Localization of multiscale problems

Axel Målqvist¹

Seminar at the University of Münster

Münster, Germany

2018-11-29

¹Chalmers University of Technology and University of Gothenburg and \square

Målqvist

Localization of multiscale problems

Multiscale problems

We consider applications such as

▷ composite materials ▷ flow in a porous medium

that require numerical solution of partial differential equations with rough data (module of elasticity, conductivity, or permeability).

Two topics: high contrast and parameter dependent diffusion.

Outline

Elliptic model problem

- Introduction to LOD
- High contrast data
- Parameter dependent data

Final comments

The finite element method

The Poisson equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$.

On weak form: find $u \in V := H_0^1(\Omega)$ such that

$$a(u,v) := \int_{\Omega} (A \nabla u) \cdot \nabla v \, dx = \int_{\Omega} f \cdot v \, dx$$
 for all $v \in V$.

FE approximation: find $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (A \nabla u_h) \cdot \nabla v \, \mathrm{d}x = \int_{\Omega} f \cdot v \, \mathrm{d}x \, \, ext{ for all } v \in V_h.$$

Error bound if $u \in H^2(\Omega)$:

$$|||u - u_h||| := ||A^{1/2}\nabla(u - u_h)||_{L^2(\Omega)} \sim C(A')h.$$

Multiscale methods

Objectives:

• Find a subspace $V_H^{ms} \subset V_h$ for which $u_H^{ms} \in V_H^{ms}$ solving

$$\mathsf{a}(u_{H}^{\mathsf{ms}}, v) := \int_{\Omega} (\mathsf{A} \nabla u_{H}^{\mathsf{ms}}) \cdot \nabla v \, \mathsf{d} x = \int_{\Omega} f \cdot v \, \mathsf{d} x \text{ for all } v \in V_{H}^{\mathsf{ms}},$$

fulfills

$$|||u_h-u_H^{\rm ms}|||\leq CH,$$

with *C* independent of *A*' and dim(V_H^{ms}) \ll dim(V_h).

- Show that a basis for V^{ms}_H can be constructed by local parallel computations.
- Reuse the coarse representation in applications.
- Multiscale methods: VMS, MsFEM, HMM, GFEM, GMsFEM...

Elliptic model problem

Introduction to LOD

- High contrast data
- Parameter dependent data
- Final comments

Målqvist

Orthogonal decompositions

- (coarse) FE mesh \mathcal{T} with parameter H > h
- P1-FE space $V_H := \{ v \in V \mid \forall T \in \mathcal{T}, v |_T \in P_1(T) \}$
- $\mathfrak{I}_{\mathcal{T}}: V \to V_H$ some interpolation operator

Decomposition

$$V = V_H \oplus V^f$$
 with $V^f := \text{kernel } \mathfrak{I}_{\mathcal{T}} = \{v \in V \mid \mathfrak{I}_{\mathcal{T}} v = 0\}$

• For each $v \in V_H$ define finescale projection $Qv \in V^f$ by

$$a(Qv, w) = a(v, w)$$
 for all $w \in V^{f}$

a-Orthogonal Decomposition

$$V = V_H^{ms} \oplus V^f$$
 with $V_H^{ms} := (V_H - QV_H)$

< 3

∃ →

Image: Image:

Ideal multiscale representation

Given the space V_{H}^{ms} we construct a Galerkin approximation:

Ideal method Find $u_{H}^{ms} \in V_{H}^{ms}$ such that $a(u_{H}^{ms}, v) = (f, v), \ \forall v \in V_{H}^{ms}.$

We have that $u - u_H^{ms} = u_f \in V^f$ since u_H^{ms} is the *a*-orthogonal projection of *u* onto V_H^{ms} . Therefore

$$|||u_{f}|||^{2} = a(u, u_{f}) = (f, u_{f}) = (f, u_{f} - \Im_{\mathcal{T}} u_{f}) \leq \frac{C_{\Im_{\mathcal{T}}}}{\alpha^{1/2}} ||Hf||_{L^{2}(\Omega)} |||u_{f}|||.$$

For V_{H}^{ms} to be useful we need a discrete local basis.

