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Outline

• Model problems: Poisson equation with

- Randomly perturbed load and bnd condition
- Randomly perturbed coefficient

• Fast methods for computing the distribution of
the solution given the distribution of the data

• Error analysis and adaptivity
• Numerical example
• Summary and ideas on future work
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The first model problem

Strong form: The Dirichlet Problem with multiple
iid right hand sides, F s, s ∈ Λ,

−△U s = F s in Ω,

U s = 0 on Γ.

Weak form: Find U s ∈ V = H1
0(Ω) such that,

(∇U s,∇v) = (F s, v) for all v ∈ V.
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The corresponding adjoint problem

Strong form: Let ψ ∈ L2(Ω),

−△φ = ψ in Ω,

φ = 0 on Γ.

Weak form: Find φ ∈ V such that,

(∇w,∇φ) = (w,ψ) for all w ∈ V.

Note that the adjoint problem is deterministic.
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Simple observation

Using Green’s identity we get,

(U s, ψ) = (∇U s,∇φ) = (F s, φ) for s ∈ Λ.

• We can derive the distribution of (U,ψ) by just
solving one PDE.

• This works as long as the differential operator
is linear and deterministic i.e. for a wide
range of problems.

• It also works for stochastic initial and
boundary condition.

Donald Estep, Axel Målqvist, Simon Tavener, Colorado State University – p. 5



The second model problem

Strong form: The Poisson Equation with
randomly perturbed diffusion coefficient,
As = a+ As > 0, a deterministic, As piecewise
constant random, s ∈ Λ, As are iid, f ∈ L2(Ω) is
deterministic,

−∇ · As∇U s = f in Ω,

U s = 0 on Γ.

Weak form: Find U s ∈ V = H1
0(Ω) such that,

(As∇U s,∇v) = (f, v) for all v ∈ V.
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Diffusion coefficient
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The main idea

Remember As is piecewise constant. We will use
non-overlapping DD with domains, d, where As is
constant. On each domain we have,

U s,d = (Ka + As,dK)−1bs,

= (I + As,d(Ka)−1K)−1(Ka)−1bs,

≈
T−1∑

t=0

(−As,d(Ka)−1K)t(Ka)−1bs,

bs is rhs plus boundary conditions.
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The method

We have three parameters, I (iterations), D
(domains), and T (terms in the approx. inv.).

for i from 1 to I do
for d from 1 to D do

Compute K and (Ka)−1

for s from 1 to S do
Compute bs(f,As, U s

(i−1))

end for
U s,d

(i) ≈
∑T−1

t=0 (−As,d(Ka)−1K)t(Ka)−1bs

end for
end for

Donald Estep, Axel Målqvist, Simon Tavener, Colorado State University – p. 9



Numerical and stochastic errors

1. Space discretization error h, (both examples).

2. Not converging in the domain decomposition
algorithm I, (second example).

3. Finite number of terms to approximate the
matrix inverse T (second example).

4. Finite number of realizations used in order to
compute the desired stochastic quantity S
(both examples).

5. Stochastic modeling error D (second
example).
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Error control

There are different possibilities.
• Stochastic moments of linear functionals of

the solution,
|m({(U s, ψ)}s∈Λ) −MS({(U s

h, ψ)}s=1,...,S)|.
• The distribution function of linear functionals

of the solution,
|F (x) − F̃S(x)|,

where F (x) = P ({(U s, ψ)}s∈Λ < x) and
F̃S(x) = P ({(U s

h,I,T , ψ)}Ss=1 < x).
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Example for second problem

Let U s
h,I,T be the approximate solution,

U s
0,∞,∞ = U s, and es = U s

h,I,T − U s. We have the
following error representation formula,

(es, ψ) = (es,−∇ · As∇Φs)

= (f,Φs) − (As∇U s
h,∞,∞,∇Φs)

+ (As∇(U s
h,∞,T − U s

h,I,T ),∇Φs)

+ (As∇(U s
h,∞,∞ − U s

h,∞,T ),∇Φs)

= (esI , ψ) + (esII , ψ) + (esIII, ψ).
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Error estimates

Let maxs(|(esI , ψ)| + |(esII , ψ)| + |(esIII, ψ)|) ≤ eψM ,
where eψM = eψI + eψII + eψIII.

With probability
∫ τ

−∞ e−t
2/2 dt/

√
2π,

|F (x) − F̃S(x)| ≤
τC√
S

+ eψM · F̃ ′(x).

This is used to construct an adaptive algorithm.
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Example: oil reservoir simulation

−∇ · As∇U s = f in Ω,

As∂nU
s = 0 on ΓN ,

U s = 0 on ΓD,

where ΓN ∪ ΓD = Γ, U s is pressure, and As is
permeability. We let ψ = 1.
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Solution to one realization
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We use the adaptive algorithm, h is constant,
starting with I = 100, T = 1, and S = 30 and
ending up with I = 800, T = 4, and S = 240.
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Error indicators
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Converging distribution function

We plot the approximation to F (x) after each
iteration.
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Summary and future work

http://www.math.colostate.edu/˜estep .
• First paper: Random data in load, boundary

condition, and initial condition.
• Second paper: Random coefficient.

In preparation and future project.
• Third paper: Adaptive modeling of random

coefficient (the fifth error type).
• Fourth paper: Application to other

engineering problems.
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