_c \in W_c$ , and  $w_f \in W_f$ .

#### **Modified set of Equations**

۲

Find  $\sigma_c \in V_c$ ,  $\sigma_f \in V_f$ ,  $u_c \in W_c$ , and  $u_f \in W_f$  such that,

$$\begin{cases} \left(\frac{1}{a}\boldsymbol{\sigma}_{c},\boldsymbol{v}_{c}\right)+\left(\frac{1}{a}\boldsymbol{\sigma}_{f},\boldsymbol{v}_{c}\right)+\left(u_{c},\nabla\cdot\boldsymbol{v}_{c}\right)=0\\ -\left(\nabla\cdot\boldsymbol{\sigma}_{c},w_{c}\right)=\left(f,w_{c}\right)\\ \left(\frac{1}{a}\boldsymbol{\sigma}_{f},\boldsymbol{v}_{f}\right)+\left(u_{f},\nabla\cdot\boldsymbol{v}_{f}\right)=-\left(\frac{1}{a}\boldsymbol{\sigma}_{c},\boldsymbol{v}_{f}\right)\\ -\left(\nabla\cdot\boldsymbol{\sigma}_{f},w_{f}\right)=\left(f,w_{f}\right)\end{cases}\end{cases}$$

for all  $\boldsymbol{v}_c \in \boldsymbol{V}_c$ ,  $\boldsymbol{v}_f \in \boldsymbol{V}_f$ ,  $w_c \in W_c$ , and  $w_f \in W_f$ .

## **Decoupling of Fine Scale Equations**

We start by introducing two partitions of unity,  $\sum_i \phi_i = I$  and  $\sum_i \psi_i = 1$  where I is the identity matrix,  $\phi_i \in V_c$  coarse Raviart-Thomas base function, and  $\psi_i \in W_c$  coarse piecewise constant base functions.





#### Figure 3: $\psi_i$ , and $\phi_i$ .

### **Decoupling of Fine Scale Equations**

We introduce  $\sigma_{f,i} \in V_f$  and  $u_{f,i} \in W_f$  such that  $\sigma_c = \sum_i \sigma_c^i \phi_i, \sigma_c^i \in \mathbb{R}$ ,  $u_c, \sigma_f = \sum_i \sigma_{f,i}$ , and  $u_f = \sum_i u_{f,i}$  solves:

$$\begin{cases} \left(\frac{1}{a}\boldsymbol{\sigma}_{c},\boldsymbol{v}_{c}\right)+\left(\frac{1}{a}\boldsymbol{\sigma}_{f},\boldsymbol{v}_{c}\right)+\left(u_{c},\nabla\cdot\boldsymbol{v}_{c}\right)=0,\\ -\left(\nabla\cdot\boldsymbol{\sigma}_{c},w_{c}\right)=\left(f,w_{c}\right),\\ \left(\frac{1}{a}\boldsymbol{\sigma}_{f,i},\boldsymbol{v}_{f}\right)+\left(u_{f,i},\nabla\cdot\boldsymbol{v}_{f}\right)=-\left(\frac{1}{a}\boldsymbol{\sigma}_{c}^{i}\boldsymbol{\phi}_{i},\boldsymbol{v}_{f}\right),\\ -\left(\nabla\cdot\boldsymbol{\sigma}_{f,i},w_{f}\right)=\left(f,w_{f}\psi_{i}\right),\end{cases}\end{cases}$$

for all  $v_c \in V_c$ ,  $v_f \in V_f$ ,  $w_c \in W_c$ , and  $w_f \in W_f$ .

### **Local Solutions**



Figure 4: The local solutions  $\sigma_{f,i}$  and  $u_{f,i}$ In this simple example a = 1.

## **Motivation for Introducing Patches**

- The right hand side has support on  $supp(\phi_i) = supp(\psi_i)$ .
- The equations are solved in a slice space where solutions decay rapidly.

$$\int_E \boldsymbol{n} \cdot \boldsymbol{\sigma}_{f,i} \, dx = 0$$

and

۲

$$\int_{K} u_{f,i} \, dx = 0.$$

## **The Patch**



The patch  $\omega_i$  typically consists of coarse elements but could have any geometry.

## **Solving Local Neumann Problems**

Find  $\Sigma_c = \sum_i \Sigma_c^i \phi_i \in V_H$ ,  $\Sigma_{f,i} \in V_h(\omega_i)$ ,  $U_c \in W_H$ , and  $U_{f,i} \in W_h(\omega_i)$  such that

۲

$$\begin{cases} \left(\frac{1}{a}\boldsymbol{\Sigma}_{c},\boldsymbol{v}_{c}\right)+\left(\frac{1}{a}\boldsymbol{\Sigma}_{f},\boldsymbol{v}_{c}\right)+\left(U_{c},\nabla\cdot\boldsymbol{v}_{c}\right)=0,\\ -\left(\nabla\cdot\boldsymbol{\Sigma}_{c},w_{c}\right)=\left(f,w_{c}\right),\\ \left(\frac{1}{a}\boldsymbol{\Sigma}_{f,i},\boldsymbol{v}_{f}\right)+\left(U_{f,i},\nabla\cdot\boldsymbol{v}_{f}\right)=-\left(\frac{1}{a}\boldsymbol{\Sigma}_{c}^{i}\boldsymbol{\phi}_{i},\boldsymbol{v}_{f}\right),\\ -\left(\nabla\cdot\boldsymbol{\Sigma}_{f,i},w_{f}\right)=\left(f,w_{f}\psi_{i}\right),\end{cases}\end{cases}$$

for all  $\boldsymbol{v}_c \in \boldsymbol{V}_H$ ,  $\boldsymbol{v}_f \in \boldsymbol{V}_h(\omega_i)$ ,  $w_c \in W_H$ , and  $w_f \in W_h(\omega_i)$ .