Modified nodal basis

- $\phi_x \in V_H$ denotes classical nodal basis function ($x \in N$)
- $Q\phi_x \in V^{f}$ denotes the finescale correction of $\phi_x \ (x \in \mathcal{N})$

Ideal multiscale FE space

$$V_H^{ms} = \operatorname{span} \{ \phi_x - Q \phi_x \mid x \in \mathcal{N} \}$$

Example

Modified nodal basis

- $\phi_x \in V_H$ denotes classical nodal basis function ($x \in N$)
- $Q\phi_x \in V^{f}$ denotes the finescale correction of ϕ_x ($x \in N$)

Ideal multiscale FE space

$$V_H^{ms} = \operatorname{span} \{ \phi_x - Q \phi_x \mid x \in \mathcal{N} \}$$

Localization

• Define nodal patches of ℓ -th order $\omega_{T,\ell}$ about $T \in \mathcal{T}$

 $\omega_{T,1}$

 $\omega_{T,2}$

• Correctors $Q_{\ell}^{T}\phi_{x} \in V^{f}(\omega_{T,\ell}) := \{v \in V^{f} \mid v|_{\Omega \setminus \omega_{T,\ell}} = 0\}$ solve

$$a(Q_{\ell}^{\mathsf{T}}\phi_x,w) = \int_{\mathsf{T}} A \nabla \phi_x \cdot \nabla w \, dx \quad ext{for all } w \in V^{\mathsf{f}}(\omega_{\mathcal{T},\ell})$$

Localized multiscale FE spaces

$$V_{H,\ell}^{\mathsf{ms}} = \mathsf{span}\{\phi_x - \sum_{T \in \mathcal{T}} Q_\ell^T \phi_x \mid x \in \mathcal{N}\}$$

Fine scale discretization

• Finescale mesh

 \mathcal{T}_h with $h \leq H$

• Reference FE space

$$V_h := \{ v \in V \mid \forall T \in \mathcal{T}(\Omega), v |_T \in P_1(T) \}$$

mesh refinement

 \sim

• Reference FE solution
$$u_h \in V_h$$
 solves

$$a(u_h, v) = (f, v)$$
 for all $v \in V_h$

• Fully discrete correctors $Q_{\ell,h}^T \phi_x \in V_h^f(\omega_{T,\ell}) := V^f(\omega_{T,\ell}) \cap V_h$:

$$a(Q_{\ell,h}^{\mathsf{T}}\phi_x,w) = (A\nabla\phi_x,\nabla w)_{\mathsf{T}}$$
 for all $w \in V_h^{\mathsf{f}}(\omega_{\mathsf{T},\ell})$

Localized Orthogonal Decomposition (LOD)

Fully discrete multiscale FE spaces

$$V_{H,\ell}^{\mathsf{ms},h} = \mathsf{span}\{\phi_x - \sum_{T \in \mathcal{T}} Q_{\ell,h}^T \phi_x \mid x \in \mathcal{N}\}$$

Fully discrete multiscale approximation $u_{H,\ell}^{ms,h} \in V_{H,\ell}^{ms,h}$

$$a(u_{H,\ell}^{{
m ms},h}, {
m v}) = ({
m \textit{f}}, {
m v}) \quad ext{ for all } {
m v} \in V_{H,\ell}^{{
m ms},h}$$

Remarks:

- dim $V_{H,\ell}^{\mathsf{ms},h} = |\mathcal{N}| = \dim V_H$
- The basis functions have local support, with overlap depending on ℓ, and are independent.

Målqvist

Localization of multiscale problems

Localized Orthogonal Decomposition (LOD)

Fully discrete multiscale FE spaces

$$V_{H,\ell}^{\mathrm{ms},h} = \mathrm{span}\{\phi_x - \sum_{T \in \mathcal{T}} Q_{\ell,h}^T \phi_x \mid x \in \mathcal{N}\}$$

Petrov-Galerkin version
$$u_{H,\ell}^{\text{ms},h} \in V_{H,\ell}^{\text{ms},h}$$

 $a(u_{H,\ell}^{\text{ms},h}, v) = (f, v) \text{ for all } v \in V_H$

Remarks:

- The inf-sup constant will depend on ℓ .
- This version of the method reduces overlap between basis functions.

Lemma (Truncation error)

$$|||Q_h v_H - Q_{\ell,h} v_H||| \le C_1 \gamma^{\ell} |||Q_h v_H|||, \quad \forall v_h \in V_H$$

 $C_1 < \infty$ and $\gamma < 1$ depends on β/α but not A'.

