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The Model Problem

Poisson Equation on mixed form:










1

a
σ −∇u = 0 in Ω,

−∇ · σ = f in Ω,

n · σ = 0 on Γ.

where a > 0 bounded, Ω is a domain in R
d,

d = 1, 2, 3, with boundary Γ, and f is a given
function.
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Applications

Elliptic problems of this kind needs to be solved
in oil reservoir simulation.
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Figure 1: 2D slice of permeability (a) in oil reser-
voir (log scale) max a/min a = 1.8e4.
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Why Multiscale Method?

• If we for the moment assume a to be periodic
a = a(x/ε) we have (Hou),

‖ 1√
a
(σ − Σ)‖ ≤ C

h

ε
.

• h > ε will give unreliable results even with
exact quadrature.

• h < ε will be to computationally expensive to
solve on a single mesh.

• Parallelized local problems must be solved.
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Weak form

Find σ ∈ V = {v ∈ H(div; Ω) : n · v = 0 on Γ}
and u ∈ W = L2(Ω)/R such that,

{

(1

a
σ,v) + (u,∇ · v) = 0,

−(∇ · σ, w) = (f, w),

for all v ∈ V and w ∈ W .

Here (·, ·) denotes the L2(Ω) scalar product for
vector and scalar functions.

Presentation at the third M.I.T. conference in Cambridge, MA, 14 june 2005 – p. 5



Coarse and Fine Scales

We introduce spaces V c ⊕ V f = V and
Wc ⊕Wf = W (Hughes).

• V c is a finite dimensional approximation of
H(div; Ω). (finite element space e.g.
Raviart-Thomas)

• Wc is an approximation of L2(Ω). (e.g.
piecewise constants).

• The degrees of freedom in these spaces
should be possible to handle on a single
computer.
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Coarse and Fine Scales

Find σc ∈ V c, σf ∈ V f , uc ∈ Wc, and uf ∈ Wf

such that,


















(1

a
σc,vc) + (1

a
σf ,vc) + (uc,∇ · vc) + (uf ,∇ · vc) = 0

−(∇ · σc, wc) − (∇ · σf , wc) = (f, wc)

(1

a
σf ,vf) + (uf ,∇ · vf) = −(1

a
σc,vf) − (uc,∇ · vf)

−(∇ · σf , wf) = (f, wf) + (∇ · σc, wf)

for all vc ∈ V c, vf ∈ V f , wc ∈ Wc, and wf ∈ Wf .
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Coarse and Fine Scales

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

5

10

15

20

0

5

10

15

20

−2

−1

0

1

2

3

4

x 10−4

0

5

10

15

20

0

5

10

15

20

−2

−1

0

1

2

3

4

x 10−4

0

5

10

15

20

0

5

10

15

20
−3

−2

−1

0

1

2

3

4

x 10−4

Figure 2: σ and u on coarse and fine scale.
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Orthogonality

We use an hierarchical basis of Raviart-Thomas
element for the flux and the piecewise constants
for the pressure.

(wc,∇·vf) =
∑

K

(wc,∇·vf)K =
∑

K

wK
c

∫

∂K

n·vf dx = 0

where wK
c is the constant at coarse element K,

(wf ,∇·vc) =
∑

K

(wf ,∇·vc)K =
∑

K

∇·vK
c

∫

K

wf dx = 0
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Coarse and Fine Scales

Find σc ∈ V c, σf ∈ V f , uc ∈ Wc, and uf ∈ Wf

such that,


















(1

a
σc,vc) + (1

a
σf ,vc) + (uc,∇ · vc) + (uf ,∇ · vc) = 0

−(∇ · σc, wc) − (∇ · σf , wc) = (f, wc)

(1

a
σf ,vf) + (uf ,∇ · vf) = −(1

a
σc,vf) − (uc,∇ · vf)

−(∇ · σf , wf) = (f, wf) + (∇ · σc, wf)

for all vc ∈ V c, vf ∈ V f , wc ∈ Wc, and wf ∈ Wf .
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Modified set of Equations

Find σc ∈ V c, σf ∈ V f , uc ∈ Wc, and uf ∈ Wf

such that,


















(1

a
σc,vc) + (1

a
σf ,vc) + (uc,∇ · vc) = 0

−(∇ · σc, wc) = (f, wc)

(1

a
σf ,vf) + (uf ,∇ · vf) = −(1

a
σc,vf)

−(∇ · σf , wf) = (f, wf)

for all vc ∈ V c, vf ∈ V f , wc ∈ Wc, and wf ∈ Wf .
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Decoupling of Fine Scale Equations

We start by introducing two partitions of unity,
∑

i φi = I and
∑

i ψi = 1 where I is the identity
matrix, φi ∈ V c coarse Raviart-Thomas base
function, and ψi ∈ Wc coarse piecewise constant
base functions.
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Figure 3: ψi, and φi.
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Decoupling of Fine Scale Equations

We introduce σf,i ∈ V f and uf,i ∈ Wf such that
σc =

∑

i σ
i
cφi, σi

c ∈ R, uc, σf =
∑

i σf,i, and
uf =

∑

i uf,i solves:


















(1

a
σc,vc) + (1

a
σf ,vc) + (uc,∇ · vc) = 0,

−(∇ · σc, wc) = (f, wc),

(1

a
σf,i,vf) + (uf,i,∇ · vf) = −(1

a
σi

cφi,vf),

−(∇ · σf,i, wf) = (f, wfψi),

for all vc ∈ V c, vf ∈ V f , wc ∈ Wc, and wf ∈ Wf .
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Local Solutions
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Figure 4: The local solutions σf,i and uf,i

In this simple example a = 1.