### **Example of Local Solutions** U



Figure 5: Above: 1, 2, and 3 layer patches, below:  $U_c$ ,  $U_f$ , and, U using 3 layers of coarse elements.

### Example of Local Solutions $\Sigma$



Figure 6: Above: 1, 2, and 3 layer patches, below:  $\Sigma_c$ ,  $\Sigma_f$ , and,  $\Sigma$  using 3 layers of coarse elements.

## **Oil Reservoir Simulation**

In the figure we see the bottom layer of the Upper Ness formation.



We let f = 1 in the lower left corner and f = -1in the upper right corner.  $\max a / \min a = 1.8e4$ .

### **Oil Reservoir Simulation**



Figure 7: To the left we see the flux and to the right the pressure. We use  $220 \times 60$  elements for the reference solution.

#### **Oil Reservoir Simulation**



Figure 8:  $55 \times 15$  coarse elements and h = H/4.

## Conclusions

- We see exponential decay in max norm error compared with reference solution for increasing the number of layers.
- Slightly slower convergence for the flux but still exponential.
- Natural question: Is it necessary to solve local problems with same resolution and accuracy on the entire domain?

# Energy Norm Estimate $\|oldsymbol{v}\|_a^2 = \overline{(rac{1}{a}oldsymbol{v},oldsymbol{v})}$

Next we present an estimate of the error.

۲

$$\begin{split} \|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_{a}^{2} &\leq \sum_{i} C_{a} \|\frac{1}{a} (\boldsymbol{\Sigma}_{c}^{i} \boldsymbol{\phi}_{i} + \boldsymbol{\Sigma}_{f,i}) - \nabla U_{f,i}^{*}\|_{\omega_{i}}^{2} \\ &+ \sum_{i} C_{a} \|h(f\psi_{i} + \nabla \cdot (\boldsymbol{\Sigma}_{c}^{i} \boldsymbol{\phi}_{i} + \boldsymbol{\Sigma}_{f,i}))\|_{\omega_{i}}^{2} . \\ &+ \sum_{i} C_{a} \|\frac{1}{2\sqrt{h}} U_{f,i}^{*}\|_{\partial\omega_{i}\setminus\Gamma}^{2} \end{split}$$

 $U^*$  is a post processed version of U.

## Adaptive Strategy

• Calculate  $\Sigma$ .

۲

Calculate the error indicators on each patch,

$$X_i(h) = \left\| \frac{1}{a} (\boldsymbol{\Sigma}_c^i \boldsymbol{\phi}_i + \boldsymbol{\Sigma}_{f,i}) - \nabla U_{f,i}^* \right\|_{\omega_i}^2$$

$$Y_{i}(h) = \|h(f\psi_{i} + \nabla \cdot (\boldsymbol{\Sigma}_{c}^{i}\boldsymbol{\phi}_{i} + \boldsymbol{\Sigma}_{f,i}))\|_{\omega_{i}}^{2}$$
$$Z_{i}(L) = \|\frac{1}{2\sqrt{h}}U_{f,i}^{*}\|_{\partial\omega_{i}\setminus\Gamma}^{2}$$

# **Adaptive Strategy**

۲

- If indicators  $X_i(h)$  or  $Y_i(h)$  are big on a patch we decrease h.
- If indicator  $Z_i(L)$  is big we increase the size of the patch.
- Go back to the first step or stop if the solution is good enough.

## **Back to the Numerical Example**

- We start with one layer patches with one refinement in all local problems.
- We calculate the error estimators.
- Then we increase 25% of the patches with one layer and refine the mesh on 25% according to the estimators.
- We repeat this process one more time.

### Number of Layers and Refinements



Black circle is one, blue is two and red is three layers/refinements.

## **Reactive Error in Energy Norm**

#### Galerkin 105.6% and one iteration 15.8%.



#### Two iterations 10.1% and three iterations 7.6%.

## Conclusions

- The error indicators finds critical areas.
- More computational effort in these areas decreases the global error quickly.
- To get an equally good approximation without adaptivity we need to use three refinements on two layer patches.
- In the example above we still have 70% of the patches using one layer and one refinement.

# Applications

Given a good approximation of  $\sigma$  we can solve the following equation to simulate the water concentration in the well.

$$\begin{cases} \dot{c} + \nabla \cdot (\boldsymbol{\sigma} c) - \epsilon \Delta c = g \quad \text{in } \Omega \times (0, T], \\ \partial_n c = 0 \quad \text{on } \Gamma, \\ c = c_0 \quad \text{for } t = 0, \end{cases}$$

We use cg1-cg1 with sd to solve the equation since  $\epsilon$  is very small.

# Applications

#### Water concentration at different times.



#### $\sigma$ taken from top layer in Tarbert formation.

# Outlook

•

- Implementation in 3D.
- More scales.
- Multiscale approach for the transport problem.