By choosing $\ell = C_2 \log(H^{-1})$ with appropriate C_2 we guarantee that the truncation leads to a higher order perturbation:

Theorem (A priori error bound)

$$|||u_h - u_{H,\ell}^{\mathsf{ms},h}||| \le C(\alpha,\beta)H,$$

with C independent of A'.

M. & Peterseim, Localization of elliptic multiscale problems, 2014.

Målqvist

- Elliptic model problem
- Introduction to LOD
- High contrast data
- Parameter dependent data
- Final comments

High contrast data (with Hellman)

Poisson equation:

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$.

A = 1 in Ω_1 (black), $A = \alpha$ in Ω_{α} , $\alpha \ll 1$, and $f = \chi_{[1/4,3/4]^2}$.

- High contrast data with channels leads to non-local behaviour.
- The decay rate of the basis functions determines the accuracy of LOD.
- The choice of interpolant $\Im_{\mathcal{T}} v = \sum_{x \in \mathcal{N}} \bar{v}_{\sigma_x} \phi_x$ affects the decay.

Numerical example: High contrast

High contrast data Three examples: $H = 2^{-4}$, $h = 2^{-10}$,

We let $\alpha = 10^{-1}, ..., 10^{-6}$ and plot $|||u_h - u_{H,k}^{ms,h}|||$ vs. *k*, with $\Im_{\mathcal{T}}^{SZ}$,

Heuristic motivation for lack of decay

Fine scale equation: Correctors $Q^T v_H \in V^f = ker(\mathfrak{I}_T)$ solve

$$a(Q^T v_H, w) = \int_T A \nabla v_H \cdot \nabla w \, dx$$
 for all $w \in V^H$

Decay because localized rhs and $\Im_{\mathcal{T}}(Q^T v_H) = 0 \rightarrow Q^T v_H(x) \approx 0.$

If we define $g := Q^T v_H|_{\partial T}$ we note that $Q^T v_H$ minimizes

$$\frac{1}{2}\|\boldsymbol{A}^{1/2}\nabla\boldsymbol{Q}^{T}\boldsymbol{v}_{\mathcal{H}}\|_{L^{2}(\Omega\setminus T)}^{2}=\min_{\boldsymbol{v}_{f}\in\boldsymbol{V}^{f}:\boldsymbol{v}|_{\partial T=g}}\frac{1}{2}\|\boldsymbol{A}^{1/2}\nabla\boldsymbol{v}_{f}\|_{L^{2}(\Omega\setminus T)}^{2}.$$

High derivatives in Ω₁ are penalized.

- With ℑ_T v = ∑_{x∈N} v_{σx}φ_x and σ_x containing both Ω₁ and Ω_α, ℑ_T(Q^Tv_H) = 0 still allows large values (and small derivatives) in Ω₁ and high derivatives in Ω_α.
- To make $Q^T v_H$ decay in Ω_1 we need $\sigma_x \subset \Omega_1 \to \mathbb{R}$

Scott-Zhang type interpolation

Nodal variables:

Let $x \in N$ be nodes of \mathcal{T} and $\sigma_x \subset \Omega$ associated domains. We define a $L^2(\sigma_x)$ -dual basis $\psi_x \in V_H$ fulfilling,

$$\int_{\sigma_x} \psi_x \phi_y = \delta_{xy}.$$

Let the nodal variable $N_x(v) = \int_{\sigma_x} \psi_x v$ and,

$$\mathfrak{I}^{\sigma}_{\mathcal{T}} v = \sum_{x \in \mathcal{N}} N_x(v) \phi_x.$$

- σ_x does not need to be full elements *T* or vertex patches $U_1(x)$.
- The stability of |N_x(v)| ≤ ||ψ||_{L²(σ_x)} ||v||_{L²(σ_x)} depends on the size and shape of σ_x and its distance to x.

Geometry dependent interpolation

- The interpolant $\Im_{\mathcal{T}} v = \sum_{x \in \mathcal{N}} \bar{v}_{\sigma_x} \phi_x$ defines V_f and V_H^{ms} .
- We need to force correctors to be small in the channels!

- If $x \in \Omega_{\alpha}$ let $\sigma_x = \omega_x$, vertex patch
- **2** If *x* ∈ $Ω_1$ let $σ_x ⊂ ω_x ∩ Ω_1$, connected

• We need sufficiently many nodes in Ω_1 (separation ~ *H*)

The we can prove decay independent of α .