Presentation at the third M.I.T. conference in Cambridge, MA, 14 june 2005 – p. 14



Motivation for Introducing Patches

• The right hand side has support on
supp(φi) = supp(ψi).

• The equations are solved in a slice space
where solutions decay rapidly.

∫

E

n · σf,i dx = 0

and
∫

K

uf,i dx = 0.
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The Patch
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The patch ωi typically consists of coarse
elements but could have any geometry.
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Solving Local Neumann Problems

Find Σc =
∑

i Σ
i
cφi ∈ V H , Σf,i ∈ V h(ωi),

Uc ∈ WH , and Uf,i ∈ Wh(ωi) such that


















(1

a
Σc,vc) + (1

a
Σf ,vc) + (Uc,∇ · vc) = 0,

−(∇ · Σc, wc) = (f, wc),

(1

a
Σf,i,vf) + (Uf,i,∇ · vf) = −(1

a
Σ

i
cφi,vf),

−(∇ · Σf,i, wf) = (f, wfψi),

for all vc ∈ V H , vf ∈ V h(ωi), wc ∈ WH , and
wf ∈ Wh(ωi).
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Example of Local Solutions U

0

5

10

15

20

0

5

10

15

20
−6

−4

−2

0

2

4

6

x 10−6

0

5

10

15

20

0

5

10

15

20
−5

0

5

x 10−6

0

5

10

15

20

0

5

10

15

20
−5

0

5

x 10−6

0

5

10

15

20

0

5

10

15

20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10−4

0

5

10

15

20

0

5

10

15

20
−1.5

−1

−0.5

0

0.5

1

1.5

x 10−4

0

5

10

15

20

0

5

10

15

20
−3

−2

−1

0

1

2

3

4

x 10−4

Figure 5: Above: 1, 2, and 3 layer patches, below:
Uc, Uf , and, U using 3 layers of coarse elements.
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Example of Local Solutions Σ
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Figure 6: Above: 1, 2, and 3 layer patches, below:
Σc, Σf , and, Σ using 3 layers of coarse elements.
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Oil Reservoir Simulation

In the figure we see the bottom layer of the
Upper Ness formation.

0 50 100 150 200 250
0

10

20

30

40

50

60

We let f = 1 in the lower left corner and f = −1
in the upper right corner. max a/min a = 1.8e4.
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Oil Reservoir Simulation

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0
50

100
150

200
250

0
10

20
30

40
50

60
−4

−2

0

2

4

6

x 10−6

Figure 7: To the left we see the flux and to the
right the pressure. We use 220 × 60 elements for
the reference solution.
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Oil Reservoir Simulation
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Figure 8: 55 × 15 coarse elements and h = H/4.
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Conclusions

• We see exponential decay in max norm error
compared with reference solution for
increasing the number of layers.

• Slightly slower convergence for the flux but
still exponential.

• Natural question: Is it necessary to solve
local problems with same resolution and
accuracy on the entire domain?

Presentation at the third M.I.T. conference in Cambridge, MA, 14 june 2005 – p. 23



Energy Norm Estimate ‖v‖2
a = (1

av,v)

Next we present an estimate of the error.

‖σ − Σ‖2

a ≤
∑

i

Ca‖
1

a
(Σi

cφi + Σf,i) −∇U ∗
f,i‖2

ωi

+
∑

i

Ca‖h(fψi + ∇ · (Σi
cφi + Σf,i))‖2

ωi
.

+
∑

i

Ca‖
1

2
√
h
U ∗

f,i‖2

∂ωi\Γ

U ∗ is a post processed version of U .
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Adaptive Strategy

• Calculate Σ.
• Calculate the error indicators on each patch,

Xi(h) = ‖1

a
(Σi

cφi + Σf,i) −∇U ∗
f,i‖2

ωi

Yi(h) = ‖h(fψi + ∇ · (Σi
cφi + Σf,i))‖2

ωi

Zi(L) = ‖ 1

2
√
h
U ∗

f,i‖2

∂ωi\Γ
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Adaptive Strategy

• If indicators Xi(h) or Yi(h) are big on a patch
we decrease h.

• If indicator Zi(L) is big we increase the size of
the patch.

• Go back to the first step or stop if the solution
is good enough.
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Back to the Numerical Example

• We start with one layer patches with one
refinement in all local problems.

• We calculate the error estimators.
• Then we increase 25% of the patches with

one layer and refine the mesh on 25%
according to the estimators.

• We repeat this process one more time.
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Number of Layers and Refinements
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Black circle is one, blue is two and red is three
layers/refinements.
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Reactive Error in Energy Norm

Galerkin 105.6% and one iteration 15.8%.
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Two iterations 10.1% and three iterations 7.6%.
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Conclusions

• The error indicators finds critical areas.
• More computational effort in these areas

decreases the global error quickly.
• To get an equally good approximation without

adaptivity we need to use three refinements
on two layer patches.

• In the example above we still have 70% of the
patches using one layer and one refinement.
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Applications

Given a good approximation of σ we can solve
the following equation to simulate the water
concentration in the well.











ċ+ ∇ · (σc) − ε4c = g in Ω × (0, T ],

∂nc = 0 on Γ,

c = c0 for t = 0,

We use cg1-cg1 with sd to solve the equation
since ε is very small.
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Applications

Water concentration at different times.
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σ taken from top layer in Tarbert formation.
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Outlook

• Implementation in 3D.
• More scales.
• Multiscale approach for the transport

problem.
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