Numerical example: High contrast

High contrast data Three examples: $H = 2^{-4}$, $h = 2^{-10}$,

Målqvist

Numerical example: High contrast

High contrast data Three examples: $H = 2^{-4}$, $h = 2^{-10}$,

We let $\alpha = 10^{-1}, \ldots, 10^{-6}$ and plot $|||u_h - u_{H,k}^{\text{ms},h}|||$ vs. k with $\mathfrak{I}_{\mathcal{T}}^{\sigma}$,

Målqvist

- Elliptic model problem
- Introduction to LOD
- High contrast data
- Parameter dependent data
- Final comments

Parameter dependent data (Hellman, Keil)

The Poisson equation with a parameter

 $-\nabla \cdot \mathbf{A}(t)\nabla u(t) = f$ in Ω u(t) = 0 on $\partial \Omega$.

- Random defects (faults in composite material)
- Perturbations (tolerance in manufacturing)
- Time (moving front in porous media flow)

Effect of perturbed diffusion

On each patch use a perturbation \tilde{A}_{τ} of A(t) in the construction of the basis: find $\tilde{Q}_{\ell}^{T} v \in V^{f}(\omega_{\tau,\ell})$ such that

$$(ilde{A}_T
abla ilde{Q}_\ell^{ op} oldsymbol{v},
abla oldsymbol{w}) = (ilde{A}_T
abla oldsymbol{v},
abla oldsymbol{w})_T$$

for all $w \in V_f(\omega_{T,\ell})$. Let $\tilde{V}_{\ell}^{ms} = V_H - \tilde{Q}_{\ell}V_H$ where $\tilde{Q}_{\ell} = \sum_{T \in \mathcal{T}} \tilde{Q}_{\ell}^T$. We seek $\tilde{u}_{\ell}^{ms} \in \tilde{V}_{\ell}^{ms}$ such that

$$ilde{a}(ilde{u}^{\sf ms}_\ell, {m v}) = (f, {m v}), \quad \forall {m v} \in V_H,$$

(a Petrov-Galerkin formulation) where

$$\tilde{a}(u,v) = \sum_{T\in\mathcal{T}} (\tilde{A}_T \nabla \mathfrak{I}_T u, \nabla v)_T - (\tilde{A}_T \nabla \tilde{Q}_\ell^T \mathfrak{I}_T u, \nabla v).$$

We use the perturbed coefficient also in the assembly of the global stiffness matrix.

Målqvist

A priori error analysis

For any
$$v \in V_H$$
 we have with $z = Q_\ell^T v - \tilde{Q}_\ell^T v \in V^f(\omega_{T,\ell})$

$$\begin{split} \|z\|\|^{2} &= (A\nabla z, \nabla z)_{\omega_{T,\ell}} = (A\nabla v, \nabla z)_{T} - (A\nabla \tilde{Q}_{\ell}^{T}v, \nabla z) \\ &= ((\tilde{A}_{T} - A)\nabla \tilde{Q}_{\ell}^{T}v, \nabla z)_{\omega_{T,\ell}} - ((\tilde{A}_{T} - A)\nabla v, \nabla z)_{T} \\ &\leq \|(\tilde{A}_{T} - A)A^{-1/2}(\chi_{T}\nabla v - \nabla \tilde{Q}_{\ell}^{T}v)\|_{L^{2}(\omega_{T,\ell})} \|\|z\|\| \\ &\leq e_{T} \|\|v\|\|_{T} \|\|z\| , \end{split}$$

$$e_T := \max_{w \in V_H: |||w|||_T = 1} ||(\tilde{A}_T - A)A^{-1/2}(\chi_T \nabla w - \nabla \tilde{Q}_\ell^T w)||_{L^2(\omega_{T,\ell})}.$$

Theorem (A priori error bound)

It holds

$$\|\|u_h - \tilde{u}_{h,\ell}^{ms}\|\| \leq C \Big(H + \max_{T \in \mathcal{T}} e_T\Big).$$

$$e_T(A, \tilde{A}_T) := \max_{w \in V_H: |||w|||_T=1} ||(\tilde{A}_T - A)A^{-1/2}(\chi_T \nabla w - \nabla \tilde{Q}_\ell^T w)||_{L^2(\omega_{T,\ell})}.$$

- *w*|₇ has few degrees of freedom and the max can be computed by solving a small eigenvalue problem.
- Error in $\tilde{A}_{T} A$ away from *T* gets multiplied with exponentially decaying function.
- If error is large update Ã_T = A(t) leading to modified entries in a few columns of the global stiffness matrix ã(φ_x, φ_y).
- Only local recomputations are needed (FEM: $\|\tilde{A} A\|_{L^{\infty}(\Omega)}$).

Hellman & M., Numerical homogenization of PDE similar coeff., 2018.

Reuse of LOD basis in parameter space

$$e_T(A, \tilde{A}_T) := \max_{w \in V_H: |||w|||_T = 1} ||(\tilde{A}_T - A)A^{-1/2}(\chi_T \nabla w - \nabla \tilde{Q}_\ell^T w)||_{L^2(\omega_{T,\ell})}.$$

Simple approach: Given A = A(t), $t \in S$, and *TOL*. For $T \in \mathcal{T}$:

• Pick $t_0 \in S$, let $\tilde{A}_T = A(t_0)$ compute $\tilde{a}_{T,0}(\phi_x, \phi_y) = (\tilde{A}_T \nabla \phi_y, \nabla \phi_x)_T - (\tilde{A}_T \nabla \tilde{Q}_\ell \phi_y, \nabla \phi_x).$

• Find parameter set $S_0 = \{t \in S : e_T(A(t), A(t_0)) \le TOL\}.$

- Let $\tilde{A}_T = A(t_n)$, $t_n \notin \bigcup_{k=0}^{n-1} S_k$, compute entries $\tilde{a}_{T,n}(\phi_x, \phi_y)$ and find $S_n = \{t \in S : e_T(A(t), A(t_n)) \leq TOL\}$.
- Works for a discrete set of parameters S.

For *T* and t_k we store matrix entries $\{\tilde{a}_{T,k}(\phi_x, \phi_y)\}_{k=0}^n$. To add new parameters, more details needs to be stored.

Example: random diffusion

Poisson equation:

 $-\nabla \cdot A(\omega)\nabla u(\omega) = f$ in D $u(\omega) = 0$ on ∂D , $\omega \in \Omega$.

On each element *T* find $\{\omega_i\}_{i=1}^n$ such that $S \subset \bigcup_{i=1}^n S_i$ off-line. On-line assemble global LOD matrix by picking right entries from each *T* and solve coarse problem for each sample.

A few configurations need to be stored for each $T \in \mathcal{T}$. Periodicity can be exploited. In FEM the full problem is solved for each sample.

Målqvist

Comments and issues

- The possibility to apply \tilde{A}_{T} independently on each T should be exploited. No communication with other elements.
- Parametrized rep. of the LOD matrix entries from each element is the output, not the full parametrized LOD basis.
- Few parameters may be active on each patch (exponential decay).
- Periodicity can be exploited.
- Storage is reasonable, not even LOD basis have to be stored simultaneously.
- How to find good ω_k and regions
 S_k = {ω : e_T(A(ω) A(ω_k)) < TOL} is open. Note that e_T is computable, only local information is needed and it is off-line.
- Techniques from the RBM community should be useful.

Connection to RBM-LOD

- The goal is to reduce solves for the training set in RBM.
- $Q_{\ell}(t)\phi_x$ is parametrized and reduced basis computed.
- Error analysis bounds |||Q_ℓ(t)φ_x − Q_ℓ(t)φ_x||| leading to H⁻¹ term in global error and therefore larger patches.
- PG formulation is *not* used: multiplication of parametrized basis is needed. Affects communication and storage.
- The assumption $A(t) = \sum_{k=1}^{K} \theta_k(t) A_k(x)$ is crucial and performance depends on *K*.

Abdulle & Henning, A reduced basis LOD, JCP 2015.

- Elliptic model problem
- Introduction to LOD
- High contrast data
- Parameter dependent data
- Final comments

- Thin high conductivity channels are challenging and important.
- Global fine scale connections are equally problematic for iterative methods (Multigrid, DD).
- The choice of interpolant is crucial.
- LOD can be tuned to handle modeling error in the diffusion.
- PG formulation, elementwise localization and error indicators allows us to attack parametrized problems.
- Possibility to collaborate on RBM-LOD.

Thank you for your attention!